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Figure 1: InShaDe: from cell contours extracted from digital histology images, our pipeline computes invariant energy curvature-based
Fourier descriptors. These synthetic descriptors can be used for visual analysis, proof-reading segmentation results, and domain-specific
clustering according to specific taxonomies.

Abstract
We present a shape processing framework for visual exploration of cellular nuclear envelopes extracted from histology images.
The framework is based on a novel shape descriptor of closed contours relying on a geodesically uniform resampling of dis-
crete curves to allow for discrete differential-geometry-based computation of unsigned curvature at vertices and edges. Our
descriptor is, by design, invariant under translation, rotation and parameterization. Moreover, it additionally offers the option
for uniform-scale-invariance. The optional scale-invariance is achieved by scaling features to z-scores, while invariance under
parameterization shifts is achieved by using elliptic Fourier analysis (EFA) on the resulting curvature vectors. These invariant
shape descriptors provide an embedding into a fixed-dimensional feature space that can be utilized for various applications:
(i) as input features for deep and shallow learning techniques; (ii) as input for dimension reduction schemes for providing a
visual reference for clustering collection of shapes. The capabilities of the proposed framework are demonstrated in the context
of visual analysis and unsupervised classification of histology images.

CCS Concepts
• Applied computing → Imaging; • Computing methodologies → Shape representations; Cluster analysis;

1. Introduction

The last decades have witnessed the rapid improvement and pro-
liferation of high-throughput digital acquisition technology capa-
ble to provide high-quality representations of real-world scenes and
objects in many application domains. In particular, in biology and
medicine the rise of whole-slide scanners and the digitization of
traditional, confocal, and electron microscopy has led to the def-
inition and application of wholly digital analysis methods and to
the creation of large image databases [BAMC20]. While early uses
of this technology in research and clinical practice were mostly for
telepathology, second opinions, and education, in which the use of
the digital data closely mimicked traditional processes, in recent
years efforts have shifted towards exploiting the large amount of

information embedded in the acquired images, and in image col-
lections, to develop novel data-driven analysis and synthesis meth-
ods [ML16]. In this context, a wide array of basic tools are em-
ployed, ranging from the usage of handcrafted feature descriptors to
fully data-driven approaches, to the mixing and matching of various
approaches [KJ∗18]. Especially in the context of digital pathology
and biology, machine learning technologies, and in particular deep
learning approaches, have achieved significant successes, demon-
strating for instance their capability to provide automatic tools for
segmentation and labelng thousands of cellular entities from single
microscope images [CTT∗19, GKB∗19]. However, current purely
data-driven frameworks suffer of a lack of tools for proofreading
the segmented images, as well as for applying classification, filter-
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ing, computation, and visual exploration based on specific domain
knowledge and taxonomies [TJL∗20]. For this reasons, many ap-
plications require the use of descriptors that, by design, preserve
some domain-specific characteristics. In this context, a key to bet-
ter exploit the powerful capabilities of the novel learning frame-
works is to not fully dismiss the designing of features, but to find
ways to effectively integrate them with powerful descriptive mod-
els. In addition to expanding flexibility of usage, especially when
human analysis is required, this approach could increase discrim-
ination performance through incorporation of domain knowledge,
and lighten the training efforts, in terms of data required and com-
putational power.

Inspired by these considerations, we propose a novel visual
analysis pipeline based on discrete differential geometry concepts,
whose recent findings provide very powerful theoretical formu-
lations for describing 2D and 3D shapes [BSSZ08, CW17]. The
framework is based on a 2D curves and shape descriptor, which can
be used in various application domains to complement or enhance
generic based deep learning networks, such as U-Net [RFB15].
The descriptor, dubbed InShaDe, is based on the concept of dis-
crete curvature of closed resampled contours, and it is determined
by computing the approximating vertex osculating circles and edge
osculating circles, and by intertwining the correspondent radii. In
this way, we obtain a description of 2D curves that is naturally in-
variant with respect to rigid body transformations (translations and
rotations). In order to apply the proposed geometry descriptor to
cellular shapes extracted from histopathology images, we further
process it in a way to ensure scaling invariance, through standard
(z-)scores, as well as shift invariance, through Fourier analysis, by
computing energy-based elliptic Fourier descriptors.

