
HuMoRS: Huge models Mobile Rendering System

Marcos Balsa Rodrı́guez
CRS4

Marco Agus
CRS4

Fabio Marton
CRS4

Enrico Gobbetti
CRS4∗

Figure 1: Remote virtual exploration of a scene composed by several high resolution statues on a Asus TF201 tablet (left image), and on a LG
Nexus 4 smartphone (right image). During interaction, models are adaptively downloaded from the network, and knowledge of the currently
rendered scene is exploited to automatically center a rotation pivot for the camera controller and to propose context-dependent precomputed
viewpoints.

Abstract

We present HuMoRS, a networked 3D graphics system for interac-
tively streaming and exploring massive 3D mesh models on mobile
devices. The system integrates a networked architecture for adap-
tive on-device rendering of multiresolution surfaces with a simple
and effective interactive camera controller customized for touch-
enabled mobile devices. During interaction, knowledge of the cur-
rently rendered scene is exploited to automatically center a rotation
pivot and to propose context-dependent precomputed viewpoints.
Both the object of interest and the viewpoint database are resident
on a web server and adaptive transmission is demonstrated over
wireless and phone connections in a Cultural Heritage application
for the exploration of sub-millimetric colored reconstructions of
stone statues. We report also on a preliminary user-study compar-
ing the performances of our camera navigation method with respect
to the most popular Virtual TrackBall implementations, with and
without pivoting.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/Network Graphics I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction techniques;

Keywords: mobile graphics, massive models, camera control, cul-
tural heritage

∗CRS4 Visual Computing, POLARIS Ed. 1, 09010
Pula, Italy www: http://www.crs4.it/vic/ e-
mail: {mbalsa|magus|marton|gobbetti}@crs4.it

1 Introduction

The increased availability and performance of mobile graphics ter-
minals, including smartphones and tablets with high resolution
screens and powerful GPUs, combined with the increased avail-
ability of high-speed mobile data connections, is opening the door
to a variety of networked graphics applications. In this world, na-
tive apps or mobile sites coexist to reach the goal of providing us
access to a wealth of multimedia information while we are on the
move.

There are in the world today more than 4.6 billion mobile phone
subscriptions, of which about 2 billions with internet access, and
the ability to exchange information is continuing to grow exponen-
tially [Ellison 2010], with multimedia data taking a large share.

Cultural heritage valorization and cultural tourism are one of
the sectors that are benefiting from this evolution, as the new
ICT(Information and Communication Technologies) technologies
allow to fit into a context of strong global competition, as
they provide effective means to cover the pre-visit (documen-
tation), visit (immersion) and post-visit (emotional possession)
phases [Economou and Meintani 2011].

Nowadays, most applications of mobile devices in this sector are,
however, focused to provide aids for navigation inside museal
spaces [Filippini-Fantoni et al. 2011; Rubino et al. 2013] or to sub-
stitute the audio guides with enriched 2D multimedia content, and
they do not provide support for the inspection of 3D artworks, such
as sculptures or bas-reliefs. In this context, for museum promotion,
it would be of great interest to provide tools for planning the visit
of statue collections, allowing potential visitors to explore with the
now ubiquitous tablets or smartphones the detailed 3D digital repre-
sentation of artworks. To serve this goal, networked, user-friendly,
flexible, scalable systems are required, and many challenges need
to be addressed in parallel [Kuflik et al. 2011]. Of particular im-
portance is the need to present information at the highest possible
visual quality, in order to convey as much as possible the aura of

the original artifact.

In this paper, we present a networked framework, dubbed HuMoRS,
for streaming and interactive exploring huge highly detailed surface
models on mobile platforms. The system aims at efficiently inte-
grating web-based communication components, scalable multires-
olution structures, adaptive rendering techniques, and simple and
effective touch-based user interfaces. In our approach, 3D models
and associated information are stored in a web server and streamed
in real-time on mobile devices (tablets and smartphones). The mo-
bile rendering application, implemented as an Android app, is con-
trolled by a simple user interface, which combines an interactive
camera controller, to incrementally explore the 3D model, with an
interactive point-of-interest selector (see Fig. 1). During interac-
tion, the camera controller exploits knowledge of the currently ren-
dered scene to automatically center the trackball pivot and to pro-
pose context-dependent precomputed viewpoints in the neighbor-
hood of the current view.

Our system combines and extends a number of state-of-the-art re-
sults. Although not all the techniques presented here are novel
in themselves, their elaboration and combination in a single net-
worked system for high resolution exploration of 3D artworks on
mobile devices is non trivial and represents a substantial enhance-
ment to the state-of-the-art. Two of the main novel contributions
are the context-dependent camera controller and point-of-interest
selectors, which are able to take context-based decisions based on
an adaptive structure maintained on the mobile device and streamed
from the web server. Our simple 3D camera controller extends the
Two Axis Valuator Trackball [Chen et al. 1988; Zhao et al. 2011]
with automatic pivoting, i.e, an automatic way to determine a good
center of rotation based on the current view. In this way, we obtain
a user interface for inspecting complex objects which is general,
predictable, robust, scalable, smooth, and intuitive.

Our scalable implementation supports giga-triangle-sized scenes
composed by different models and hundreds of points-of-interest on
different Android platforms, including middle-level smartphones
and tablets. Moreover we demonstrate the effectiveness of the pro-
posed interface with a preliminary user-study comparing the time
performances with respect to the most typical Virtual Trackball im-
plementations, with and without pivot positioning.

2 Related work

Creating an interactive system for exploration of massive 3D mod-
els on mobile platforms requires combining and extending state-of-
the-art results in a number of technological areas. In this section we
briefly discuss the methods that most closely relate to ours. For a
wider coverage, we refer the reader to well-established surveys on
3D interaction techniques [Jankowski and Hachet 2013], massive
model rendering [Dietrich et al. 2007; Gobbetti et al. 2008; Yoon
et al. 2008], and mobile graphics [Capin et al. 2008] for further
details.

