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Figure 1: Our end-to-end framework allows histopathologists to work at the nucleus and tissue level at the same time, a feature rarely offered by the

competition. This is enabled by slide subdivision in patches, followed by deep-learning-based localization of nuclei, and classification. The resulting class

probabilities and locations of nuclei are then turned dense using kernel density estimation.

Abstract

We present an end-to-end framework for histopathological analysis of whole slide images (WSIs). Our framework uses deep

learning-based localization & classification of cell nuclei followed by spatial data aggregation to propagate classes of sparsely

distributed nuclei across the entire slide. We use YOLO (“You Only Look Once”) for localization instead of more costly seg-

mentation approaches and show that using HistAuGAN boosts its performance. YOLO finds bounding boxes around nuclei at

good accuracy, but the classification accuracy can be improved by other methods. To this end, we extract patches around nuclei

from the WSI and consider models from the SqueezeNet, ResNet, and EfficientNet families for classification. Where we do not

achieve a clear separation between highest and second-highest softmax activation of the classifier, we use YOLO’s output as a

secondary vote. The result is a sparse annotation of the WSI, which we turn dense by using kernel density estimation. The result

is a full vector of per pixel probabilities for each class of nucleus we consider. This allows us to visualize our results using both

color-coding and isocontouring, reducing visual clutter. Our novel nuclei-to-tissue coupling allows histopathologists to work

at both the nucleus and the tissue level, a feature appreciated by domain experts in a qualitative user study.

CCS Concepts

• Applied computing → Imaging; • Computing methodologies → Object detection; • Human-centered computing → Infor-

mation visualization; Heat maps;

1. Introduction

Clinical decisions are nowadays heavily driven by medical imag-
ing, which has become a fundamental element of the clinical anal-
ysis pipeline. Most diagnostic tasks rely on a variety of scanning
technologies to detect objects, providing evidence-based conclu-
sions. In digital pathology, the primary purpose is to remove from

† equal contribution

the process of clinical reasoning the inadequacies of working di-
rectly on physical tissue samples. There is an abundance of stud-
ies that illustrate the effectiveness of digital distribution for col-
laborative diagnostic, teaching, and research purposes and show
the concordance of rendering diagnoses using whole slide images
(WSIs) compared to glass slides (see, e.g., [POR∗19, ZGL∗21]
and references therein). Moreover, it has been demonstrated how
digital pathology allows healthcare systems to maintain pathology
operations during public health emergencies (e.g., the COVID-19
pandemic) [HRA∗20]. Beyond supporting the replication of usual
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workflows using a virtual microscope, digital pathology also opens
the door for disruptive supportive technologies, such as the fully
automated processing of WSIs to extract meaningful information,
which is considered the holy grail of pathology [DAC19]. Automa-
tion has the potential to remove repetitive tasks of high cognitive
load from the busy schedule of pathologists. It ensures higher pro-
ductivity, accuracy, and reproducibility. It also helps to validate the
standardization of study outcomes and inclusion criteria, and to ex-
tract features supporting decisions [POR∗19].

In this context, visualization of medical images is an enabling
technology to gain insights from WSIs and to support various
tasks ranging from characterizing the relationship between imaging
and diseases to neuroscientific research [CWDW18]. Visualization
techniques are commonly built upon various computational meth-
ods (e.g., signal processing, geometry processing, AI, etc.) process-
ing image-based and auxiliary input data such as genetic markers
and clinical indicators [LML∗07]. Of the aforementioned methods,
AI and deep learning methods are seeing rapidly increasing use due
to their promising results and potential impact on digital pathology
progression. In particular, deep models excel at tasks such as seg-
mentation as well as the detection of nuclei and regions of interest
within WSIs [ATAG∗21]. This study addresses some of the chal-
lenges of medical imaging visualization in digital pathology. In this
work, we present a visualization framework based on deep learn-
ing to help medical practitioners to explore and analyze images in
histology. Our framework aims to efficiently support histologists to
carry out investigations on nuclei labeling and segmentation.

Contributions We propose three kinds of annotations to support
the visual analysis of WSIs using information extracted from deep
learning inference:

1. micro-scale annotations of class activation maps for evaluat-
ing the behavior of inference models and correlating activations
with diagnostic features;

2. micro-/meso-scale annotations using color-coded bounding
boxes for representing detection and classification outcomes;

3. macro-scale annotations using weighted density estimation and
isocontours to provide an overview of main tissue spots and their
correlations. We also provide a preliminary qualitative evalua-
tion of our framework by an expert pathologist.

2. Related Work

Our work targets computational histopathology and visual annota-
tion of WSIs. In the following, we only discuss the methods that
are more closely related to the proposed pipeline. For a wider cov-
erage, we refer the reader to excellent surveys on recent develop-
ments [WCH∗22], especially with respect to the application of deep
learning [SCM21] and graph-based embeddings [AAAD∗21].

