
Hardware-Accelerated Dynamic Volume Rendering
for Real–Time Surgical Simulation

Marco Agus, Andrea Giachetti, Enrico Gobbetti
Gianluigi Zanetti, and Antonio Zorcolo

CRS4
Center for Advanced Studies, Research and Development in Sardinia

POLARIS Edificio 1, 09010 Pula (CA), Italy
{magus,zarco,giach,gobbetti,zag}@crs4.it

Abstract. We developed a direct volume rendering technique, that supports low
latency real time visual feedback in parallel with physical simulation on commod-
ity graphics platforms. In our approach, a fast approximation of the diffuse shad-
ing equation is computed on the fly by the graphics pipe-line directly from the
scalar data. We do this by exploiting the possibilities offered by multi-texturing
with the register combiner OpenGL extension, that provides a configurable means
to determine per-pixel fragment coloring. The effectiveness of our approach, that
supports a full decoupling of simulation and rendering, is demonstrated in a train-
ing system for temporal bone surgery.

1 Introduction

The diffusion of minimally invasive procedures is bringing major improvements in the
quality of the care provided to the patients. This is done, however, at the cost of the
increase in the complexity of the surgical procedures performed, thus requiring an in-
crease in the training needed by each specific intervention for both planning and pro-
cedural issues. At the same time, the shortage of cadavers for medical training and
public concern with the inhuman treatment of animals is drastically limiting the tradi-
tional approaches to surgical training. Virtual reality simulators realistically mimicking
a patient-specific operating environment would therefore significantly contribute to the
improvement of surgical training. Developing high quality simulators is, however, ex-
tremely difficult, since the need to provide real-time feedback to users, while simulating
physical effects, imposes stringent constraints on the simulation and visualization sys-
tem. This paper focuses on the dynamic visualization problem, describing the volume
rendering technique that we have developed for a temporal bone dissection simulator.

Direct volume rendering with shading, that works by integrating along selected pro-
jectors the value of a continuous emission/reflection/absorption volume function recon-
structed from discrete sampling points [1], is the de-facto standard in the pre-operative
analysis of medical data. By manipulating the mapping from values of the original
volume data to emission, reflection, and absorption coefficients, various effects can be
achieved, including isosurfaces and opaque objects. Using this data intensive technique
on dynamic volumes under real-time constraints is, however, an open research problem.



This fact has limited simulators to employ surface based techniques, that have problems
with semitransparent materials and rely on complex mesh structures that impose impor-
tant synchronization overheads. A number of authors have proposed to exploit texture
mapping and rasterization hardware to render scalar volumes at interactive speeds [2–
5]. These techniques are based on uploading the scalar volume to texture memory prior
to rendering object-aligned or view-direction-aligned textured volume slices. One of the
major limitations of these methods is their inability to efficiently implement surface illu-
mination models, since texture lookup is based only on data values and not on gradient
information. The quality of the images is therefore insufficient for accurately perceiving
surface shape. Various authors have thus proposed alternative techniques for support-
ing hardware-accelerated direct volume rendering with shading [4, 6–8]. While image
quality is close to that of the best software solution, this comes at the expense of perfor-
mance and texture memory overheads, since the proposed techniques require multiple
passes through the rasterization hardware and/or precomputation of gradient volumes.
This is unacceptable in surgical simulation, since the volume is continuously varying,
and thus we cannot efficiently compute and reload gradient maps without strongly cou-
pling the simulation and rendering tasks.

In this paper, we propose a texture-based volume rendering approach, that supports
low latency real time visual feedback to occurr in parallel with physical simulation,
without requiring any synchronization among the threads. In our approach, a fast ap-
proximation of the diffuse shading equation is computed on the fly by the graphics
pipe-line directly from the scalar data. We do this by exploiting the possibilities of-
fered by multi-texturing with the register combiner OpenGL extension, that provides
a configurable means to determine per-pixel fragment coloring. The rest of the paper
describes our technique and illustrates its effectiveness in a virtual training system for
temporal bone surgery [9].

2 Interactive volume rendering approach

Although volumetric data is defined over a continuous three-dimensional domain (R3),
measurements and simulations provide volume data as 3D arrays, that can be easily
used as scalar texture images, without pre-processing. We render this volume sampling
the volume through texturing hardware using front-to-back slice composition. For each
step and for all pixels, graphics hardware accesses the texture and extracts the scalar
value. This sampled value is converted, through a transfer function, to a color triple and
an opacity value that are saved inside combiner input registers. Combiners are then pro-
grammed to compute gradients and shading on-the-fly, and return the color used during
the blending process. In the following, we provide more details about this process.