Massive model rendering on mobile platforms Exploring
massive models on mobile devices is still a hot research topic:
much of the work in model distribution has focused so far on com-
pression of mesh structures [Jovanova et al. 2008; Blume et al.
2011; Niebling et al. 2010], but most methods are CPU-bound and
spend a great deal of rendering time computing a view-dependent
triangulation prior to rendering, making their implementation in a
mobile setting particularly challenging. With the increasing raw
power of GPUs, the currently higher-performance methods typi-
cally reduce the per-primitive workload by pre-assembling opti-
mized surface patches [Cignoni et al. 2004; Borgeat et al. 2005;
Goswami et al. 2013], and this kind of approaches has been demon-

strated to work on mobile devices in the context of point-based
rendering [Balsa Rodriguez et al. 2012], image-based mesh rep-
resentations of scenes that can be parameterized as isometric quad
patches [Gobbetti et al. 2012] and triangle meshes [Balsa Rodriguez
et al. 2013]. In our system we employ a general multiresolution
structure based upon tetrahedral space partitioning specifically tai-
lored for mobile devices [Balsa Rodriguez et al. 2013].

Interactive exploration on mobile platforms In the context of
visualization of complicated scenes, users require interactive con-
trol to effectively explore the data. Most of the work in this area
is connected to camera/object motion control [Jankowski and Ha-
chet 2013]. Variations of the virtual trackball [Chen et al. 1988;
Shoemake 1992; Henriksen et al. 2004], which decompose motion
into pan, zoom, and orbit, are the most commonly employed ap-
proaches. In order to solve the lost-in-space problem and avoid
collisions with the environment, Fitzmaurice et al. [2008] have pro-
posed the Safe Navigation Technique, which, however, requires ex-
plicit positioning of rotation pivot, and thus needs precise pointing.
Moreover, motion decomposition and pivot positioning can be dif-
ficult for novice users. For this reason, a number of authors have
proposed techniques for effective object inspection that constrain
viewpoint by using precomputed/authored camera properties [Burt-
nyk et al. 2006; McCrae et al. 2009; Marton et al. 2012]. However,
most of these systems require that the user has direct control over
the visualization space, but this solution can be ineffective when
the visualization area is very small, like it happens in smartphones
or model-details. To solve this problem, Decle and Hachet [Decle
and Hachet 2009] proposed an indirect method based on strokes for
moving 3D objects in a touch screen mobile phone, while Kratz et
al. [Kratz and Rohs 2010] introduced an extension of the virtual
trackball metaphor, which is typically restricted to a half sphere
and single-sided interaction, to actually use a full sphere, by em-
ploying the “iPhone Sandwich” hardware extension which allows
for simultaneous front-and-back touch input. However, latter solu-
tions are suited for small scale models and they employ fixed center
of rotation in the barycenter. An automatic pivoting method has
been recently presented by Trindade and Raboso [Trindade and Ra-
poso 2011], but the method requires access to depth buffer, and it
is not easily customizable to all mobile systems. Furthermore, their
method computes the rotation center as intersection of the viewing
vector with the object surface, and it suffers from discontinuities
when complex models with sharp features are considered. Our au-
tomatic centering method overcomes these problems by consider-
ing a screen-space stochastic sampling of the visible surface, and it
computes the pivot as a weighted filter of a random set of 3D visible
points around the view target.

Image-assisted exploration Thumbnail-bars are tools which
enable the navigation of a dataset by employing a set of precom-
puted images. At any given time, one image of the dataset can
be selected by the user as current focus. The focus image can be
regarded as the current ”position” where the user sits within the
dataset. The exact meaning of selecting a focus depends on the
application: in an image viewer, the focus can be the image being
shown at full resolution in the main area of the screen; in a 3D nav-
igation application [Pintore et al. 2012], where images are linked
to viewpoints (the physical camera positions of the shot), the focus
image can drive the setup of the virtual camera used to render the
3D scene inside the main screen area. Often, these images are also
linked to additional information, which is displayed when the user
reaches them, as an alternative to the usage of hot-spots [Andujar
et al. 2012]. The organization of the images in this kind of tools can
be considered a challenging problem in a networked scenario, since
simple grid layout approaches do not scale up well enough with the

number of images. A trend consists in clustering images hierar-
chically, according to some kind of image semantic, like combin-
ing time and space [Ryu et al. 2010], spatial image-distances [Jang
et al. 2009], or a mixture of them [Mota et al. 2008] to automati-
cally or interactively compute image-clusters. Most of these works
strive to identify good clustering for images, rather than good way
to dynamically present and explore the clustered dataset. Our ap-
proach is navigation-oriented and tailored for mobile devices: it is
organized in a way that, in any moment, users can decide to change
the point of view by browsing a limited number of thumbnails or-
ganized in a scroll list and automatically chosen according to the
similarity to the current view point.

3 System overview

While our methods are of general use, the HuMoRS system is
motivated by a Digital Cultural Heritage project, which aims to
present collections of digital sculptures, and covers aspects rang-
ing from 3D digitization to exploration. We designed the HuMoRS
system architecture by integrating the following components: a pre-
processing component which builds multiresolution databases start-
ing from high resolution triangle meshes, a web server for storing
and streaming 3D models and associated information, and a mobile
client integrating an adaptive multi-resolution renderer and a simple
and effective user-interface (see section 4).

Figure 2: Multi-resolution processing pipeline.

Model preparation In order to ensure real-time performance on
large datasets presented at high resolution on mobile devices, we
employ specialized multiresolution structures and adaptive algo-
rithms.