Deep Learning and Computational Histopathology Since the
release of PanNuke [GAKB∗19], an open, labeled data set con-
taining histology patches comprising 19 tissue and 5 nuclei types,
various architectures have been proposed to perform different tasks
on digital WSIs using information at the nucleus level. Modern
deep learning technologies, such as graph convolutional networks

(GCNs), have been customized for dealing with the inherent char-
acteristics of gigapixel slide images. Lu et al. [LGB∗20] introduced
a pipeline that constructs a graph from the nuclei level to the entire
WSI-level, followed by a GCN for WSI-level prediction. Atten-
tion mechanisms have also been considered based on the assump-
tion that the size and texture of nuclei can determine the magnifi-
cation at which a patch is extracted [SCS∗20]. Contrastive learn-
ing approaches have been considered that do not require a cus-
tom network [CKNH20]. Instead, they rely on a large number of
minibatch instances for obtaining negative samples per training in-
stance. This method led to the development of ALBRT [DBRM21],
which trains a multi-headed architecture based on convolutional
neural networks (CNNs) to predict per cell-type counts in a patch.
Similarly, Ciga et al. [CXM22] consider contrastive learning for
using residual networks for multiple downstream tasks on multi-
organ digital histopathology data sets. In this work, we show that
supporting a joint localization-and-classification architecture us-
ing color augmentation to alleviate intra- and inter-sample staining
and tissue variations boosts localization performance significantly,
but does not achieve the performance of state-of-the-art standalone
classifiers. We therefore follow our localization approach by CNN-
based classification models that are trained using transfer learn-
ing. Our hybrid approach significantly outperforms the state-of-the-
art [GAKB∗19, GKB∗20].

Kernel Density Estimation in Histopathology Kernel density es-
timation (KDE) is a powerful regression technique for estimating
a continuous probability density function p(x) given a sequence of
scattered measurements X = {x1, ..,xk} on a given domain D ⊆
R

d [Che17]. The technique is extensively used in statistic analysis,
including the analysis of histology images for a variety of tasks.
Kather et al. [KMRA∗15] use KDE for determining a continuous
representation of tumor microvessel density to detect angiogenic
hotspots in histological WSIs. Similarly, Yeh et al. [YYH∗14] use
a KDE for calculating the stain density across digitized pathology
slides in order to perform correlation to in-vivo cellular magnetic
resonance (MR) images. The same authors use kernel regression to
estimate the spatial distribution of nuclear size across WSIs in order
to perform automatic grading of renal cell carcinoma [YPPH14].
KDE has also been used for registration of images obtained with
different modalities. In particular, Jiang et al. [JLP∗19] use KDE
as a weighting scheme for improving the accuracy in image regis-
tration for re-stained WSIs, while Theelke et al. [TWM∗21] use a
similar strategy to register specimens digitized with multiple scan-
ning systems to compute an optimal global transformation taking
care of different resolutions. In this context, KDE is used to weight
local transformation estimates to mitigate the influence of registra-
tion errors. However, to the best of our knowledge, KDE has not yet
been considered in the visualization process of deep learning infer-
ence applied to WSIs. In this work, we propose various weight-
ing schemes to compute continuous density functions related to the
outcomes of detection and classification models.

Visual Annotations for Histopathology Concurrently with the
development of acquisition, processing, and visualization tech-
nologies for WSIs, tools to support histopathologists in annota-
tion tasks have also been developed. Traditionally, domain scien-
tists used manual drawing tools for creating free-form annotations
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on top of virtual slides that can be represented as overlay poly-
gons [ZGL∗21, HMST21]. Recently, Jessup et al. [JKW∗21] pro-
posed a scalable software system for focus+context exploration and
annotation of multi-channel WSIs obtained through recent high-
plex imaging methods, that are able to measure the levels and
sub-cellular localization of 20-60 proteins. Similarly, Somarakis et

al. [SIK∗21] developed a visual analytics system for highly mul-
tiplexed cytometric imaging data, i.e., images where every pixel
contains multiple scalar values, each representing the abundance
of a specific, pre-defined protein at subcellular resolution. Stoltz-
fus et al. [SFG∗20] developed instead a spatial analysis toolbox
called histo-cytometric multidimensional analysis pipeline (Cy-
toMAP), incorporating data clustering, positional correlation, di-
mensionality reduction, and 2D/3D region reconstruction to iden-
tify localized cellular networks and reveal features of tissue orga-
nization. Manz et al. [MGP∗22] developed instead a flexible web
toolkit displaying 2D visualizations of highly multiplex and multi-
scale datasets, supporting both image-based and polygonal anno-
tations. All these systems, even if successful for supporting vi-
sual analysis, still lack in fully supporting and integrating deep
learning methods [CWWF∗19]. Only very recently, methods sup-
porting the visualization of inference outputs from deep learning
have been proposed to support the interpretation and analysis of
slides, and they are starting to be integrated in visual analytics sys-
tems. For example, Facetto [KBJ∗19] provides supervised and un-
supervised learning tools for enabling the discovery of single-cell
phenotypes in high-dimensional multi-channel microscopy images
of human tumors and tissues, while companies like HALO AI,
or VisioPharm are starting to provide custom integrated solutions
that incorporate deep learning models in image viewers. Corvò et
al. [CWDW18] created a custom visual analytics system for accel-
erating reporting in breast cancer by semi-automatizing the grad-
ing process according to Nottingham Histologic Grade protocol,
and directly integrated in a Computer-Aided-Design viewer. Lu et

