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Abstract

We present a novel algorithm for fast metric reconstruction on mobile devices using a combination of image and inertial
acceleration data. In contrast to previous approaches to this problem, our algorithm does not require a long acquisition time
or intensive data processing and can be implemented entirely on common IMU-enabled tablet and smartphones. The method
recovers real world units by comparing the acceleration values from the inertial sensors with the ones inferred from images.
In order to cope with IMU signal noise, we propose a novel RANSAC-like strategy which helps to remove the outliers. We
demonstrate the effectiveness and the accuracy of our method through an integrated mobile system returning point clouds in

metric scale.

Categories and Subject Descriptors (according to ACM CCS):

vision—Scene analysis

1.4.8 [Computer Graphics]: Image processing and computer

Figure 1: Metric measurement of an Ara Pacis Flamini’s frieze
(marble copy for public display) acquired by our system. The mea-
surement has been taken by the user on the reconstructed 3D point
cloud and returned to display in metric dimension. The average
error compared to ground truth is 2.8%.

1. Introduction

3D shape digitization is a hot research topic with many applica-
tions. Depending on the size of the object of interest, the required
accuracy, the time and the money to invest, one can choose among a
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quite wide range of software and hardware solutions. Among these,
in the last ten years, image-based acquisition techniques such as
Structure from Motion (SfM) have become a popular tool. This is
most likely due to two factors: the increasing computational power
of common devices, that made these demanding algorithms prac-
tical, and the fact that they do not require specialized acquisition
hardware, since photographs are nowadays easy to get with off-the-
shelf smartphones or from the internet. However, one weakness of
image-based methods is that their output is intrinsically up-to-scale,
that is, they have no real world dimension.

The most straightforward way to overcome scale ambiguity is to
provide at least two points in the 3D reconstruction that are sep-
arated by a known distance, so that the scale factor can be recov-
ered. This can be easily achieved by using markers or measuring
real-world distances between at least two physical points in space
that are also in the reconstruction. This approach, however, is data
dependent and, as such, not applicable to the general case.

With the introduction of onboard inertial measurement unit
(IMU) sensors and high precision clocks on mobile devices, pho-
tos taken with a smartphone or a tablet device can be accompanied
with information on how the device moves from pose to pose. This
should make in principle feasible to compute a scale factor between
image-based reconstructions and real world units. Although in the-
ory one could use double integration of the acceleration vector to
compute such a trajectory in real world units, most IMU sensors,
and especially those mounted on commonly available devices, pro-
vide a very noisy signal, especially for small accelerations, and
cannot be reliably used with this approach. The problem is well
known, and it generated a consisting body of literature, especially
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in the field of robotics, for example for unmanned vehicle naviga-
tion, reconstruction from aerial images, or SLAM.

All the proposed solutions in the 3D capture domain (see Sec. 2)
cope with this problem by assuming that the acquisition lasts a rel-
atively long period of time (typically several minutes) and consists
of hundreds or thousands of images. This approach is applicable
when the goal is to obtain an accurate and dense reconstruction,
but becomes too costly and time consuming when the goal is just to
quickly recover the structure and shape of objects (for instance, for
acquiring metric furniture shapes for indoor 3D plan generations).

Approach. We propose a system that only requires making a quick
video sequence of the object of interest captured by a moving cam-
era and it returns a 3D point cloud in real world units. The basic
idea beside our method is, instead of deriving positions from accel-
eration values from the IMU, to register IMU acceleration values
with the accelerations of the camera inferred from images. In our
approach, summarized in Sec. 3, 3D reconstruction is carried out
by an incremental SfM implementation. We track image features
over all the acquired frames and use them for triangulation when
the estimated baseline formed by the corresponding camera posi-
tion is large enough. Then, we use the reconstructed 3D points to
solve the Perspective-n-Point (PnP) problem for every frame, thus
obtaining a dense sampling of all camera poses. The camera tra-
jectory is finally defined by using those camera poses as Catmull-
Rom spline’s control points, from which acceleration values can be
computed at any point. Alignment with the IMU accelerations is
achieved with a robust RANSAC-based algorithm, which helps to
remove the outliers in the IMU values, which in this context mostly
means sudden peaks of acceleration. The details of reconstruction
algorithm and how vision-based camera trajectory is computed are
given in Sec. 4, while Sec. 5 describes the process of recovering the
scale factor. An evaluation of the method in a real-world setting is
presented in Sec. 6.