Specifically, the renderer and the user-interface subsystem share
structure and work on a view-adapted representation of the dataset
based on a variation of Adaptive TetraPuzzles [Balsa Rodriguez
et al. 2013]. The construction process of the multiresolution
database starts from a triangle soup, i.e., a flat list of triangles with
direct vertex information, together with a list of boundary vertices.
The process is composed of three main phases schematized in fig-
ure 2: a first one where the dataset is partitioned into a tetrahedra
hierarchy organized as diamonds [Weiss and De Floriani 2010], a
second phase where data is simplified in a bottom-up fashion to
build inner node representations, and a final phase where geometric
data is compressed for streaming. The quantized vertex coordinates
are encoded together with normals and colors into a compact 64bit
representation suitable for direct rendering, where 3 bytes are used
for position, 2 bytes for normal and 3 bytes for color. Position is
parameterized with 4 barycentric coordinates, and normals are en-
coded using the octahedron normal vector approach [Meyer et al.
2010], which maps unit vectors to two parametric coordinates. In
order to maximize data correlation for the entropy coding, color is
transformed to the YCoCg reversible format [Malvar et al. 2008],

and all of the vertex attributes (i.e., position, normal and color) are
deinterleaved and separated into their components and stored as a
sequence of streams. Building the multiresolution database takes
about half an hour on an Intel Core i7 for a 70Mtri model, see
Fig. 9.

Additional information is stored in the server in order to enable
image-based navigation. Through a manual authoring process the
user defines a set of interesting views on the model, and a thumbnail
of the viewpoint is generated and stored together with the associated
view matrix.

Figure 3: Client-server architecture.

Client-server architecture The HuMoRS networked communi-
cation system is composed by the following components: a server
for storing the models databases and related information, and a
client for interactive rendering (see Fig. 3).

An abstraction layer handles the communication process through
HTTP 1.1, relying on the CURL library for efficient communica-
tion. A persistent connection is maintained, due to the streaming
nature of the communication, to avoid reconnection overhead.

A simple module for Apache2 is in charge of handling HTTP re-
quests, which is built upon a local database to efficiently locate the
requested data. Berkeley DB is used for storage, accessing and
caching data in the server side due to its open source license and
its matureness as embeddable database. On the server side, a cus-
tom Apache module implements a connectionless protocol based on
HTTP which receives queries composed of database name and node
identifier. This module extracts the query parameters, retrieves the
corresponding data from the DB, and sends back either node’s data
or an empty message if it is not present. On the server side is also
present a database of precomputed view snapshots. On a client re-
quest the server sends to the user the view thumbnails which will be
used for image based navigation. Rendering is performed as what
has been proposed by Balsa et al [Balsa Rodriguez et al. 2013].
Taking into account the mobile architecture constraints, the ren-
dering engine has been designed to minimize fragment processing
while feeding the GPU with large geometry batches using cache
optimized indexed triangle strips. At each frame, depending on the
viewing parameters and a given fixed screen space tolerance, the
client performs an adaptive rendering of the multiresolution model.
For this purpose, the client relies on a hierarchical multiresolution
representation of the model that is incrementally refined depend-
ing on the navigation. In RAM memory, we maintain the cache of
tetrahedra compact geometries, which are indexed through the dia-
mond graph. The cache implements a LRU policy that maximizes
the reuse of nodes while enforcing a resource usage below a given
limit. The retrieval of data is performed through an asynchronous
data access layer which encapsulates the data fetching mechanism
and avoids blocking the application when the requested data is not
yet available. This thread is also responsible for performing the de-
compression from the entropy coded version to the compact GPU
friendly representation.

For each vertex buffer object the tetrahedra corners are bound to a
vertex shader which transforms data expressed in quantized local

Figure 4: Detail of model interactively rendered on a Nexus
4 smartphone. This 70Mtriangles model is colored using post-
restoration color data. Note how our compression preserves ex-
tremely high quality details in shape, normal, and colors.

barycentric coordinates into world coordinates. The transformation
is given by this equation v = ||M|| · ||c0c1c2c3|| · |vb|, where
M is the model matrix, ci represent the corner ith while vb is the
vector of the 4 barycentric coordinates. Attribute decoding cost is
negligible with respect to the other work performed by the shader
(in particular, transformation, projection, and shading). Fig. 4 il-
lustrates the quality of rendering that can be achieved using com-
pressed data.

4 User interaction

The design of our method has taken into account requirements gath-
ered from domain experts, as well as our analysis of related work
(see Sec. 2).

Figure 5: Auto-centering and Interaction. Left: automatic pivot
computation performed by a weighted averaging of a uniform point
sampling of the model in that moment observed by the camera
(lighter samples have lower weights). Center: rotations are per-
formed by dragging and mapping displacements according to the
classical Virtual Trackball.Right: interaction gestures: one finger
for rotation, two fingers for pinch zoom and translation. When in-
teraction stops a set of precomputed views is presented to the user.

Since we deal with decorated and highly detailed Cultural Heritage
objects, like statues and bas-reliefs, we had to take into account the
fact that they present information at multiple scales (global shape
and carvings), which could require sub-millimetric model preci-

sion. This carving information should be clearly perceivable at
all scales, and should be magnified for close inspection. Further-
more, camera navigation should provide real-time feedback, in or-
der to engage users providing them the sense of control, and support
smooth and seamless object inspection, going back and forth from
shape inspection to detail inspection. The user interface should
thus also be perceived as simple and immediately usable. Given
the limited size of display, the visualized object should not be ob-
structed by fingers and other interaction widgets, and finger move-
ments should be limited in order to reduce user’s effort during the
exploration. Finally, since the application has to work in mobile
settings, all context-dependent operations have to be designed so as
to work on locally maintained structures, as querying the server for
information would introduce too much latency on mobile networks.