al. [LWC∗21] use heatmaps to provide interpretable visual infor-
mation from a clustering-constrained-attention multiple-instance
learning (CLAM) framework. The authors reason that this enables
domain scientists to evaluate the relative contribution and impor-
tance of every tissue region to the predictions without using costly
pixel-level annotations during training. Del Rio et al. [DRLA∗22]
include similar computationally generated annotations and visual
cues to help the pathologist prioritize high-interest image areas.
Class activation maps (CAMs) [ZKL∗16] provide a means to post-
analyse black box inference results. CAMs typically analyze the
spatial feature distribution in the last layer before the first dense
layer. The result is a low-resolution class probability distribution
that is upscaled and overlaid on the input image, often by means of
a semi-transparent heatmap color-coding. Chuang et al. [CCY∗21]
use CAMs to detect nodal micrometastasis in colorectal cancer on
annotation-free WSIs. Jaume et al. [JPA∗21] propose a toolkit for
explaining the outputs of graph neural networks (GNNs) on histol-
ogy images. They use two popular gradient-based CAM explainers
(Graph-GradCAM [PKR∗19] and Graph-GradCAM++ [JPB∗21]).
Our framework, likewise, exploits GradCAM [SCD∗17] to provide
domain experts with a tool to analyze the results of an otherwise
black-box AI. In addition, we also provide tissue density contours
generated automatically through KDE on top of the localization

and classification results to further enable experts to disseminate
the findings of our framework.

3. Application Domain and Requirements

We provide here a brief overview of the histopathology domain
and what are the requirements for providing effective annotations
to support reporting. Throughout the project, we involved an ex-
pert histopathologist for gathering information about the domain,
the visual analysis problems and limitations, for defining require-
ments, and for assessing the outcomes of the proposed annotation
framework through analysis of specific use cases of interest for the
specialist. We also took into account relevant surveys about the us-
age of visual analytics in histopathology [CWWF∗19, CWDW18],
in which specific needs related to the pathologist workflows are ex-
amined.

3.1. Overview of Histopathology

Histopathology refers to the visual analysis of microscopy images
of living tissues, and for many diseases it is considered the diag-
nostic "gold standard", especially for what concerns inflammatory
or neoplastic conditions. The analysis process involves the surgi-
cal extraction of sample cells or tissues. The tissue is then fixed,
dehydrated, embedded, sectioned, stained and mounted before it
is generally examined under a microscope by a histopathologist.
In order to reveal the development and the extent of the disease,
and before the microscope examination, the sections are stained
with one or more pigments. The aim of staining is to reveal cellu-
lar components, while counterstains are used to provide contrast.
The most commonly used staining in histopathology is obtained
by combining hematoxylin and eosin (often abbreviated H&E).
Hematoxylin has the effect to stain nuclei with blue color, while
eosin is able to reveal cytoplasm and the extracellular connective
tissue matrix through a pink color. Once properly prepared, the tis-
sue slides are digitized through a WSI scanner, that produces high-
resolution images (called virtual slides) normally at 40x resolution
(0.25 µm per pixel). The original glass slides or the virtual digital
scans are then sent to an histopathologist, who examines the tissue
under a microscope, looking for any abnormal findings, or through
a Computer Aided Diagnosis viewer. For performing these cogni-
tive tasks, various challenges are faced: high variability of structure
and appearance, depending on the tissue, staining and imaging pro-
cess. Variability is relevant also for morphology of cells, clustering
and aggregation, and the density inside the tissues. The histopathol-
ogist then produces a report that lists any abnormal or important
findings from the biopsy. This report is finally sent and discussed
with the surgeon who originally performed the biopsy on the pa-
tient, and the clinicians involved in the planning of the treatment.
In most cases, the report produced by the histopathologist is deci-
sive for the final diagnosis and for the successive planning of the
treatment of the condition. Successful and accurate examination of
slides requires knowledge, training, and experience and in many
cases histopathologists decide to specialize on particular diseases
or organs. Moreover, it happens often that they require a second
opinion from other histopathologists or additional analysis when
they do not feel confident about their outcomes. Considering that
histopathologists normally have a workload of few thousands of
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cases per year, they are increasingly getting used to automatizing
processes to speed-up their analysis and reporting activities, espe-
cially for what concerns the collection of patient information, and
the assessment of staining quality and tissue slide preparation. Even
if the analysis process is mostly depending on the personal experi-
ence of the histopathologist, for most diseases specific guidelines
and protocols are continuously compiled and refined for support-
ing examinations of different pathologies [Wea10,VS10]. For what
concerns the examination of the slides at microscope, histopatholo-
gist use different zooms to highlight patterns at various resolutions,
for analyzing cluster of cells, singular nuclei, frequency of patterns,
orientation of features, shapes and textures: specifically, 5x-10x is
the zoom level for detecting architectural patterns, 10x-20x is the
zoom used for revealing lymphocite invasion, 20x-40x is used for
assessing cellular morphology, and finally 20x-40x is considered
for the time consuming mitotic count, in case it is required by the
specific protocol for grading stage and aggressivity of the patho-
logical condition [CWWF∗19].

