We present an adaptive out-of-core technique for rendering massive scalar volumes employing single pass GPU raycasting. The method is based on the decomposition of a volumetric dataset into small cubical bricks, which are then organized into an octree structure maintained out-of-core. The octree contains the original data at the leaves, and a filtered representation of children at inner nodes. At runtime an adaptive loader, executing on the CPU, updates a view- and transfer function-dependent working set of bricks maintained on GPU memory by asynchronously fetching data from the out-of-core octree representation. At each frame, a compact indexing structure, which spatially organizes the current working set into an octree hierarchy, is encoded in a small texture. This data structure is then exploited by an efficient stackless raycasting algorithm, which computes the volume rendering integral by visiting non-empty bricks in front-to-back order and adapting sampling density to brick resolution. Block visibility information is fed back to the loader to avoid refinement and data loading of occluded zones. The resulting method is able to interactively explore multi-giga-voxel datasets on a desktop PC.
The multimedia works listed here are included as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.