To fulfill these requirements, we designed a user interface com-
posed by a simple and effective metaphor (ACeViT: Auto-
Centering Virtual Trackball) for interactive camera motion, and a
context-based point-of-interest selector for moving the camera to
precomputed viewpoints, see Fig. 5 and Fig.6.

Figure 6: Interaction states. This diagram shows the various state
transitions that compose the user interface.

4.1 Auto-Centering Virtual Trackball

During the last two decades many devices, interfaces and algo-
rithms have been designed and proposed to map user input to virtual
camera motions [Christie and Olivier 2009], aiming to maximize
user performance and comfort during interactive explorations. The
majority of navigation methods are devoted to typical desktop sys-
tems, in which user focus is directed to a monitor screen surface,
and the input is given by employing 2D pointing devices, like mice,
pads or joysticks. In these scenarios in which the work area size
is comparable to the view area size, direct interaction methods are
normally considered, and many exploration metaphors can be de-
signed to fulfill the system requirements given by the data to explore
and the user needs.

The widespread diffusion of touch devices, such as tablets or smart-
phones, has made people used to touch-based user interfaces based
on direct manipulation of on-screen objects. 3D variations of the
well-known 2D multi-touch RST technique, that allows the simul-
taneous control of Rotations, Scaling, and Translations from two
finger inputs are becoming increasingly used as viewpoint manipu-
lation technique in this context [Kurtenbach et al. 1997; Jankowski
and Hachet 2013]. While no real standard for 3D touch-based in-
teraction exists [Keefe and Isenberg 2013], touch surfaces are now
so common that people are encouraged to try to interact with them
using typical 2D gestures, which is an important aspect for reduc-
ing training time. Even if the mapping between 2D and 3D motions
is non-trivial and varies from a user interface to the next, users are
encouraged to learn by trial and error while interacting.

It should be noted, however, that in the case of small mobile touch

screens standard co-located interaction techniques are not always
effective due to occlusion problems since fingers can occlude the
scene during motion, and simpler incremental techniques which re-
duce the user input need to be considered. It is therefore impor-
tant to design the technique so as to avoid the need for precise co-
location.

According to previous user analysis [Bade et al. 2005], the Two-
Axis Valuator [Chen et al. 1988] appears to be the best incremental
3D rotation technique in terms of speed and satisfaction in standard
settings, and it was considered as the base for our method. This in-
terface maps 2D device motions to two axes of the view coordinate
system, both orthogonal to the view-vector of the camera through
a center of rotation [Shuralyov and Stuerzlinger 2011]. Specifi-
cally, horizontal mouse movement ∆u is mapped to rotations about
the up-vector of the camera and vertical mouse movement ∆v is
mapped to a rotation about the vector perpendicular to the up-vector
and the view-vector (see figure 5). Then diagonal device move-
ments are mapped to a combined rotation about both axes. The
center of rotation (pivot) can be defined in different ways: tradi-
tional trackballs fix the pivot as the center of the object bounding
sphere, but many systems give the user the possibility to manually
define the rotation center as a 3D point in the object surface. Both
solutions can be tedious for users, since in the first case they are
forced to many motion corrections, while in the latter they have to
change operation mode when they want to select a new pivot posi-
tion. In our method, users do not have to take care of controlling
the rotation center, since it is automatically placed. Whenever a
panning or rotation interaction ends (see Fig. 6), the pivot position
is computed according to the current projection and viewing ma-
trices (P,V) and a stochastic sampling Σ = {p1,p2, ...,pN} of
current visible points on the surface. The following weighted sum
is employed:

c =
∑
i

γ(ui, vi, wi) · pi (1)

where (ui, vi, wi) = PV · pi are the NDC coordinates of the pro-
jected point, and γ(ui, vi, wi) = γ(ui) · γ(vi) · γ(wi) is a 3D
separable Gaussian filter, giving the maximum weight to the cur-
rent view matrix target position, and lower values when the sam-
ples are in the peripheral areas of the viewport. With respect to
depth, the Gaussian is centered at the near plane, as to give to clos-
est points the maximum contribution. The random sampling and
the distance-based weighting ensure the avoidance of abrupt pivot
changes when the user performs multiple small rotations. In order
to suit different hardware settings, a variety of implementations can
be considered. An efficient GPU-based screen-space implementa-
tion can be obtained by performing a stochastic sampling of the
depth buffer and weighted accumulation of samples, by employing
typical multi-pass pyramid methods derived from image process-
ing [Strengert et al. 2006]. A model-based implementation instead
can be applied to platforms where fragment processing and GPU
feedback are not well supported or have performance issues (e.g.,
many mobile phones). In our implementation, we perform all com-
putations in CPU and, since the models are rendered using patches
(e.g., [Cignoni et al. 2004]), the sampling algorithm is applied to
individual patches during hierarchy traversal and results are com-
bined at run-time according to the renderer selection.

4.2 Image-based navigation

We provide the user also with a context-based guided navigation re-
lying on nearest point-of-interest selection. This alternative control
method allows the user to explore the object by traveling through a
set of previously defined interesting views. On startup, the applica-
tion loads a list of precomputed view points of the scene, which is
organized into a KD-tree in order to provide fast searches. For each

Figure 7: Views selection process. When the camera stops, the ap-
plication identifies the best closest views and posts a request to the
server which sends back the selected view thumbnails. Finally the
user selects the desired view and an animation moves the camera
to the requested position.

view point, a view matrix is stored together with the url of the cor-
responding view point thumbnail. Whenever an interaction ends,
a list of best view candidates is computed and a separate thread is
in charge of gathering the associated thumbnails to each view from
the server. A small two level LRU cache in the client alleviates the
latency of thumbnail retrieval for already visited viewpoints. The
first cache is in charge of handling image requests to the server,
containing various dozens of compressed images. The second level
caches 2D textures, and must handle at least the number of simul-
taneous views that will be visible at the same time. Computation of
best view set if performed in two steps. First, the closest views
with respect to current view position are retrieved performing a
Knn search. The resulting set of views is further filtered to select
the views subset that best approximate the current view point. For
that purpose, a uniform point sampling of the visible model is per-
formed. The resulting point set is projected both from current view
and from the candidate view in order to compute pointwise 2D dis-
tances. The views with lowest distances are then selected and pre-
sented to the user as a grid selection interface shown on the screen
side, see Fig. 1.