3.2. Requirements for Annotations

As outcome of the continuous interaction with the domain expert
in form of meetings, lectures and interviews, and after analysis of
relevant literature (see section 2), we came out with the following
requirements for providing annotations associated to the output of
deep learning models to effectively support the slide examination
process:

• R1: Explicability. The ability to explain the behavior of models
is of paramount importance in many applications. In the context
of histopathology, it is extremely useful to assess whether the
model is performing correctly and to understand if there is a re-
lation between statistical inference and the traditional workflow
of the histopathologist. Whereas deep learning produces black
box oracles, visual tools are verifiable in a-posteriori analyses.

• R2: Multiscale Analysis. Pathologists examine slides at various
scales. A full view of the WSI is used to identify major areas,
verify the tissue type, and assess the overall appearance. At the
nuclei level, spatial distribution and condition of individual cells
also provides important evidence. In between, the spatial rela-
tion of cell clusters matters. Thus, visual tools that support a
large range of scales are of extreme interest to domain scientists.
This requirement can be further refined according to the specific
needs related to the examination protocols [CWDW18]:

– R2.1: Magnification level. The assessment of different fea-
tures need different magnification level, ranging from high
level architectural patterns (5x-10x), up to small scale nuclei
measurement and mitotic count (20x-40x);

– R2.2: Reference. Since there are no anatomical references in
the tissue samples, it is important to provide reference in-
formation for supporting the exploration and enabling the
pathologist to create her own mental maps and be efficient
during the exploration of the slide.

• R3: Visual Clarity. We consider particularly important to avoid
visual clutter. Overlaid information should be strictly value
added and cover or hide the slide content as little as possible,
in order to do not impact negatively the cognitive process. Color

consistency is decisive for visual assessment, and particular care
needs to be applied in the decision of color schemes of the over-
lays applied onto the visualized slides.

• R4: Automation. Given the high workload for histopathologists,
one of the main requirements is efficiency during the examina-
tion and reporting tasks. Automatic visual tools are in particular
needed for the quality assurance and analysis of outcomes of
WSI process, for the mitigation of navigation efforts, for quan-
tification, for visual comparison and for memorization of pat-
terns.

4. Methodology

The visual inspection of WSIs is a fundamental part of digital
pathology. However, tasks such as counting cells are hindered by
the heterogeneity in the image as well as color and biological vari-
ability, making such routine tasks cumbersome and prone to er-
rors and subjectivity. To address this, our end-to-end visualization
framework exploits recent advances in deep transfer learning to lo-
calize and classify nuclei to construct a full map of nuclei within
a WSI. The framework is schematized in Fig. 1 and it contains the
following components:

• Patches generation: we subdivide WSIs into overlapping
patches by using the features of the hierarchical image repre-
sentation provided by OpenSlide [GGH∗13].

• Localization: for each patch, we localize nuclei using a YOLO
model trained on PanNuke data.

• Classification: we then use the resulting list of nuclei positions
to generate a new smaller image patch centered around each nu-
cleus. The latter patches are then fed into a deep classifier, again
trained using PanNuke data.

• Annotation: we then combine nuclei positions and the classi-
fier’s softmax probabilities to obtain classification data points
scattered across the WSIs domain. Finally, we use KDE to obtain
a probability distribution for each pixel of the WSI.

A detailed description of each of the latter three steps is provided
in the following subsections.

4.1. Detection and Localization

Figure 2: Left: Localization using plain YOLOv5. Right: HistAu-

GAN [WKS∗21] colorspace augmentation significantly boosts YOLO’s per-

formance.