Sampling through texture mapping. Current consumer graphics hardware is based
on an object-order rasterization approach, i.e. primitives (polygons, lines, points) are
scan-converted and written pixel-per-pixel into the frame buffer. Since volume data do
not consist of such primitives, a proxy geometry is defined for each individual slice
through volume data. Each slice is textured with corresponding data from tvolume. The



volume is reconstructed during rasterization on slice polygons by applying a convo-
lution of volume data with a filter kernel. The entire volume can be represented by a
stack of such slices, if the number of slices satisfies restrictions imposed by Nyquist
theorem. Our approach follows the technique proposed by Rezk-Salama and others [7],
extending it with on-the-fly gradient and shading computation. In our case, since in a
surgical setting viewpoint motion is constrained (limited to maximum 30 degrees), we
are allowed to use object-aligned slices. At each frame, we traverse the array of slices,
and we reload them as textures two at a time. After texture loading and reconstruction,
the rasterization process derives, for each projected pixel, texture sampling position,
and texturing hardware extracts the correspondent density, by bi-linear or tri-linear in-
terpolation of closest texels; the resultant value is then mapped to an RGBA vector by
the transfer function. In order to compute the surface gradient, four texture units are
needed, that are used to sample the volume with offset dx, dy, dz, relatively to the
central point.

This procedure is extremely efficient, since all the computation is performed in
parallel in the graphics hardware and no particular synchronization is needed between
the renderer and the process that is modifying the dataset. Only a single sweep through
the volume is needed, and volume slices are sequentially loaded into texture memory
on current standard PC graphics platform using AGP 8X transfers, which provides a
peak bandwidth of 2108 MB/s.

Transfer function. The transfer function mapping, in our direct volume rendering ap-
proach, is obtained by exploiting the glColorTable primitive, that is commonly imple-
mented in commodity graphics hardware. This function is used by compiling a look-up
table, with transfer function values, and by installing it inside graphics memory. At
the same time of sampling, texturing hardware performs transfer conversion of density
values to RGBA colors contained inside the table. The color table contains associated
colors instead of pure colors [10], in order to control the color interpolation error. The
associated color employment has also beneficial effects to color accumulation processs.
The color look-up table lets users choose and calibrate the transfer function in real time;
it can be computed and reloaded each time the user change some function parameters.

Voxel color computation. Lighting and shading process follows the standard lighting
equation [10]:

C̃[n] = α[n]Ca[n]la + α[n]Cd[n]
∥∥l̄d
∥∥max

(
∇f [n]

‖∇f [n]‖ · l̄d∥∥l̄d
∥∥ , 0

)
(1)

where C̃[n] is the associated color, Ca[n], Cd[n] and α[n] are the non-directional
ambient reflective factor, the diffuse directional reflective factor and the voxel opacity,
while la and l̄d are the ambient light intensity and the light intensity coming from the
directional source. In order to highlight surface details, we employ the artifact proposed
by [11] of weighting the opacity α[n] with a surface strength, evaluated as a function
of volume and his gradient: S = h (f(s),∇f(s)) [12]. If we use the gradient modulus
as strength, we have:



C̃[n] = la ‖∇f [n]‖α[n]Ca[n] +
∥∥l̄d
∥∥α[n]Cd[n]max

(
∇f [n] · l̄d∥∥l̄d

∥∥ , 0

)
. (2)

Such a strength function, enables the visualization of boundary surface between
tissues, and disables the visualization of parts with null gradient (like the internal parts
of an object). Specifically, in our case, the shading components are supposed to be the
combination of an ambient component and a directional component emitted by a source
oriented along the volume z axis (slices normal). This way, the dot product between the
light direction and the opacity gradient is the component ∇zf [n], and equation 1 is
simplified as follows:

C̃[n] = la ‖∇f [n]‖α[n]Ca[n] + ldα[n]Cd[n]max (∇zf [n], 0) . (3)

Fig. 1. Internal and external optical models.

But visual result of equation 3 is not fully satisfying: in fact only surface voxels
contribute to pixel color, because strength becomes zero in tissue internal parts. This
fact would be irrelevant if surfaces were consistent enough to completely mask the
color of internal voxels. Anyway, low strength surfaces and small width walls let see
the hollows produced by equation 3 (see fig. 1a). Hence, the optical model employed
for internal volumes is different from that used exclusively for parts having non null
gradient. The overall model is then defined by:

C̃[n] =





la ‖∇f [n]‖α[n]Ca[n] + ldα[n]Cd[n]max (∇zf [n], 0) if ‖∇f [n]‖ > 0

(la + ld) α[n]Ca[n] if ‖∇f [n]‖ = 0
.