Hence, the main contributions of this work are the following:

• a robust geometry processing pipeline for computing 2D shape
invariant descriptors exploiting shift-based interpolation and dis-
crete differential geometry schemes;

• the visual mapping of 2D cellular contours to the shape de-
scriptor embedding, based on modern dimensionality reduction
schemes, like UMAP [MHM18].

We provide preliminary results to show how the proposed
pipeline can be used in the context of proofreading and visual un-
supervised classification of various histology images in different
contexts, from medical diagnostics to neuroscience investigation.

2. Related Work

Our work deals with shape feature extraction from closed con-
tours and with the analysis of histopathology images. These are
very broad topics and a full coverage of the state-of-the-art is out
of the scope of this paper. We refer the reader to various sur-
veys and reviews on 2D shape analysis [MKJ08, KJ∗18] and dig-
ital histopathology analysis [IVRR13, XY16, JR17] for having a
comprehensive overview of the related fields. In the following, we
discuss the methods that are most closely related to our approach.

Shape feature descriptors During last two decades, signifi-
cant research efforts have been carried out in both the theoreti-
cal and the practical aspects of the shape-based image retrieval

problem [KJ∗18]. There are two main modeling approaches for
representing shapes: region-based methods and boundary-based
ones. Region-based techniques use moment descriptors to de-
scribe shapes, like geometrical moments [XL08], Zernike mo-
ments [KH90], Legendre moments [SLB∗00], and Tchebichef mo-
ments [MOL01]. Although region-based approaches are global in
nature and can be applied to generic shapes, boundary-based tech-
niques appear to be more efficient for handling objects that can
be described by their object contours. In this latter category a
number of boundary-based techniques have been proposed in the
literature, including Fourier descriptors [ZL03], Curvature Scale
Space (CSS) [Mok95] , and wavelet descriptors [LTN06]. Our de-
scriptor combines the features of curvature analysis together with
Fourier analysis, similarly to what was proposed by El Ghazal et
al. [EgBB08,EgBB12]. Differently from them, our method is based
on recent findings in discrete differential geometry [Bob15], thus
resulting in a more robust formulation with respect to the sam-
pling strategy and to better classification results. On the orthogonal
side, for the general classification problem, the exploitation of large
amounts of data by machine learning strategies has led to signifi-
cant advances [CFG∗15, WSK∗15]. Many current efforts attempt
to work directly on raw data images [WLG∗17, YSGG17], by de-
signing deep neural networks in which the modeling is hidden in
the network design and training strategy and the feature computa-
tion and filtering of information is automatically performed by the
network. In parallel, in order to simplify classification and auto-
matic shape generation, attempts to reduce the depth of networks
by introducing meaningful parameterizations or embeddings of in-
put shapes are gaining interest, since such parameterizations can
simplify the automatic classification or shape generation (model-
based or “shallow” learning) and reduce the number of training ex-
amples [SBR16]. Our work goes towards that direction, since we
propose a simplified contour description that can be used either for
supporting machine learning frameworks and for supervised visual
analysis. In this work, we focus on the latter aspect.