Unlike many previous works, we abandon per-pixel segmenta-
tions of cell nuclei in favour of faster localization. We reason that
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the additional accuracy that can be provided by segmentation is un-
necessary for the task at hand, especially when spatially aggregated
statistics are desired. In this work, we use YOLOv5 [JCS∗22] to lo-
calize nuclei, a state-of-the-art object detection algorithm that pro-
vides high inference speed and accuracy. We trained the YOLOv5
model on PanNuke data and use it to perform nuclei localization for
multiple WSIs. However, intra- and inter-sample variations in the
color space severely affect its performance (also see Fig. 2, left).
Color space problems are common in histopathology and are due
to variations in tissue composition as well as age of the hemo-
toxylin and eosin staining agents. The problem was recently ad-
dressed by Wagner et al. [WKS∗21], who present a specialized
image-to-image generative adversarial network, called “HistAu-
GAN”, that we use for data augmentation. As can be seen in Fig. 2,
HistAuGAN boosts the localization performance massively, espe-
cially when performing inference on a sample that differs from the
color spaces used for training.

4.2. Labeling and Classification

Due to the high inter- and intra-class variations of nuclei tex-
ture and shape, traditional methods may not be the best op-
tion for fine-grained classification and labeling [QRW∗19]. Deep
learning architectures such as CNNs have achieved unprece-
dented accuracy in different domains, including histological im-
age classification [SRT∗16, BH16, BGB∗18]. ResNet [HZRS16],
SqueezeNet [IHM∗16], and EfficientNet [TL19] are prominent
deep CNN architectures, offering models that have been pre-trained
on large data sets such as ImagNet [DDS∗09]. In this work, we
evaluate the performance of these three architectures for the classi-
fication of nuclei.

4.3. Visual Annotations of WSIs

Figure 3: Annotations computed using our framework on TCGA data being

explored in the open-source histopathology tool QuPath [HMST21]. Box

annotations are useful for micro-scale examination of singular nuclei while

density isocontours are useful for macroscale assessment of the various re-

gions of the slides in search of specific patterns.

The input of our visual annotation scheme is the WSI along
with the localization and classification results: for each nucleus, a
2D axis-aligned bounding box and a softmax probability for the
targets (neoplastic, connective, epithelial, dead, inflammatory).

We designed three annotation methods to support histopatholo-
gists while addressing the requirements described in Sec. 3.2:

• A1: Activation Maps. Similarly to other frameworks [JPA∗21],
we consider the popular GradCAM method to highlight the main
points of attraction for our classifier in the per-nucleus patches.
This visual annotation fulfills requirement R1, and can be used
as assessment tool of the various models applied, as well as a
tool for assessing staining and WSI generation.

• A2: Annotated Nuclear ROIs. We overlay the outcomes of the
localization and classification models in form of color-mapped
frame boxes around the detected nuclei. We use a categorical
ColorBrewer maps consistent with standard visual annotations
considered in histology (e.g., red for neoplasy, purple for inflam-
matory, blue for dead, green for soft/connective, and orange for
epithelial), mapping the probability of the dominant class to the
color intensity. This annotation fulfills the requirement R2.1 for
microscale analysis at the nuclear level. It also supports count-
ing, hence it fulfills requirement R4 for automation.

• A3: Density Isocontours. Depending on the zoom level, A2 does
not meet requirement R2.2 and R3: the high density of nuclei
and classification noise lead to high visual clutter to be useful
for macroscale analysis. To address this, we use kernel density
estimation (KDE), a data smoothing and cleaning method, to
summarize the information of our scattered softmax probabili-
ties. Given these scattered data points, KDE estimates a proba-
bility density function (pdf) across the entire WSI. Using the pdf,
we apply isocontouring (see also Fig. 3) to highlight areas with
varying densities of nuclei of any given class. Density isocon-
tours can be also used as references for exploration. This meets
R2.1, R2.2 and R3 at the WSI-level.

Fig. 3 shows an example of the annotations on a breast cancer
slide, highlighting how box annotations are indicated for micro-
scale examination of singular nuclei while density isocontour are
useful for macroscale assessment of the various regions of the
slides in search of specific patterns.

Kernel Density Estimation To compute density isocontours, we
use a weighted KDE with radially symmetric, unimodal Gaussian
kernels. A copy of the kernel is centered at every nucleus. This
results in the general form

f (x) =
1

∑N
i=1 wi

N

∑
i=1

wiK (x− xi) , (1)

where wi is the weight for nucleus i, K is the kernel function
and N is the total number of nuclei in the slide. We then derive
weights as follows. Let t denote tissue type, pti the softmax proba-
bility for tissue t at nucleus i and"t = argmaxt (pti) the class with the
highest probability "pi at nucleus i. We first suppress non-maxima,
pi = "e"t · maxt ("pi), where "ei denotes the ith unit vector. We then

use weights of the form wi =
�

α−1
i pi

"γ
, where the αi and γ can

be used to enhance the contrast between various tissue densities.
For instance, αi = 1,γ = 1 results in a standard scheme, αi = pMi,
where M denotes the index of the second most probable class, in a
contrastive scheme, and γ = 0 in an unweighted scheme. We then
interpret each component of the multivariate KDE as a scalar field
from which we extract per tissue isocontours starting from a prob-
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Figure 4: Examples with isocontours generated with contrast scheme on a WSI representing a breast biopsy with tumor (TCGA archive). Increasing values

of exponent of γ show that higher values allow a better separation of contours representing different classes, at the cost of reduced coverage of the slide.

ability density threshold value pt (in all results produced for this
paper we considered pt = 0.5)

Fig. 4 shows an example of density isocontours generated with
the contrast scheme and different values of γ on one example of
breast cancer extracted from The Cancer Imaging Archive Portal.
Higher values of exponent γ lead to a better discrimination of con-
tours related to different classes, at the cost of reduced coverage
of WSIs. Histopathologists can choose between different param-
eter values according to their needs for what concerns clutter at-
tenuation or detailed analysis of interaction and proximity between
patterns related to different cell types.