(4)



With this artifact, the image quality is greatly improved during rendering of low
density tissues or in these case of tissue subtle layers with high density (for example
bone), as shown in figure 1b.

Opacity gradient computation. In lighting equation 2, the surface normal is related
to gradient ∇f [n], and the modulus is regarded as surface strength. If f [n] is used as
opacity, instead of density, we can arbitrarily modify the surface appearance proper-
ties (opacity, width and consistence) by modifying the transfer function. Since OpenGL
register combiners receive from texture hardware 4 opacity values α(p), α(p + dx),
α(p + dy), α(p + dz), they are able to approximate the opacity gradient with forward
differences. Since combiners are SIMD arithmetic modules able to perform linear oper-
ations, it is relatively simple to derive forward differences and vector modules, but it is
impossible to perform ratios and root extractions. Now the gradient norm computation
involves a square root computation, that needs to be approximated with a polynomial
function. Since the number of available combiners is limited and many of them are
used to compute the gradient components as well as the lighting equation, we can only
approximate the square root function with a quadratic function. The 2nd order poly-
nomial is derived from a Taylor series evaluated in the neighborhood of an arbitrary
point x0 of interval ]0, 1]. The value of x0 has to be choosen in order to minimize the
approximation error in the interval. According to equation 2, the gradient norm is used
to weight voxel opacity and associated color contribution, so the best approximation is
obtained when Taylor series is evaluated in x0 = 1. The interpolation function is then√

x ≈ 3

8
+ 3

4
x − 1

8
x2 .

Performance enhancement. Pixel fill-rate is the major limiting factor when using a
texturing approach to volume visualization. In zoom rendering, an appropriately down-
scaled image is rendered in the back buffer and then enlarged and copied to the front
buffer [13, 14]. In this way, delays associated with buffer swap synchronization are
avoided, and the number of pixels filled during volume rendering is reduced. In our
implementation, the copy and zoom operations are implemented by copying the reduced
size image in texture memory and then rendering a textured polygon in the front buffer.
Hence, sophisticated texture interpolation algorithms can be used to reduce the artifacts
caused by magnification.

3 Implementation and results

Our technique for direct volume rendering has been integrated in a prototype training
system for mastoidectomy. The simulator system provides real–time visual and haptic
feedback [9, 15] and it is modeled as a collection of loosely coupled concurrent compo-
nents [16]. The overall system is divided in a ”fast” subsystem, responsible for the high
frequency tasks (surgical instrument tracking, force feedback computation, bone ero-
sion), and a ”slow” one, essentially dedicated to the production of data for visual feed-
back [17]. The system runs on two interconnected multiprocessor machines. Thanks to
our volume rendering approach, the renderer is totally decoupled from the simulator



and the tracking system, and runs at his own frequency. The current configuration is
the following: a single-processor PIV/1500 MHz with 256 MB PC133 RAM for the
high-frequency tasks (haptics loop (1KHz) and interprocess communication loop); a
dual-processor Intel Xeon 2.4 GHz with 2048 MB DDR PC400 RAM and a NVIDIA
GeForce FX 5800 Ultra AGP 8X and running a 2.4 linux kernel, for the low frequency
tasks (receiving loop, simulator evolution and visual rendering); a Phantom Desktop and
a Phantom 1.0 haptic devices, that provide 6DOF tracking and 3DOF force feedback
for the burr/irrigator and the sucker; a n-vision VB30 binocular display for presenting
images to the user. We are currently using a volume of 256x256x128 cubical voxels (0.3
mm side) to represent the region where the operation takes place. We executed perfor-
mance benchmarks on the system, which revealed that, using eight register combiners
and 8 bit/texel volumes, peak texture transfer rate is about 400M texel/s, while peak fill
rate is about 400M pixel/s per second. According to these results, the rendering system
should theoretically be able to completely reload and render an entire 256X256X128
dataset in about 40 ms per frame. In the surgical simulator system, with this volume size,
and using a window of about the same resolution (320X240 zoomed to 640X480), we
obtain refresh timings of about 50 msec per frame, corresponding to a frame rate of
20 fps, which is close to the theoretical peak. The CPU overhead is negligible, and the
simulation can run and update the volume in parallel in a totally decoupled manner. The
performance of the prototype is thus sufficient to meet timing constraints, even though
the computational and visualization platform is constructed from affordable and widely
accessible components. The visual quality of the method is illustrated in figure 2, which
shows snapshots captured during a virtual session of the surgical simulator. The princi-
pal steps of a basic mastoidectomy, performed by an Ear, Nose and Throat surgeon, are
represented.