Histology analysis Digital pathology and microscopy image anal-
ysis is widely used in the biomedical domain for comprehensive
studies of cell morphology or tissue structure. In most cases, anal-
ysis is carried out through manual assessment, which is labor in-
tensive and prone to inter-observer variations. Computer-aided sys-
tems have recently attracted a great deal of interest since they can
dramatically reduce the manual efforts and increase reproducibil-
ity [XY16]. Among the various parts composing a computer-aided
diagnosis system, nucleus or cell detection and segmentation play
a key role to describe the molecular and morphological informa-
tion underlying the investigated samples [XY16, RRDM08]. In the
past few decades, many efforts have been devoted to automated
nucleus/cell detection and segmentation, and an independent field
named computational pathology (CPath) emerged simultaneously
to the rapid proliferation of deep learning (DL) models for quan-
titative analysis of spatial patterns in digitized whole-slide im-
ages (WSIs) of cancerous tissue slides [GKG∗20]. In this context,
various medical studies have already demonstrated the potential
of deep learning (DL) models in detecting neoplastic tissues and
recognizing diagnostically relevant structures [NFL∗19]. Very re-
cently, particularly performing neural networks were proposed, like
the U-Net architecture [RFB15], which operates on the entire im-
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age and jointly infers the label at each pixel simultaneously, leading
to more spatially coherent segmentation. U-Nets have been shown
to achieve improved accuracy on several bioimage segmentation
tasks, even when the data set is relatively small [RFB15]. The ar-
chitecture has been improved in the context of nuclear segmenta-
tion on histopathology images [CTT∗19], by enforcing equivari-
ance to groups, specifically rotation and translation, similarly to
group-equivariant CNNs (GCNNs) [CW16]. Moreover, in order
to attract efforts to particular datasets or tasks in medical imag-
ing, various challenge contests and public datasets have been pub-
lished [KVA∗19, GKG∗20]. However, as now, segmentation and
classification accuracy is still far from being accepted for clinical
practice [SA20], and proofreading efforts from domain scientists
are still required to double-check labeling consistency and seg-
mentation accuracy [TJL∗20]. Our pipeline goes towards that di-
rection by providing a visual analysis framework that support digi-
tal pathologists to efficiently carry out investigations over labeling
and segmentation quality. In this context, our proposed framework
takes as input the automatic segmentation obtained from U-Net like
networks [CTT∗19], and it allows for visual analysis of the reduced
parameter space obtained by performing dimension reduction over
our Fourier-based contour shape descriptor.

3. Method

The input to our InShaDe pipeline are segmented nuclear envelopes
of cells obtained by applying an U-Net [CTT∗19] on microscopic
histopathology images (see Figure 1). We then extract closed con-
tours (3.1) from each segmentation mask and perform the following
processing steps (see Figure 1 for a schematic representation):

(3.2) contour smoothing,
(3.3) geodesically uniform resampling,
(3.4) discrete curvature computation,
(3.5) feature scaling using standard (z-)scores (optional),
(3.6) embedding to constant dimensions,
(3.7) elliptic Fourier analysis (EFA).

Contour smoothing serves to reduce pixelation noise, whereas
geodesically uniform resampling removes sampling biases and is a
pre-requisite to computing discrete curvatures using discrete differ-
ential geometry formulations using osculating circles. Embedding
the resulting descriptors in constant dimensions helps in removing
noise and spurious frequencies during the EFA stage, but is also
necessary to allow for easy comparison between shapes using, e.g.,
cosine or Euclidean metrics. The Fourier analysis is used to remove
shift (i.e., choice of origin) from the parameterization of the closed
curve. So far the resulting descriptor is invariant under translation
and rotation (3.4) and invariant under parameterization shift (3.7).
In addition, the optional feature scaling step (3.5) ensures invari-
ance under uniform scaling. In our result section, we furthermore
show how the final descriptor can be used in combination with di-
mensionality reduction schemes for visualizing clusters of nuclear
shapes with similar geometric characteristics.

3.1. Contour Extraction & Chordal Parameterization

Given a segmentation mask, we extract a closed contour enveloping
each nucleus using iso-contouring (specifically Marching Squares,

which is a special case of Marching Cubes algorithm [LC87]).
We reject open contours (i.e., the nucleus intersects the image
boundary) and contours falling into the lowest 5% with respect to
their number of samples. Let C := {pi}N

1 , a closed curve with N
vertices pi. We let ∆i := pi+1 − pi, the ith edge, consistent with
Bobenko [Bob15], and abbreviate li := ‖∆i‖2 (edge length). We
then obtain an initial chordal parameterization t (C) with t1 :=
t (p1) = 0 and ti+1 := t (pi+1) = ‖∆i‖2 + ti ∀ i > 1.