5. Experiments and Results

We implemented the framework for annotation in Python. The
models are created by using PyTorch, YOLOv5, and FastAI, while
the annotations are created in GeoJSON format, ready to be im-
ported in the open source software QuPath for visual exploration of
virtual slides. For the slide image management, we use OpenSlide
library [GGH∗13], that is able to import and manage image hier-
archies of various microscopes, while for visualization and explo-
ration of images and annotations, we use QuPath [HMST21], that
is currently the most popular open-source histopathology analysis
framework. We performed the inference and data processing for an-
notating entire slides on a workstation running Linux Ubuntu 20.04
and equipped with a 16-core CPU Intel(R) Core(TM) i9-9900KS
CPU with 4.00GHz frequency and GPU Nvidia Geforce RTX 2080
with 11 GB RAM. For the assessment of the framework, we con-
sidered a collection virtual slides and the corresponding metadata
downloaded from the public portal Genomic Data Commons of
National Cancer Institute, that is part of the National Institutes of
Health at the U.S. Department of Health and Human Services. The
GDC Data Portal is a robust data-driven platform that allows cancer
researchers and bioinformaticians to search and download cancer
data for analysis [JFGS17]. We performed a qualitative evaluation
with the help of an expert histopathologist, who, in the interest of
full disclosure, is also a co-author of this paper. He examined im-
age samples from The Cancer Imaging Archive Portal taken from
examples of cancer in different tissues, namely breast, colon, and

bladder. Finally, he provided his assessment on the annotations gen-
erated for a slide representing a pediatric kidney Wilms tumor with
anaplasia.

5.1. Training Results

We use the PanNuke data set [GAKB∗19, GKB∗20], one of the
most comprehensive data sets available, to train all models. Pan-
Nuke is based on several publicly available data sets [KVS∗17,
Vu19, LLH∗18]. PanNuke uses five non-background classes which
are consistent with former studies [GVR∗19, HCT∗19]. Unlike
the binary (neoplastic, non-neoplastic) labels sometimes used in
the literature, all of our classifiers predict all five classes. For
Yolo, we considered the standard setup, and we trained the model
for 400 iterations with the following parameters: initial and fi-
nal learning rate 0.01, Adam optimizer with β1 = 0.937 and
weight decay 0.0005. To evaluate our trained YOLOv5 model,
we use PanNuke’s fold3 as testing data (as recommended by data
providers [GKB∗20]) and the intersection over union (IoU) met-
ric to perform localization based on a variable threshold range as
shown in Fig. 5 (left).

The classification results attained by YOLOv5 are shown in
Fig. 5 (right). To boost this classification accuracy, we use YOLOv5
for localization, extract an image patch around each nucleus,
and feed these patches to more sophisticated classifiers such as
SqueezeNet, ResNet101, and EfficientNet-b7. YOLO’s localization
output comprises of axis-aligned bounding boxes, which we use as
visual annotations of individual nuclei. Different tissue types ex-
hibit large variations with respect to nuclei shape, size and stain-
ing adsorption. Given that this information is readily available to
histopathologists and (as per our domain expert) histopathologists
commonly check the tissue type at the beginning of each ses-
sion, we feed this information into the classifier to further boost
performance. We color-code tissue type using a bounding box
around each nucleus. Thus, we achieved an absolute accuracy in-
crease by about 2%. This results in a weighted accuracy of over
85%, which significantly outperforms prior art (e.g., Gamper et

al.report 62% F1 score on neoplastic nuclei whereas we achieve
over 90% [GKB∗20]). Table 1 summarizes our results and can be

© 2022 The Author(s)
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Figure 5: Top: Detection rate of nuclei based on the IoU threshold. Bottom:

Confusion matrix of YOLOv5’s classification.

directly compared to Gamper et al. [GKB∗20] (Table V therein).
We further examine the impact of the bounding boxes by using
GradCAM [SCD∗17] to highlight important regions in images with
respect to the predicted class. Three examples are shown in Fig. 6.
We would also like to note that, in the case of WSIs, and unlike
in this figure, we center each patch around the nucleus to provide
enough context around each nucleus. In contrast, PanNuke com-
prises images of resolution 256×256, resulting in many nuclei be-
ing located near image boundaries.