4 Conclusion and discussion

We presented a dynamic volume rendering technique which is well suited for the incor-
poration in surgical simulators. The technique supports low-latency and high frequency
rendering of shaded semi-transparent materials. The method is extremely efficient, since
all the computation in performed in parallel in the graphics hardware and no particular
synchronization is needed between the renderer and the process that is modifying the
dataset. Only a single sweep through the volume is needed, and volume slices are se-
quentially loaded into texture memory on current standard PC graphics platform using
AGP transfers. The effectiveness of our approach is demonstrated in a training system
for temporal bone surgery.

Acknowledgments

We would like to thank Prof. Stefano Sellari Franceschini and his team, University of
Pisa, for his collaboration in the design and testing of the system.



References

1. Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visualization
and Computer Graphics 1 (1995) 99–108

2. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruc-
tion using texture mapping hardware. In Kaufman, A., Krueger, W., eds.: 1994 Symposium
on Volume Visualization, ACM SIGGRAPH (1994) 91–98 ISBN 0-89791-741-3.

3. Guan, S., Lipes, R.G.: Innovative volume rendering using 3D texture mapping. In: Image
Capture, Formatting and Display. Volume 2164 of SPIE. SPIE (1994)

4. Van Gelder, A., Kim, K.: Direct volume rendering with shading via three-dimensional tex-
tures. In: 1996 Volume Visualization Symposium, IEEE (1996) 23–30 ISBN 0-89791-741-3.

5. Kulick, T.: Building an opengl volume renderer. SGI Dev. News (1996)
6. Westermann, R., Ertl, T.: Efficiently using graphics hardware in volume rendering appli-

cations. In Cohen, M., ed.: SIGGRAPH 98 Conference Proceedings. Annual Conference
Series, ACM SIGGRAPH, Addison Wesley (1998) 169–178 ISBN 0-89791-999-8.

7. Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive volume rendering
on standard PC graphics hardware using multi-textures and multi-stage rasterization. In
Spencer, S.N., ed.: Proceedings of the 2000 SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, ACM Press (2000) 109–118

8. Engel, K., Kraus, M., Ertl, T.: High quality pre-integrated volume rendering using hardware-
accelerated pixel shading. In: EuroGraphics/SIGGRAPH Workshop on Graphics Hardware.
(2001)

9. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: Adaptive techniques for
real time haptic and visual simulation of bone dissection. In: IEEE Virtual Reality Confer-
ence, Conference held in Los Angeles, CA, USA, March 22–26 (2003) 102 –109

10. Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation for
volume sampling. In: IEEE Symposium on Volume Visualization, IEEE, ACM SIGGRAPH
(1998) 135–142

11. Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Applica-
tions 8 (1988) 29–37

12. Drebin, B., Carpenter, L., Hanrahan, P.: Volume rendering. In Wolfe, R., ed.: Significant
Seminal Papers of Computer Graphics: Pioneering Efforts that shaped the Field, N.Y., ACM
Press (1998) 363–372

13. Mazuryk, T., Schmalstieg, D., Gervautz, M.: Zoom rendering: Improving 3-D rendering
performance with 2-D operations. Technical Report CG, Institute of Computer Graphics,
Vienna University of Technology (1995)

14. Gobbetti, E., Pili, P., Zorcolo, A., Tuveri, M.: Interactive virtual angioscopy. In: Proceedings
IEEE Visualization, Conference held in Research Triangle Park, NC, USA, IEEE Computer
Society Press (1998) 435–438

15. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: Real-time haptic and visual
simulation of bone dissection. Presence: Teleoperators and Virtual Environments 12 (2003)
110–122

16. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: A multiprocessor decoupled
system for the simulation of temporal bone surgery. Computing and Visualization in Science
5 (2002)

17. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., John, N.W., Stone, R.J.: Mastoidectomy
simulation with combined visual and haptic feedback. In Westwood, J.D., Hoffmann, H.M.,
Mogel, G.T., Stredney, D., eds.: Medicine Meets Virtual Reality 2002, IOS Press (2002)
17–23



Fig. 2. Comparison between real and virtual intervention: the principal steps of a basic mas-
toidectomy, performed by a surgeon, are represented. Photos courtesy of Prof. Stefano Sellari
Franceschini, University of Pisa.