The user can then navigate the model by clicking on the various
thumbnails, thus starting an animation that will take the observer
from its current position to the target view point, see Fig. 7.

The approach can be furthermore extended with static overlays, for
authoring annotations and presenting heterogeneous enriched mul-
timedia information, like required in typical cultural heritage appli-
cations [Marton et al. 2014].

5 Results

The HuMoRS system has been successfully tested in a variety of
mobile platforms, in particular for the exploration of a set of 3D
highly detailed models derived from the 3D scan acquisition of the
statues of Mont’e Prama, ancient stone sculptures created by the
Nuragic civilization of Sardinia, Italy, see Fig. 4, 8. The 3D mod-
els of these statues are highly detailed and often made of a few
disconnected parts, posing important problems to navigation tech-
niques. See Bettio et al. [2013; 2014] for details on the Mont’e
Prama dataset.

5.1 System performance

The mobile client was implemented on Android 4.4 using C++,
OpenGL ES 2.0 and Qt. The Qt library is in charge of handling
UI events and GL context creation providing good portability for
Android, Windows, Linux or iOS. We evaluated the rendering per-
formance of the system on a number of inspection sequences on
a variety of devices that represent both mid-class and top-class
SoC(System on Chip) currently available in the market, see Table 1
for device characteristics.

Model CPU GPU RAM Screen

Nexus 7 NVIDIA Tegra 3 4x1.3Ghz GForce ULP 1GB 7” 800x1280 0.9MPix
ASUS TF201 NVIDIA Tegra 3 4x1.3Ghz GForce ULP 1GB 10.1” 1232x800 0.9Mpix

Nexus 4 Qualcomm Snapdragon S4 Pro 4x1.5Ghz Adreno 320 2GB 4.7” 768x1280 0.9Mpix
Nexus 5 Qualcomm Snapdragon 800 4x1.5Ghz Adreno 330 2GB 4.95” 1080x1920 2Mpix

Asus TF701 NVIDIA Tegra 4 4x1.9Ghz GeForce ULP 72 core 2GB 10.1” 2560x1600 4Mpix

Table 1: Device characteristics. Hardware characteristics of the devices used for testing.

Device Rendering speed Download speed Decode speed Whole view refine(data size,time) Close view refine(data size,time)

ASUS TF201 / Nexus 7 10 Mtri/s 11.2Mbps 1MB/s 4.6MB, 7s 37MB, 57s
Nexus 4 20 Mtri/s 18Mbps 1.2MB/s 4.6MB, 5s 37MB, 41s
Nexus 5 20 Mtri/s 20Mbps 1.4MB/s 7.4MB, 8s 45MB, 40s

Asus TF701 25 Mtri/s 24.8Mbps 1.5MB/s 8.2MB, 8s 65.8MB, 59s

Table 2: Hardware performance. Performance results for the various hardware configurations.

Figure 8: Various levels of detail of a statue. Images correspond
to Nexus 4, Asus TF201 and Nexus 7, respectively. Top: View of the
whole statue. Bottom: A close-up of the statue showing small-scale
details.

Rendering performance Models were rendered using a target
resolution of 0.3tri/pixel on screens with less than 2Mpix and
0.2tri/pixel when there are more than 2Mpix, leading to graph cuts
of 150 nodes on average, with approximately 8Ktri/node. Nav-
igation was interactive with negligible interaction delays for all
datasets, with frame rates constantly above 20 fps, for the Tegra
4 and SnapDragon processors, while Tegra 3 handled above 10
fps. The multiresolution structure used for rendering is also ex-
ploited for object queries during interaction, proving successful, as
camera transformation computation, and pivot calculation, in our
camera controller always took below 10% of the frame time. The
sessions were designed to be representative of typical mesh inspec-
tion tasks and to heavily stress the system, including rotations and
rapid changes from overall views to extreme close-ups. The quali-
tative performance of our adaptive renderer is also illustrated in an
accompanying video, that shows live recordings of the analyzed se-
quences. During the tests the average triangle count was 1-3Mtris
per frame, depending on screen coverage and model refinement.
The mesured performance shown average frame rates of 10-30 fps
on most devices, while Tegra 3 devices performance was about 5-
15fps, see Table 2. When the user is interacting, the maximum

triangle budget is adjusted to ensure a minimum of 10 fps. As
demonstrated in the video, performance is perfectly adequate for
interactive inspection tasks, while providing extremely high repre-
sentation quality. An example is presented in Fig. 4.

We have also performed tests on a scene composed of 10 stat-
ues, ranging from 40Mtri to 70Mtri each, resulting in about
600Mtri, see Fig. 1. Performance was measured between 4-10
fps on Tegra 3 devices, and 10-20 fps on the other tested devices.
Average triangle count per frame depends mostly on the statue in
foreground, while other statues covering less than 1/4 of the view-
port add no more than 60Ktri each, representing about 10-30%
overhead.

All the measures correspond to a rendering viewport of 5/6th of the
screen, excluding the area used for image-based navigation, ranging
from 0.7Mpixels to 3.3Mpixels.

