GPU Accelerated Direct Volume Rendering on an Interactive Light Field Display
Marco Agus, Enrico Gobbetti, José Antonio Iglesias Guitián, Fabio Marton, and Giovanni Pintore
2008
Abstract
We present a GPU accelerated volume ray casting system interactively driving a multi-user light field display. The display, driven by a single programmable GPU, is based on a specially arranged array of projectors and a holographic screen and provides full horizontal parallax. The characteristics of the display are exploited to develop a specialized volume rendering technique able to provide multiple freely moving naked-eye viewers the illusion of seeing and manipulating virtual volumetric objects floating in the display workspace. In our approach, a GPU ray-caster follows rays generated by a multiple-center-of-projection technique while sampling pre-filtered versions of the dataset at resolutions that match the varying spatial accuracy of the display. The method achieves interactive performance and provides rapid visual understanding of complex volumetric data sets even when using depth oblivious compositing techniques.
Reference and download information
Marco Agus, Enrico Gobbetti, José Antonio Iglesias Guitián, Fabio Marton, and Giovanni Pintore. GPU Accelerated Direct Volume Rendering on an Interactive Light Field Display. Computer Graphics Forum, 27(3): 231-240, 2008. Proc. Eurographics 2008.
Related multimedia productions
Bibtex citation record
@Article{Agus:2008:GAD, author = {Marco Agus and Enrico Gobbetti and {Jos\'e Antonio} {Iglesias Guiti\'an} and Fabio Marton and Giovanni Pintore}, title = {GPU Accelerated Direct Volume Rendering on an Interactive Light Field Display}, journal = {Computer Graphics Forum}, volume = {27}, number = {3}, pages = {231--240}, publisher = {Blackwell Publishers}, address = {Oxford, England}, year = {2008}, abstract = { We present a GPU accelerated volume ray casting system interactively driving a multi-user light field display. The display, driven by a single programmable GPU, is based on a specially arranged array of projectors and a holographic screen and provides full horizontal parallax. The characteristics of the display are exploited to develop a specialized volume rendering technique able to provide multiple freely moving naked-eye viewers the illusion of seeing and manipulating virtual volumetric objects floating in the display workspace. In our approach, a GPU ray-caster follows rays generated by a multiple-center-of-projection technique while sampling pre-filtered versions of the dataset at resolutions that match the varying spatial accuracy of the display. The method achieves interactive performance and provides rapid visual understanding of complex volumetric data sets even when using depth oblivious compositing techniques. }, note = {Proc. Eurographics 2008}, url = {http://vic.crs4.it/vic/cgi-bin/bib-page.cgi?id='Agus:2008:GAD'}, }
The publications listed here are included as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis.
Copyright and all rights therein are maintained by the authors or by
other copyright holders, notwithstanding that they have offered their works
here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each
author's copyright. These works may not be reposted without the
explicit permission of the copyright holder.
Please contact the authors if you are willing to republish this work in
a book, journal, on the Web or elsewhere. Thank you in advance.
All references in the main publication page are linked to a descriptive page
providing relevant bibliographic data and, possibly, a link to
the related document. Please refer to our main
publication repository page for a
page with direct links to documents.