3.2. Contour Smoothing

The discrete nature of binary segmentation masks may lead to pix-
elation artifacts in the extracted contour. To prevent the resulting
high spikes in curvature, we pre-smooth contours iteratively, using
a superscript ?(k) to denote quantities at iteration k. The process is
shown in Fig. 2. Specifically, we replace each vertex with a length-
weighted average of the bisector of adjacent edges,

p(k+1)
i =

l(k)i

(
p(k)

i+1 +p(k)
i

)
+ l(k)i−1

(
p(k)

i +p(k)
i−1

)
2
(

l(k)i + l(k)i−1

) . (1)

As shown by Gottschalk [Got00], this sum of of length-weighted

Figure 2: Contour smoothing: we apply iterative contour smooth-
ing to the closed contours (here, N=271) extracted from histology
images. The higher the number of iteration steps, the smoother the
contours: in the example, 2, 5,10, 20 steps respectively.

edge bisectors computes the barycenter of the points on the piece-
wise linear curve segment pi−1,pi,pi+1. Since it is a 2-stage con-
vex combination of pi−1,pi,pi+1, it is numerically stable and ro-
bust. Similar to virtually all smoothing operators, this does not yet
preserve area. We therefore compute the area a(0) enclosed by the
curve prior to smoothing and the area a(k) after each iteration. We
then scale the curve by

p(k)
i ← p(k)

i

√
a(0)

a(k)
. (2)

3.3. Geodesically Uniform Resampling

In order to remove sampling bias and to employ discrete differential
geometry formulations for vertex and edge curvature, we perform
geodesically uniform resampling. We do so by placing equidistant
samples p̃ on the piece-wise linear curve C, thereby yielding a new
piece-wise linear curve C̃ that is arc-length parameterized with re-
spect to a unit scale u. Starting at a point p1 = p̃1 and u = 1, we
intersect the edges of C̃ with a unit circle around p1. This yields
between zero and two intersection. If we find two intersections,
we select one intersection as p̃2 and keep track of the last edge,
∆̃1 = p̃2− p̃1. We then continue intersecting linear segments with
unit spheres, but when deciding on p̃i, we chose the intersection
that maximizes

〈
∆̃i , ∆̃i−1

〉
, with ∆̃i defined analogously to ∆̃1.
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This enforces progress along the curve and prevents jumping back
and forth on the curve. For our data, we did not encounter the case
of finding less than two circle-curve intersections. Zero crossings
would correspond to extremely small contours that cover less than
a few pixels after processing; and we remove the bottom 5% short-
est curves. One crossing would arise if part of the contour degener-
ates into a double line segment; Marching Squares does not extract
such pathological curves.

Once the best intersection p̃Ñ “laps” past p̃1, we use p̃Ñ = p̃1

instead to close the loop. This means that the last edge ∆̃Ñ−1 may
be shorter than unit length. In order to resolve this issue, we now
calculate the length L of the curve. Knowing that ‖∆̃i‖2 = u for all

but the last edge, we have L =
(

Ñ−2
)

u+ ‖∆̃Ñ‖2. To obtain an

u for which u−1L is approximately integral, we round u−1L to the
nearest integer L′ and update u← L′−1L.

We then revert to placing samples along the original curve C with
the updated spacing u. We repeat this process until the rounding er-
ror ρ = |u−1L−L′| (using the old u and the updated L′) becomes
negligibly small. In all of our experiments, three to five iterations
reduced ρ to less than 10−4. Given any number x ∈ R0, rounding
to the nearest integer changes x by 0.25 on average. We therefore
expect that |1−u| ≈ 0.25L−1, which we see confirmed in our exper-
iments with typical contour lengths of more than 100 pixel widths
(for reference, L = 100→ |1−u| ≈ 2.5×10−3). The result of this
step is a new piece-wise linear curve C̃ that is arc-length parame-
terized with respect to a close-to-unit scale u.