Streaming performance The latency time needed to download
the data at the application start-up and to refine the model during
the exploration is the most critical bottleneck affecting mobile de-
vices, and it is independent from the rendering thread only relying
on the network bandwidth. Performance was measured on a wire-
less connection using a Linksys WAP200 802.11b/g AP 54 Mbps,
obtaining a peak performance of 28Mbps under a heavily shared
environment.

For a full view, where the whole statue fits in the rendering viewport
(see Fig. 8 top-left), about 4.6-8.2MB (500Ktri-1.3Mtri) were
required for full refinement, depending on the rendering viewport
resolution. In the case of a detail view, a close view of a small part
of the statue (see Fig. 8 center-bottom), 37-65.8MB (1.6-2.3Mtri)
are needed (see Table 2 for further details).

Data fetching is performed asynchronously in a separate thread, so
it doesn’t interfere with interactive rendering performance. Data
fetching over Wifi shows download speeds about 11-26Mbps, rep-
resenting 40-88% of the available bandwidth. The decoding per-
formance varies among the various devices ranging from 0.9MB/s
to 1.5MB/s, thus determining the maximum streaming throughput,
see Table 2. Achieving a fully refined full view of the statue requires
about 5-8s depending on the screen resolution and the device per-
formance when decoding. For a detail view, between 40-59s are
required for full refinement. Nonetheless, thanks to the progressive
refinement, within just few seconds the statues can be inspected
with a reasonable quality.

Under UMTS/HSPA connection, we measured an average data
fetch speed of 2.5Mbps over a measured peak performance of

3.4Mbps. Full refinement of a full view took about 20-50s, and
120-140s for a detail view.

All this times correspond to a fresh start with no cached data. How-
ever, during a typical inspection of the model, when the user gets
to a new close-up view most data from the coarse representation is
already present, thus requiring less time for full refinement.

5.2 User study

Figure 9: User study performed on a Nexus 7 tablet. ACeViT com-
pared to Virtual TrackBall with fixed pivot and with manual pivot
positioning. Left: test scene composed of a detailed surface model
composed of 70Mtri. Right: tasks consisted of reaching and shoot-
ing specific positions and orientations indicated by green cylinders.

In order to test the effectiveness of the interaction method on mobile
devices, we carried out also a preliminary performance evaluation
of our auto-centering Virtual Trackball (AceViT) with respect to the
standard Two Axis Evaluator Virtual Trackball with fixed pivot, and
with manual selection of the pivot obtained by ray-casting against
the scene on user request.

Setup The user tests were performed on an ASUS Nexus 7, see
Table 1. All the interfaces were implemented by using the typical
RST approach: one finger to generate rotations, two fingers to per-
form zoom (by pinching) or pan (by dragging), continuous pressure
with one finger to perform pivot update. As testing scene, we con-
sidered a scene composed of a Boxer statue (see Fig. 9) consisting
of 70Mtri.

Tasks The experiments consisted in letting users try the three
different manipulation controllers (ACeViT, TrackBall with fixed
pivot and TrackBall with manual pivot) in the context of a point-
and-shoot interaction task [Bade et al. 2005]. Participants were
asked to point-and-shoot a small set of green cylinders, which had
to be shoot through in order to get a positive hit. By forcing the user
to align the camera view direction with that of the cylinder axis, we
obtained a task composed of a global approaching phase and a later
local step for aligning camera with the cylinder. The cylinder radius
was adjusted in order to avoid trivial alignments so the second step
was hard to skip (see Fig. 9 left). When the targets were precisely
pointed and aligned with respect to a cross viewfinder, users could
shoot them by pressing a touch button (see Fig. 9 right).

Subjects Ten subjects with ages ranging from 27 to 51 (mean
38.4 ± 7.9) were selected between the researchers of our research

department. All persons involved had previous experience with 3D
software systems and interfaces (particularly with Virtual Trackball
interfaces).

Design Subjects were proposed the interfaces in randomized or-
der. After a brief training with the touch interface, the measured
tests consisted of shooting 5 targets, randomly selected from a list
of 10 potential candidates, in order to avoid any bias due to a-priori
knowledge of target positions. For a complete testing session, users
needed times ranging from 180 to 280 seconds. The times for hit-
ting all tasks for each interface were measured and recorded.

Figure 10: Performance comparison: Timings

Analysis In summary, the complete test design consisted of 10
subjects, each one testing 3 camera controllers for a total of 30
time measurements. We performed a statistical analysis of com-
pletion times for the shooting tasks experiment. All computations
were done by using the R package. Mean completion times were
53.68 ± 11.41 seconds for ACeViT, 73.64 ± 14.84 seconds for
manual pivoting, and 90.95 ± 12.26 seconds for fixed pivoting.
After performing a Shapiro-Wilk test for normality (W = 0.948,
p = 0.2101), an analysis of variance revealed a significant effect
of the interface (F = 17.652 and p < 0.001). Finally a post-
hoc Tukey multiple comparisons of means revealed dramatic dif-
ferences between ACeViT and fixed pivoting(p < 0.001), impor-
tant differences between ACeViT and manual pivoting (p < 0.01),
and significant differences between manual pivoting and fixed piv-
oting (p = 0.029). Fig. 10 shows the boxplots of the task comple-
tion times, as rendered by the R package. Statistical analysis and
boxplots showed that automatic pivoting improves the time perfor-
mances of shooting tasks. Moreover, by observing and listening
think-aloud comments during the experiments, it appeared evident
that users felt very comfortable with ACeViT since they could ex-
plore in intuitive manner the complex scene, and they could perform
tasks with less motion corrections with respect to standard Virtual
Trackball implementations, with fixed and manual pivoting.