5.2. GDC Experiments

We used the framework to perform complete annotation of a set of
73 slides extracted from the GDC portal and representing various
cases of neoplasies affecting different kind of tissues, in order to
compare the outcomes of the detection and classification models
with metadata reported in the portal. Specifically, we selected the
cases in a way that the reported percent of neoplastic nuclei range
between 25% and 50%, and an average total number of nuclei of
133.9±124 thousands. We obtained that our annotation has an er-
ror of 22.1 ± 8.7% compared to the reported metadata value. In
some cases, the number of neoplastic nuclei is overestimated, es-
pecially for tissues that are not included in PanNUke training data.
Fig. 7 top shows one example of wrong estimate over a slide repre-
senting a tissue extracted from a rectum biopsy. Our model detects
75% of neoplastic nuclei while the reported value is 25%. In this
case, it is important to remind that the model is trained over Pan-
Nuke dataset, that does not contain rectum tissues. Finally, Fig. 7
bottom shows an example of correct estimate on a slide represent-
ing a stomach sample (43.6% estimate vs 45% ground truth).

For what concerns scalability, the complexity of annotation pro-
cess depends from the size of the slide and the number of detected

Figure 6: Using GradCAM to visualize what our model is interested in.

Left-to-right: original patch, GradCAM signal with plasma colormap over-

laid onto the patch, plain GradCAM signal in gray-scale. Top-to-bottom:

Neoplastic, Epithelial, Connective nuclei. Note that the bounding box used

to color-code tissue receives the most attention.

nuclei. For the collection of slides that we considered, we were able
to perform a full annotation in average time of 14.8±9.7 minutes.
The scatter plot in Fig. 8 shows the full annotation time with respect
to the number of detected nuclei in the slide.

5.3. Test Case: Pediatric Kidney Wilms Tumor with Anaplasia

As additional test for the annotation framework, we fully anno-
tated one slide with kidney anaplastic tumor with our detection and
classification model trained on PanNuke data, and we submitted
to our histopathologist collaborator for assessment. Between the
various pediatric neoplasies, kidney Wilms tumors are considered
particularly severe, since they can grow into and destroy nearby
tissue, and they can also spread (metastasize) to other parts of the
body [IEPJ16]. Up to 10% of Wilms tumours can be classified as
anaplastic histology, that is considered a particularly unfavourable
histology, since the cells in these tumours look very different from
normal kidney cells and divide abnormally. Anaplasia may exhibit
localized or diffuse behavior, according to the areas where it can be
found. Anaplastic tumors are difficult to be recognized and even
more difficult to treat because they tend to be more resistant to
chemotherapy: moreover anaplastic tumors are more likely to re-
cur than tumours with a favourable histology.

Fig. 9 shows the result of the annotation of the WSI, clearly
demonstrating that the model, even if not trained to deal with rare
pediatric neoplasies, is able to correctly recognize a diffuse tumor
affecting the whole tissue, apart of the lower right corner containing
epithelial tissue. Moreover isocontours provide the way to highlight
specific patterns related to the behavior of that specific neoplasy.

Fig. 10 shows some specific patterns examined by the

© 2022 The Author(s)
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Table 1: Classification results of different models trained using PanNuke data set based on color-coded tissue frames. Compare to [GKB∗20]

Model
Connective/Soft Dead Epithelial Inflammatory Neoplastic

Weighted
Accuracyprecision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score

ResNet34 0.76733 0.76395 0.76564 0.69433 0.47493 0.56404 0.89762 0.87777 0.88758 0.77559 0.73718 0.7559 0.88012 0.91546 0.89744 0.83486

SqueezeNet 0.79444 0.72152 0.75623 0.72169 0.35572 0.47655 0.8846 0.89549 0.89001 0.78753 0.72453 0.75472 0.85296 0.93966 0.89421 0.83251

ResNet101 0.79357 0.76572 0.7794 0.67488 0.54399 0.60241 0.90768 0.9 0.90383 0.77046 0.75751 0.76393 0.88814 0.92164 0.90458 0.84532

EfficientNet-B5 0.78422 0.7804 0.78231 0.69704 0.579 0.63256 0.91299 0.90248 0.90771 0.76595 0.76092 0.76343 0.89771 0.91149 0.90455 0.84627

EfficientNet-B7 0.80214 0.77731 0.78953 0.75448 0.55818 0.64165 0.91659 0.91038 0.91348 0.77933 0.783 0.78116 0.89599 0.92192 0.90877 0.85422

Figure 7: We tested the framework on a collection of 73 slides extracted

from GDC portal and we compared the number of neoplastic nuclei de-

tected by our model with the percent reported in GDC metadata. Top: a

slide with rectum tissue with wrong neoplasy overestimate (75% vs 25%)

(rectum tissues are not represented in PanNuke dataset). Bottom: a slide

with stomach tissue with correct neoplastic estimate (43.6% vs 45%).