Contribution. We formulate the metric scaling problem as
a derivation task, rather than an integration problem, avoid-
ing the considerable error encountered by online schemes
(e.g., [TKM*13]) when integrating noisy, biased accelerometer
measurements. In addition, our approach does not need a de-
vice orientation measurement (i.e. a compass), which is even
more prone to error than accelerometer. Moreover, by exploit-
ing our specialized SfM pipeline and interpolation track to match
the IMU samples with each video frame pose, we maximize
the number of samples usable for scale estimation, contrary to
matching approaches based on the IMU samples downsampling
(e.g., [HLS14]). In order to robustly perform the mapping, we in-
troduce a novel RANSAC-based approach which robustly finds a
scaled rigid body map in acceleration space, resulting in a more
accurate samples filtering and robust scale estimation, in con-
trast to minimization approaches based only on the scale factor
(e.g. [HLS14,JTO01]).

Advantages. To the best of our knowledge, this is the first method
for providing a metric reconstruction from few seconds of acquisi-
tion time, without requiring initialization or landmarks. Given the
light-weight approach, we enable users to perform fast metric ac-
quisition of 3D shapes exploiting the capabilities of modern mobile
devices such as processing and sensors fusion.

2. Related Work

The combination of inertial and visual sensors has been used for a
long time, well before the inception of modern smartphones. A con-
sistent body of literature, mostly to be found in the field of robotics,
shows widespread effort to overcome the intrinsic ambiguities of
monocular acquisition by adding inertial data in applications like
SLAM. The many studies on the subject consider different hard-
ware settings (e.g., cameras mounted in cars, planes or robots) and
different goals (3D reconstruction, localization, unmanned naviga-
tion), and a complete overview is well beyond the scope of this
paper. In the following, we will concisely summarize the state of
the art and more extensively cover the most recent contribution that
are more closely related to our approach.

In the most general terms, the problem is posed as finding an es-
timation of all the variables of a system described by camera and
IMU. These variables typically include position, velocity, acceler-
ation and biases but of course, the exact formulation varies with
the sensors provided. The observability of a variable indicates how
well that variable can be inferred by the external outputs. For exam-
ple, visual input or inertial input alone are not sufficient for making
the motion (and hence the scale factor) observable, and, as shown
by Jones et al. [JS11], even with visual and inertial information
combined the condition of non-zero linear acceleration must hold.
An in-depth study of observable quantities in vision and IMU sys-
tem is provided by Martinelli et al. [Mar12], where closed-form
solutions for observable quantities from the data output collected
in a very short time interval are also provided.

Several approaches apply filtering methods, that is, they refine
the estimation of variables over a large number of states by ap-
plying the ubiquitous (Extended) Kalman Filter [Kal60]. Examples
include improving vision-only SLAM [PLSTO07, LS08], support-
ing autonomous navigation [HRO1, TGL*10], or motion estimation
in virtual reality applications [ChaO1, PRCZ12]. Filtering methods
only need to store the last state and the current state of the sys-
tem, so they can be used online (which is a mandatory condition
for application domains such as virtual reality) if the set of features
(which are also part of the state) is small. Conversely, the new fea-
tures are added in the process, long-term runs become unfeasible.