6 Conclusions

We have presented HuMORS, an interactive system for natural ex-
ploration of extremely detailed surface models on mobile devices.
The system successfully integrates web components, scalable mul-
tiresolution structures, and adaptive rendering techniques. The mo-
bile rendering application is decorated with an effective user in-
terface, which combines an interactive camera controller, to incre-
mentally explore the 3D model, with an interactive image-based
point-of-interest selector. The system has been successfully tested

in a variety of mobile platforms, in particular for the exploration
of a set of 3D highly detailed models obtained with high resolu-
tion laser scanning of Cultural Heritage artworks. Furthermore, our
auto centering camera controller has been compared with two con-
solidated Virtual Trackball implementations, collecting quantitative
results from a series of tests on a mobile device involving 10 people.
The camera controller appears to be intuitive and simple enough
even for casual users who quickly understand how to browse com-
plex models immediately. Our current work concentrates on ex-
tending the system for supporting bidirectional connection between
multiple multimedia types as well as narrative contents.

Acknowledgments

This work is partially supported by the EU FP7 Program under the
DIVA project (290277), by POR Sardegna 2007-2013 under the
TADES project, and by Soprintendenza per i Beni Archeologici per
le Province di Cagliari ed Oristano (ArcheoCAOR). We also ac-
knowledge the contribution of Sardinian Regional Authorities.

References

ANDUJAR, C., CHICA, A., AND BRUNET, P. 2012. Cultural
heritage: User-interface design for the Ripoll monastery exhi-
bition at the National Art Museum of Catalonia. Computers and
Graphics 36, 1, 28–37.

BADE, R., RITTER, F., AND PREIM, B. 2005. Usability compar-
ison of mouse-based interaction techniques for predictable 3d
rotation. In Proc. Smart Graphics, Springer, 138–150.

BALSA RODRIGUEZ, M., GOBBETTI, E., MARTON, F., PINTUS,
R., PINTORE, G., AND TINTI, A. 2012. Interactive exploration
of gigantic point clouds on mobile devices. In Proc. VAST, 57–
64.

BALSA RODRIGUEZ, M., GOBBETTI, E., MARTON, F., AND
TINTI, A. 2013. Compression-domain seamless multiresolu-
tion visualization of gigantic meshes on mobile devices. In Proc.
ACM Web3D, ACM Press, 99–107.

BETTIO, F., GOBBETTI, E., MERELLA, E., AND PINTUS, R.
2013. Improving the digitization of shape and color of 3D art-
works in a cluttered environment. In Proc. Digital Heritage. To
appear.

BETTIO, F., JASPE VILLANUEVA, A., MERELLA, E., PINTUS,
R., MARTON, F., AND GOBBETTI, E. 2014. Mont’e scan:
Effective shape and color digitization of cluttered 3D artworks.
Submittted for publication.

BLUME, A., CHUN, W., KOGAN, D., KOKKEVIS, V., WEBER,
N., PETTERSON, R., AND ZEIGER, R. 2011. Google Body:
3D human anatomy in the browser. In ACM SIGGRAPH Talks,
ACM, 19.

BORGEAT, L., GODIN, G., BLAIS, F., MASSICOTTE, P., AND
LAHANIER, C. 2005. GoLD: interactive display of huge colored
and textured models. ACM TOG 24, 3, 869–877.

BURTNYK, N., KHAN, A., FITZMAURICE, G., AND KURTEN-
BACH, G. 2006. ShowMotion: camera motion based 3D design
review. In Proc. ACM I3D, ACM, 167–174.

CAPIN, T., PULLI, K., AND AKENINE-MOLLER, T. 2008. The
state of the art in mobile graphics research. IEEE CG&A 28, 4,
74–84.

CHEN, M., MOUNTFORD, S. J., AND SELLEN, A. 1988. A study
in interactive 3-D rotation using 2-D control devices. In Proc.
ACM SIGGRAPH, ACM, 121–129.

CHRISTIE, M., AND OLIVIER, P. 2009. Camera control in com-
puter graphics: models, techniques and applications. In ACM
SIGGRAPH ASIA Courses, ACM, 3:1–3:197.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2004. Adaptive tetrapuzzles:
efficient out-of-core construction and visualization of gigantic
multiresolution polygonal models. ACM TOG 23, 3, 796–803.

DECLE, F., AND HACHET, M. 2009. A study of direct versus
planned 3d camera manipulation on touch-based mobile phones.
In Proc. MobileHCI, ACM, 32–35.

DIETRICH, A., GOBBETTI, E., AND YOON, S. 2007. Massive-
model rendering techniques: A tutorial. IEEE CG&A 27, 6
(nov/dec), 20–34.

ECONOMOU, M., AND MEINTANI, E. 2011. Promising begin-
nings? evaluating museum mobile phone apps. In Proc. Re-
thinking Technology in Museums Conference, 26–27.

ELLISON, S., 2010. Worldwide and u.s. mobile applications, store-
fronts, and developer 2010–2014 forecast and year-end 2010
vendor shares: The ”appification” of everything. Doc. 225668
Market Analysis. IDC Corporate US.

FILIPPINI-FANTONI, S., MCDAID, S., AND COCK, M. 2011.
Mobile devices for orientation and way finding: the case of the
british museum multimedia guide. In Proc. Museums and the
Web.

FITZMAURICE, G., MATEJKA, J., MORDATCH, I., KHAN, A.,
AND KURTENBACH, G. 2008. Safe 3D navigation. In Proc.
ACM I3D, ACM, 7–15.

GOBBETTI, E., KASIK, D., AND YOON, S. 2008. Technical strate-
gies for massive model visualization. In Proc. ACM SPM, ACM,
405–415.

GOBBETTI, E., MARTON, F., BALSA RODRIGUEZ, M., GANOV-
ELLI, F., AND DI BENEDETTO, M. 2012. Adaptive Quad
Patches: an adaptive regular structure for web distribution and
adaptive rendering of 3D models. In Proc. ACM Web3D, ACM
Press, 9–16.