Figure 8: Annotation time for a collection of slides downloaded from GDC

portal. The average computation time for full annotations is 14.8±9.7 min-

utes and it depends on the number of nuclei detected.

histopathologist during the visual assessment, and representing par-
ticular behavior of the tumor, from replication of epithelial tis-
sue (top left) up to formation of tubular structures (top right), and
inflammatory conditions (bottom left and right).

5.4. Qualitative evaluation

From the qualitative assessment performed by the histopathologist,
we got the following preliminary outcomes in form of comments
and suggestions:

1. Colored bounding boxes and density contours give a good
overview of various cell types across a whole slide image, and
they are able to speed-up the analysis of architectural patterns,
cellular morphology, and the mitotic count.

2. The estimated numbers and proportions of different nuclei can
be employed to compare different slides or zones within slides,
and to speed-up quantitative tasks for grading the aggressivity
and the stage of the tumour.

3. By exploring the different distributions of cells scattered over
slides, the various tissue structures and the interactions between
different cell types are highlighted which gives references for
high magnification analysis.

4. Zooming in and out could show detailed structures in a short
amount of time and with less effort compared to exploring the
same slide without annotations.

5. The annotations also draw attention to features that may oth-
erwise be easily missed or would take longer to identify when
examining an unannotated whole slide image, resulting in better
accuracy and faster discovery (for example, clusters of inflam-
matory cells or tubular structures).

6. Looking at the different formations of cellular groups enables
practitioners to form a preliminary picture of the distribution of
cells and their different clusters by dividing images into struc-
tured, similar groups with overlapping displaying the invasive
areas between tumors and other cellular formations.

7. Cancer grade and level of invasion can be easily measured and
estimated. In slides where small spots of inflammation have not
been easily identified, our annotations enable the pathologist to
recognize them, clearly characterizing the impact of the tumor
on its surrounding. They also facilitate spotting neoplastic cells
in small gatherings within huge clusters of connective tissue and
inflammation surrounding tumor clusters which is hard to esti-
mate or imagine without annotations

8. Highlighting the boundary of tumor invasion zones depicts
its level of activity and aggressiveness, which can be noticed
clearly using density contours that show multiple levels of den-
sity, where, at the lowest level, tumor and inflammation or con-
nective tissue are overlapping. This can support grading and be

© 2022 The Author(s)
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Figure 9: We annotated a full slide from a kidney biopsy exhibiting anaplastic Wilms tumor. The framework, even if trained with Pannuke data, is able to

correctly recognize that the neoplasy is diffusely affecting the tissue. The contours are able to highlight specific patterns related to the behavior of the tumor.

Left: original slide. Center: box annotations over the WSI. Right: isocontours annotations covering the slide.

Figure 10: Details from a kidney biopsy exhibiting anaplastic Wilms tumor. The framework is able to recognize different patterns in the behavior of this

particular neoplastic condition, ranging from formation of tubular structures to construction of stromal structures.

used for quantification of scores according to the specific proto-
cols.

9. Our annotations can be used to compare the different nuclei
classification within each slide by describing each class sepa-
rately by aligning them side by side to conceive differences in
quantity and locality.

10. Moreover, it can be used to compare multiple slides to de-
termine which one is the most useful for a second round of
more careful clinical analysis to make prognosis. This process
is cumbersome and very time consuming if conducted without
annotations-aided visualization.

11. The GradCAM shows that in many cases both pathologist and
the model look at the same image features, yet pathologist tends
to prefer a wider view to perform further inspection and veri-
fication while the model use nuclei texture, appearance, color,
and shape as dominating features to determine classes.

In some cases where the model fails to detect the type of nuclei
based on their intrinsic features, context is found to be very im-
portant as well. Some mis-classified cases are also found difficult
by pathologist due to absence of context information due to the
limited image size. It was surprising that the model can recognize
the type of nuclei while paying less attention to the surrounding
context, especially for types where context is very crucial such as
inflammatory nuclei.

6. Conclusion

In this paper, we presented a visual framework for digital
histopathology. We show that localization is an apt, yet infre-
quently considered, substitute for more costly segmentation. We
also demonstrated that color-space augmentation is necessary for
localization. Finally, we found that using only the localizations of

© 2022 The Author(s)
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YOLO and feeding image patches around each nucleus into a ded-
icated classifier significantly outperforms prior art. The feedback
of domain experts in our initial qualitative user study is encourag-
ing, but a more thorough study on our framework’s usability and
impact on domain experts’ workflows is needed. Another future re-
search direction is a deeper examination of different KDE weight-
ing schemes. Furthermore, we would like to use focus+context
techniques to seamlessly blend between annotation and WSI, and
we would like to use a hierarchical data structure [ATAS20] for
storing and summarizing the softmax activations. Finally, we plan
to develop specialized protocol-based visual analytics systems for
different diagnostic tasks [CWWF∗19].
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