Other approaches gather all the data and use offline opti-
mization techniques. GPS and image data are often combined
to obtain a more accurate structure from motion reconstruction
by minimizing the re-projection errors of 3D points using Bun-
dle Adjustment [Lhul2, SFF14, JEJR04, FPL*10]. A more recent
work [APS15] improves the SfM implementation with a pipeline
tailored to the case where images are assumed ordered and GPS
and IMU sensors are available, named BA4S (Bundle Adjustment
for Sequential Imagery). The precision of batch optimization and
efficiency of filtering are often combined by keeping track of a set
of most recent states, that is, not only the last one like in filter-
ing and not all of them like in BA [DSM11, LLB*14, FCDS15].
The approach presented in [WS11] on the Extended Kalman Filter
SLAM, avoids including features in the state vector by treating the
vision framework as a black box from which it takes poses esti-
mation (and covariance matrix for prediction) obtaining a constant
update time. Drift and pose estimation error are handled by detect-
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ing abrupt changes on their value (while pose is assumed to change
smoothly).

The approaches cited so far are not directly aimed to compute the
scale factor but, instead, strive to improve the quality of the results
(of SLAM, odometry, navigation etc.) harnessing inertial sensors.
In Tanskanen et al. [TKM*13], an online implementation of a 3D
metric acquisition pipeline is presented, estimating the device ac-
celeration by integration using Velocity Verlet. This method is a
filtering approach based on Kalman filter and the scale is computed
by using an event-based approach that records swift movements to
estimate the scale factor with larger acceleration values. As best re-
sult on the scale factor estimation it obtains an error between 10%
to 15% with a reference test object (a cylinder).

Our core idea is more related to methods that have been intro-
duce to recover metric camera motion [JTO1, HLS14]. In such ap-
proaches, SfM is used to estimate camera orientation and position
(up to scale). Thanks to temporal marks on the images, the accel-
eration of the camera can be derived correspondingly to the image
time. So the problem is posed as minimizing the differences be-
tween the acceleration derived from SfM for the temporally marked
images and the acceleration obtained by the inertial sensor. In Jung
et al. [JTO1] such difference is minimized with respect to that pa-
rameters of a series of splines, and similarly in Ham et al. [HLS14]
minimizing directly the scale and a bias factor, after the IMU sig-
nal is downsampled and antialiased with a convolution matrix. Due
to the sparse correspondences between camera and downsampled
IMU acceleration, the authors also add an alignment phase to reg-
ister IMU and vision signal exploiting their cross-correlation. By
contrast, in our approach we maximize the number of correspon-
dences integrating the SfM pipeline in the scale estimation process
and exploiting the 2D features matching to recover all the camera
poses related to IMU samples. In this way we enable the introduc-
tion of a more accurate samples filtering and scale estimation by
robustly fitting a similarity transform and not only a single scale
factor.

3. Approach overview

We introduce a specialized mobile reconstruction pipeline (Fig. 2)
to capture the SfM scene coupled with the inertial measures, sum-
marized in two steps. In the first step, the user takes a temporally
indexed video of the object by moving the device so to obtain a
sufficiently large baseline for the stereo processing, that typically
is a horizontal translation in front of the object. Simultaneously the
values of the device’s linear acceleration provided by the IMU are
stored with their corresponding acquisition timestamps. From the
obtained set of frames registered on the same multi-view scene ref-
erence system, we estimate the pose of each corresponding camera
by using the 2D-3D correspondences between tracked 2D features
and computed 3D points. Each camera position becomes then a
control point of an interpolation track of rigid body maps.

In the second step, for each IMU sample acquired we calcu-
late the corresponding camera acceleration by finite differences,
we compare then the body-centric linear acceleration of the device
with the estimated camera acceleration.

Once a matching between device and camera body-centric ac-
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celerations is established we introduce a novel RANSAC approach
to obtain a direct and robust estimation on the metric scale, looking
for a scaled rigid body map between the two acceleration sets in the
acceleration space (Fig. 3). This strict alignment hypothesis com-
bined with a MLESAC robust estimator strategy provides greater
robustness to error, as shown in the results Section 6.