GOSWAMI, P., EROL, F., MUKHI, R., PAJAROLA, R., AND GOB-
BETTI, E. 2013. An efficient multi-resolution framework for
high quality interactive rendering of massive point clouds using
multi-way kd-trees. The Visual Computer 29, 1, 69–83.

HENRIKSEN, K., SPORRING, J., AND HORNBÆK, K. 2004. Vir-
tual trackballs revisited. IEEE TVCG 10, 2 (Mar.), 206–216.

JANG, C., YOON, T., AND CHO, H.-G. 2009. A smart clustering
algorithm for photo set obtained from multiple digital cameras.
In Proc. ACM SAC, ACM, 1784–1791.

JANKOWSKI, J., AND HACHET, M. 2013. A survey of interac-
tion techniques for interactive 3D environments. In Eurograph-
ics STAR.

JOVANOVA, B., PREDA, M., AND PRETEUX, F. 2008. MPEG-4
Part 25: A generic model for 3D graphics compression. In Proc.
IEEE 3DTV, IEEE, 101–104.

KEEFE, D., AND ISENBERG, T. 2013. Reimagining the scientific
visualization interaction paradigm. Computer 46, 5 (May), 51–
57.

KRATZ, S., AND ROHS, M. 2010. Extending the virtual trackball
metaphor to rear touch input. In Proc. IEEE 3DUI, IEEE, 111–
114.

KUFLIK, T., STOCK, O., ZANCANARO, M., GORFINKEL, A.,
JBARA, S., KATS, S., SHEIDIN, J., AND KASHTAN, N. 2011.
A visitor’s guide in an active museum: Presentations, communi-
cations, and reflection. JOCCH 3, 3, 11:1–11:25.

KURTENBACH, G., FITZMAURICE, G., BAUDEL, T., AND BUX-
TON, B. 1997. The design of a gui paradigm based on tablets,
two-hands, and transparency. In Proc. ACM SIGCHI, ACM,
ACM, 35–42.

MALVAR, H. S., SULLIVAN, G. J., AND SRINIVASAN, S. 2008.
Lifting-based reversible color transformations for image com-
pression. 707307–707307–10.

MARTON, F., AGUS, M., GOBBETTI, E., PINTORE, G., AND
BALSA RODRIGUEZ, M. 2012. Natural exploration of 3D mas-
sive models on large-scale light field displays using the fox prox-
imal navigation technique. Computers & Graphics 36, 8 (De-
cember), 893–903.

MARTON, F., BALSA RODRIGUEZ, M., BETTIO, F., AGUS, M.,
JASPE VILLANUEVA, A., AND GOBBETTI, E. 2014. Isocam:
Interactive visual exploration of massive cultural heritage mod-
els on large projection setups. JOCCH. To appear.

MCCRAE, J., MORDATCH, I., GLUECK, M., AND KHAN, A.
2009. Multiscale 3D navigation. In Proc. I3D, ACM, 7–14.

MEYER, Q., SUESSMUTH, J., SUSSNER, G., STAMMINGER, M.,
AND GREINER, G. 2010. On floating-point normal vectors.
Computer Graphics Forum 29, 4, 1405–1409.

MOTA, J. A., FONSECA, M. J., GONÇALVES, D., AND JORGE,
J. A. 2008. Agrafo: a visual interface for grouping and browsing
digital photos. In Proc. ACM AVI, ACM, 494–495.

NIEBLING, F., KOPECKI, A., AND BECKER, M. 2010. Collab-
orative steering and post-processing of simulations on hpc re-
sources: Everyone, anytime, anywhere. In Proc. ACM Web3D,
ACM, 101–108.

PINTORE, G., GOBBETTI, E., GANOVELLI, F., AND BRIVIO, P.
2012. 3DNSITE: A networked interactive 3D visualization sys-
tem to simplify location recognition in crisis management. In
Proc. ACM Web3D, ACM Press, 59–67.

RUBINO, I., XHEMBULLA, J., MARTINA, A., BOTTINO, A., AND
MALNATI, G. 2013. Musa: Using indoor positioning and navi-
gation to enhance cultural experiences in a museum. Sensors 13,
12, 17445–17471.

RYU, D.-S., CHUNG, W.-K., AND CHO, H.-G. 2010. PHO-
TOLAND: a new image layout system using spatio-temporal in-
formation in digital photos. In Proc. ACM SAC, ACM Press,
1884–1891.

SHOEMAKE, K. 1992. ARCBALL: a user interface for specify-
ing three-dimensional orientation using a mouse. In Proc. ACM
SIGGRAPH, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 151–156.

SHURALYOV, D., AND STUERZLINGER, W. 2011. A 3d desktop
puzzle assembly system. In Proc. 3DUI, IEEE Computer Soci-
ety, 139–140.

STRENGERT, M., KRAUS, M., AND ERTL, T. E. 2006. Pyramid
methods in gpu-based image processing. In Proc. VMV, 169–
176.

TRINDADE, D. R., AND RAPOSO, A. B. 2011. Improving 3d nav-
igation in multiscale environments using cubemap-based tech-
niques. In Proc. SAC, ACM, 1215–1221.

WEISS, K., AND DE FLORIANI, L. 2010. Simplex and dia-
mond hierarchies: Models and applications. In Eurographics
STAR, Eurographics Association, H. Hauser and E. Reinhard,
Eds., 113–136.

YOON, S., GOBBETTI, E., KASIK, D., AND HA, D. M. 2008.
Real-time Massive Model Rendering, vol. 2 of Synthesis Lectures
on Computer Graphics and Animation. Morgan and Claypool,
August.

ZHAO, Y. J., SHURALYOV, D., AND STUERZLINGER, W. 2011.
Comparison of multiple 3d rotation methods. In Proc. IEEE
VECIMS, IEEE, 1–5.