3.4. Discrete Curvatures

For a discrete arc-length parameterized curve, there are two def-
initions of discrete curvature based on osculating circles [Bob15]
(Section 2.3 therein). By defining the turning angle at vertex pi as

φi ≡ arccos〈∆i,∆i−1〉 , (3)

and by embedding the planar curve in the z = 0 plane (see also
Fig. 3), we obtain for the (unsigned) vertex curvature:

κv = 2
|sinϕi|

‖pi+1−pi−1‖2
= 2
‖∆i×∆i−1‖2
‖∆i +∆i−1‖2

. (4)

For the edge curvature we use the standard equation in [Bob15]:

κe =
1
‖∆i‖2

(
tan

φi

2
+ tan

φi+1

2

)
. (5)

The choice to use unsigned vertex curvature was made to be con-
sistent with the unsigned edge curvature. Using such a discrete dif-
ferential geometry approach results in much more robust and sta-
ble curvature estimates than by using an intermediate interpolating
spline. A reason may be that splines tend to over- and undershoot
near vertices, and are thus not representative of the curvature in
these points. Since one of our goals for the final shape descriptor
is optional scale-invariance, we still have to scale curvatures back
from our arbitrary unit length u to u = 1. This is achieved by di-
viding each κv and κe by u. Finally, we interleave vertex and edge
curvatures to obtain a high-resolution, coherent descriptor. After
this step, we also abandon the notion of curvature “living” on ver-
tices and edges and transition to the notion that the shape descriptor

Figure 3: Discrete curvatures: following discrete differential ge-
ometry [Bob15] we compute discrete curvatures by considering
vertex osculating circles (left), and edge osculating circles (right).

computed so far is a vector in a high-dimensional vector space. We
also adopt the notion that this vector represents a 1D periodic signal
on a uniform grid on the 2D circle. This interpretation is crucially
supported by the fact that all edges have the same length prior to
computing curvature. The descriptor computed so far is invariant
under translation and rotation, but neither paramtric shift nor scale.
We now establish the optional scale-invariance followed by shift-
invariance.

3.5. Feature Scaling

Given a sequence of curvatures, {κi}2Ñ
i=1, we compute standard

scores (also called z-scores) by mapping

κi←
κi−µκ

σκ

, (6)

where

µκ =
1

2Ñ

2Ñ

∑
i=1

κi and σκ =
1

2Ñ−1

2Ñ

∑
i=1

(κi−µκ )
2 (7)

are the empiric mean and variance, respectively. Such a scaling
is commonly employed in statistics as well as in training convo-
lutional neural networks. However, normally standard scores are
computed using global moments derived from the entire data set.
This, in turn, does not provide full scale-invariance, since vectors
with pre-dominantly small components will stay small. In contrast,
by computing individual standard scores we enforce the optional
scale-invariance of our descriptor as the bulk of the resulting coef-
ficients are expected to be in the range [−3,3] (normal distribution
assumption).

3.6. Constant Dimensionality

Resampling the contour to a constant dimensionality as depicted in
Fig. 4 allows us to control the number of elliptic harmonics in our
Elliptic Fourier Analysis in a way to agree with the Nyquist sam-
pling constraint. It is also a pre-requisite for easy comparison of
shape descriptors using, e.g., cosine and Euclidean metrics. As an
added side-benefit, it also allows us to eliminate remaining traces
of noise on the curve. In this paper, we perform this resampling
step based on shifted-linear interpolation [BTU04] for the follow-
ing reasons: (i) shifted linear interpolation achieves performances
that compare favourable to cubic interpolation at a much lower
computational cost, (ii) shifted-linear interpolation is still convex,
albeit with respect to shifted samples. It is thus free of oscillations
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Figure 4: Resampling to constant dimension: to reduce noise and
spurious frequencies during the Fourier analysis and to enforce
constant dimensionality of our descriptor, we apply uniform resam-
pling through shifted linear interpolation [BTU04]. In this exam-
ple, we show resampling with 64, 32 and 16 points respectively.

and the amount of foreign frequencies introduced by resampling
can be computed easily.