4. On-the-fly point cloud reconstruction

The reconstruction pipeline runs in real time on device and it is
composed by two main modules which run simultaneously dur-
ing the acquisition process: the inertial module and the vi-
sion module.

The inertial module reads and stores the values of the device’s
linear acceleration provided by the IMU sensor and the correspond-
ing acquisition timestamps. The coordinates system of the linear
acceleration vector is defined relative to the screen of the phone.

The second module is the vision module, its main goal is to track
local features extracted from the first frames of the entire video
to obtain the camera pose estimation of the video frames and the
sparse points cloud reconstruction of the target object that the user
wants to acquire. The vision module can be divided into two stages:
the first stage, in which each video frame is captured and processed
in order to have a partial 3D points cloud of the object in a ded-
icated reference system; the second stage consisting in the align-
ment and merging of all the 3D points clouds obtained in the first
stage and the global camera poses estimation of all the video frames
in a unique reference system.

During the first stage the algorithm extracts Shi-Tomasi fea-
tures [ST94] from the first frame and tracks them along the fol-
lowing frames using Lucas-Kanade optical flow method [LK81].
Please note that we choose the features which empirically led to the
best results for our mobile setup and images, the proposed method
remains of course equally valid also with alternative SfM pipelines.
Dealing with video frames we can exploit the continuity of the
video sequence and keep track of the features extracted from the
first frame fy during the entire sequence. For each incoming frame
fi, if a sufficiently large baseline is detected (by measuring the mo-
tion of the tracked features) fy and f; are eligible for the Funda-
mental matrix estimation. The Essential matrix can be computed
knowing the intrinsic parameter of the camera and so the rotation
and translation matrices RT of the second frame with respect to the
fixed camera reference [1]0] of frame f; are found.

Once the relative position of the two cameras is found, we per-
form a triangulation of the corresponding 2D features obtaining
a 3D points cloud. These processing steps are computed in real
time during the video acquisition for all the N video frames f;
with i =1,...,N . Furthermore, the data related to the tracked fea-
tures (2D correspondences between features through the N frames
and 2D-3D correspondences between features and 3D points) are
stored. Note that at the end of the video shoot just a subset of
M < N frames will be associated with a point cloud considering
that some of the aforementioned steps could not end with a posi-
tive result (e.g., the baseline could be too small, the Fundamental
matrix extraction could fail). After the acquisition, the application
automatically starts the alignment of the set of M 3D points clouds.
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Figure 2: Scheme of vision module pipeline. Starting from the left. Shi-Tomasi features (illustrative green points) are tracked over the frames;
a subset of M frames forms a baseline wide enough to create M point clouds, each in its own reference system. Once the M point clouds are
aligned in a single reference system, exploiting the point-to-point correspondences, we run a Perspective-n-Point algorithm on 3D points and
their known projection on the frames, resulting in N registered frames (actually M < N < N).

The algorithm selects a reference cloud by minimizing the geomet-
rical error obtained by aligning to it all the other points clouds using
the absolute orientation method of Umeyama [Ume91].

At this point all points clouds have been registered to the same
reference system, the final step consists of the camera pose estima-
tion of all the video frames (in the global reference system) in order
to maximize the number of registered frames. If among the data re-
lated to frame f; there are a sufficient number of correspondences
between its 2D tracked features and a subset of 3D points from the
reference cloud we can compute the camera pose of f; solving the
related Perspective-n-Point (PnP) camera pose problem exploiting
RANSAC method. The final number N of registered frames will be
M<N<N.

5. Recovering the scale factor

To recover the scale factor we adopt a RANSAC strategy, compar-
ing the camera poses estimated at Section 4 with the body-centric
inertial measurements of a smart device. Current smartphones are
equipped with a 3D gyroscope and accelerometer, which produce
(in contrast to larger inertial measurement units) substantial time-
dependent and device-specific offsets, as well as significant noise.

We take as input data the linear accelerations relative to the de-

vice body A, temporally indexed by the time instants {fo,--- ,fx }:
ay(r) as(to) (1)
aj(tx) ay(tx)  d@(tg)

Contrary to other previous approaches (i.e., [TKM*13]) we do
not integrate these data to estimate a spatial device trajectory (this
operation is prone to considerable error), neither do we need to use
further orientation data from the IMU (i.e. absolute orientation),
usually subject to even more errors.

From the vision pipeline we take as input data the temporally
indexed positions of each camera, represented as rigid body maps
Cixs = [Rilti] i=1,...,N. We use these data to estimate the instan-
taneous linear camera accelerations, and then find the alignment
with the IMU accelerations collected in the inertial module (de-
scribed in Section 4). As similar approaches have proven [HLS14,
JTO1], replacing the integration operation with the derivative avoids
accumulation errors.

Since we expected that the estimation of the scale factor should
converge to a correct value with more data, one limit of this ap-
proach is the need of a high and uniformly spaced number of cal-
ibrated viewpoints. Ham et al. [HLS14] try to get this condition
through a very long acquisition time (often many minutes). Nev-
ertheless, many of these samples are lost through an operation of
downsampling, necessary in their solution to synchronize the IMU
and camera samples (common devices typically record samples at
100 Hz for the IMU and at 30 Hz for the camera). Moreover, this so-
lution assumes that the camera motion is estimated through a time
consuming off-line pipeline only after performing a specific cali-
bration of sensors bias and camera-IMU transformation. Jung and
Taylor [JTO1] follow a similar approach for a robotics setup rather
than commodity mobile acquisitions, as it requires high accuracy
IMUs and manually calibrated omnidirectional video streams. This
led them to assume, contrary to our approach, which is tuned for
mobile settings, that the inertial data is more accurate than stereo
camera calibration.

To overcome these limitations and achieve good results in the
mobile realm, we introduce an upsampling strategy to maximize
the number of samples from the vision module, as illustrated in
Sec. 4, with the goal of supporting a statistical approach to the
scaling problem. In this approach, the rotation matrix R that relates
the IMU and the camera in the acceleration space (calculated with
external tools in previous approaches) is assumed as unknown to-
gether with the scale factor. Including R in the computation makes
the method more robust, since the error in metric estimation on a
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mobile device is strongly affected by outliers and it can not be eas-
ily represented by a specific model because of a variety of factors,
such as noise varying with device temperature, indoor environment
interferences, and random mismatches between sensors and camera
stream.

Starting from an initial set of cameras Cy, registered on a same
scene reference system (multi-view scene coordinates), we use the
whole set of N tracked frames (N > M) to estimate the intermediate
camera positions of N registered views.

Assuming these Cy; camera positions are temporally indexed on
the same temporal reference of the IMU acceleration samples, we
exploit them to create Catmull-Rom control points of an interpola-
tion track of rigid body maps I¢(t), with ¢ indicating time.

For each sample {as(to), - ,as(tx)} we search for a temporal
match I¢(#;) in the interpolation track. Considering the position of
Ic (1) in scene coordinates p.(f;) we calculate the acceleration at
the instant #; through 8-th order central finite differences:

_ Y8 o (=) & petqi—a)
Ar2?

p" () (@)

with Ar = 1ms and the §; coefficients chosen according to [For88].

Scene/camera coordinates

World/metric coordinates

Figure 3: The SfM algorithm returns the absolute position of the
camera in scene coordinates (green position vectors) whereas the
absolute position of the device in world coordinates is unknown
(light blue position vectors). Since the IMU accelerations (yellow)
are in local, body-centric coordinates (relative to the IMU micro-
circuit), we need to rotate (through Eq. 3) each camera accelera-
tion to obtain a body-centric acceleration of the camera (orange).

Since the SfM algorithm returns the position and orientation of
the camera in scene coordinates and the IMU measurements are in
local body-centric coordinates, to compare them we need to orient
the accelerations estimated for the frames to the acceleration values
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A.=s R A,

Figure 4: [Introducing rotation R accounts for constant bias and
allows any choice for the base of RANSAC algorithm to provide a
solution.

provided by the IMU. We rotate then each p.”(z;) to obtain the
body-centric acceleration of the camera A.(¢):

pe"(t0)" Re(10)

P (1) Re (1)

where R.(f;.) is is the orientation of the camera in scene coordi-
nates at the 7, instant.

Once a matching between the K device acceleration samples A
and the K camera acceleration samples A, is established we intro-
duce a specific RANSAC approach which robustly finds a similar-
ity transform such that

argrlt:in {||Ac — sRA;|| } @)
s

where s is the scale factor between scene coordinates and real
world and R is the rotation between the two coordinate systems in
the acceleration space (Fig. 3). Please note that A, and A are both
expressed in device body coordinates and so in principle R should
be the identity transformation. R accounts for constant bias in IMU
vector orientation and provides the degrees of freedom to define a
similarity for any pair of corresponding vectors. Referring to Fig-
ure 4: acceleration vectors A, and Ay are not collinear and, as such,
scaling alone is not enough to transform one into the other. This is
different from approaches like Ham et al. [HLS14], where the ac-
celeration vectors are compared imposing only the scale factor, and
provides greater robustness to IMU error (see results in Section 6).

To estimate the error we follow the Lo-RANSAC strategy de-
scribed by Capel et al. [Cap05], adopting as size for the basis set
B = 3. We apply then a MLESAC robust estimator [TZ00], to max-
imize the likelihood rather than just the number of inliers.

In our specific case, given the true fraction of in-lying corre-
spondences &, the probability of selecting a basis set of size By that
consists entirely of inliers is 5. Hence the probability of sampling
K basis sets all of which are polluted by at least one outlier is given
by

n=(1-¢%) )

Choosing an appropriate confidence threshold C;;, = 0.01 (proven
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to be valid for all tested cases), the estimate iterations n,,,, from
number of inliers are:

In(n)
= —— 6
fmax = 7€) + 0.5 ©
This bail-out strategy makes the computation very light-weight,
making the method suitable for mobile computing. The whole strat-
egy results effective and accurate in many real-world cases, pre-
sented in detail in Section 6.

6. Results

We implemented an Android application (compatible with ver-
sion 4.4 and higher) for the sensor and video acquisition and the
3D reconstruction, testing it on different commodity devices, such
as: HTC One M8 with Quad-core 2.3 GHz 2GB RAM, Samsung
Galaxy TAB4 with Quad-core 1.2 GHz 1.5GB RAM, Samsung
Galaxy Note 10.1 with 1.9GHz Quad-core + 1.3 GHz Quad-core
and 3GB RAM. The application has been written in Java and C++
using Android SDK, NDK, and OpenCv4Android [Opel5] as sup-
porting libraries. As a proof-of-concept, the system returns a simple
3D point cloud coupled with the relative camera poses aligned to
the same reference system and a scale ratio value between real-
world metric space and scene coordinates. The processing time
both for the SfM reconstruction and for the metric scale estimation
has been negligible.

Tab. 1 summarizes the results obtained for objects whose
real dimensions are known. We consider as ground truth
the scale ratio between meters and scene units, manu-
ally measured on the point cloud returned by the SfM
pipeline [CCRO8]. We sampled the data from IMU at differ-
ent rates between 8ms to 200ms (four rates are available on
the Android API: SENSOR_DELAY_FASTEST: 8 — 20ms, SEN-
SOR_DELAY_GAME: 35 — 40ms, SENSOR_DELAY_UI: 85 —
90ms, SENSOR_DELAY_NORMAL: 215 —230ms).

In the last column of Table 1, we report the results obtained
when minimizing the function only for the scale value and not us-
ing RANSAC, as done in earlier approaches [HLS14,JTO1]. The
system setup required by these methods is very specific and incom-
patible with a fully mobile implementation (e.g., Jung and Tay-
lor [JTO1] employ a robotic setup with a high accuracy profes-
sional IMU and an omnidirectional camera, and camera motion is
estimated on manually matched image features). We thus assume
as comparative values for these methods the best values obtained
with the software implementation part and the best results declared
in their papers. The estimated error with our system (assuming as
ground truth the manual measurement) is on average less than 3%
while with just scale minimization without RANSAC it is about
27%. In two cases, Statuettes and Office desk, the results are simi-
lar.

We noticed that our approach is not affected by the sensor rate
(see case Workstation Fastest), since our RANSAC statistic ap-
proach compensates for the inevitable presence of additional noise
with a greater number of samples. To this purpose an adaptive con-

fidence threshold, C;;, = 0.01 for the Lo-RANSAC step is chosen
to keep 80% of inliers couples.

We experienced instead that both our method and the methods
of Ham et al. [HLS14] and Jung and Taylor [JTO1] are strongly af-
fected by SfM features tracking. In fact, if user motion is too fast,
resulting in many lost poses, the quality of the results degrades con-
sequently (case Desk fast motion in Table 1). This leads to the fact
that our method, similarly to previous approaches, works on the as-
sumption that a sufficient number of features can be tracked within
the scene. Unoccluded scenes images with a not exceedingly high
motion are thus the best domain of application of our method. On
the contrary, scenes with large amounts of occlusions/disocclusions
are more challenging.

7. Conclusions

We presented a new approach to the problem of metric scale re-
construction. The method recovers real world units by comparing,
through a specialized RANSAC-based algorithm, the acceleration
values as obtained by the IMU to those derived from image data.
The proposed system extends previous state-of-the-art solutions
and has been proved effective on a variety of test cases. Although
the algorithm was designed for the specific purpose of acquiring
object of average scale, typically indoor furniture, its effective ex-
tension to larger objects only requires handling a non-constant set
of tracked features and it can be regarded as a pure implementation
issue.

In contrast to previous works, our approach needs an acquisition
video of just few seconds and can be implemented on common mo-
bile devices equipped with an accelerometer. Since the algorithm
was designed to easily run on mobile systems, we also see a natural
use in the next generation mobile Virtual Reality devices, such as
Samsung Gear 360 and others, for example for rapidly providing
metric information about the surrounding environment.
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Scene Real scale Acquisition info Our approach Simple scaling
Name m/s.u. Seconds Poses Samples | m/s.u. Error | m/s.u. Error
3D printer m 2.094 17.0 65 883 2.01 4.0% 2.85 36.1%
o=

Scanner setup “ 3.565 9.8 53 641 3.45 3.1% 3.12 12.4%
Desktop ‘&! 6.520 11.3 48 596 6.24 4.2% 5.16 20.8%
Statuettes wE 2.602 11.5 53 607 2.49 4.5% 2.48 4.9%
Office desk , 1.977 304 88 471 2.01 1.8% 2.01 1.8%
Office workstation Q 3.95 12.3 37 1307 3.94 0.3% 3.98 0.6%
Ara pacis m 1.568 30.07 77 1569 1.52 2.8% 1.80 13.0%
Workstation (Fastest) “_ 0.707 9.9 34 1305 0.73 2.7% 0.89 20.4%
Desk fast motion * 6.918 14.8 74 1718 6.28 9.1% 3.88 44.0%

Table 1: Scale factor estimation. Comparison vs. ground truth and other approaches. We present for each dataset the real ratio between
meters (m) and scene units (s.u.) assumed as ground truth, the duration of the acquisition video, the number of original camera poses as
they have been returned by the SfM pipeline and the number of acceleration samples. We indicate our results in column Our approach, while
column Simple scaling indicates the results obtained by minimizing the function only for the scale value without using RANSAC [HLS14,
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