The basic idea of shifted-linear interpolation is to sample the
original signal at positions other than the original underlying sam-
pling grid, followed by standard linear interpolation. Blu et al.
prove, somewhat surprisingly, that there is a data-independent and
thus constant shift τ ≈ 0.21 that results in L2−optimal reconstruc-
tion of the unknown original signal given only the known sam-
ples [BTU04]. Samples κ ′i at shifted positions t ′i are obtained using
the infinite impulse response scheme described by Blu et al.,

κ
′
i =−

τ

1− τ
κ
′
i−1 +

1
1− τ

κi. (8)

It should be noted, however, that linear interpolation on κ ′ is liter-
ally shifted “to the right” by τ , meaning that a sample κ ′(t) cor-
responds to κ(t − τ). The resulting interpolation thus becomes a
shifted discrete convolution of the hat kernel

H(t) :=

{
1−|t| if |t|< 1
0 otherwise,

(9)

with the shifted discrete signal κ ′:

κ(t) = ∑
i

κ
′
i H(t− ti− τ). (10)

3.7. Elliptic Fourier Analysis (EFA)

To achieve shift-invariance (i.e., invariance under choice of
parametric origin), we consider the Fourier spectrum of each
given curve. In particular, we compute elliptic Fourier descrip-
tors [SM06], similarly to what was proposed by Khazhdan
et al. [KFR03] and successfully applied in various applica-
tions [AVG∗19, AGP∗20, DZPG89].

For a piecewise linear, periodic function κ(t) t ∈ [0,2π] repre-
senting the curvature of a contour, its Fourier elliptic expansion is
obtained through linear combination of elliptic harmonics functions
which provide a complete orthonormal basis for the decomposition

κ (t) = a0 +
∞

∑
n=1

(
an cos

(
2πnt

T

)
+bn sin

(
2πnt

T

))
. (11)

In order to compute the coefficients for the curvature function
κ (t) representing closed contours, we normalize the parameteri-
zation t to the interval [0,2π]. As we are concerned with closed

contours, the assumption of periodicity, t = 0≡ 2π is naturally sup-
ported. We then consider the classic method proposed by Kuhl and
Giardina [KG82]. This method essentially equates the discrete time
derivative of Eqn. (11), at locations pi,

κ̇i :=
∂κ

∂ t

∣∣∣∣
ti

:

κ̇i =
2πn
T

∞

∑
n=1

(
−an sin

(
2πnti

T

)
+bn cos

(
2πnti

T

))
, (12)

with a Fourier expansion of the time derivative of the curvature,

κ̇i =
∞

∑
n=1

(
an cos

(
2πnti

T

)
+bn sin

(
2πnti

T

))
. (13)

Noting that in Eqn. (13)

an =
2
T

N

∑
i=1

κ̇i

(
sin
(

2πnti
T

)
− sin

(
2πnti−1

T

))
and

bn =
2
T

N

∑
i=1

κ̇i

(
cos
(

2πnti
T

)
− cos

(
2πnti−1

T

))
, (14)

Kuhl and Giardina derive the following for the nth harmonic.

an =
T

2π2n2

N

∑
i=1

κ̇i

(
cos
(

2πnti
T

)
− cos

(
2πnti−1

T

))
and

bn =
T

2π2n2

N

∑
i=1

κ̇i

(
sin
(

2πnti
T

)
− sin

(
2πnti−1

T

))
. (15)

Figure 5: Invariant descriptor: the discrete curvature formulation
of InShaDe descriptor is by design invariant to rotations (middle
row), while the derive frequency-based energy descriptors are in-
variant also with respect to shift (bottom row).

We would like to remind here that, according to the Nyquist the-
orem, the number of contour regular samples S after the smoothing
and resampling process affects the number of harmonics N nec-
essary to reconstruct the contour curvature without adding noise
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N ≤ S

2

)
. Finally, in order to obtain shift-invariance, we compute

harmonic energies through the Euclidean norm of the harmonic
coefficients [KFR03], resulting in the following Curvature Fourier
Descriptor,

K (n) =
√

a2
n +b2

n, (16)

which provides a vector of shape features that can be used for var-
ious machine learning applications. Like the more commonly em-
ployed traditional Fourier transform, the elliptic Fourier transform
results in a space-agnostic spectrum, thereby making our descrip-
tor invariant under parameter shift (translation of the underlying
domain). In this paper, we chose the elliptic Fourier transform over
the traditional Fourier transform since its additional expressiveness
resulted in better results. Figure 5 demonstrates both rotation- and
shift-invariance.

4. Results

We have implemented our general shape descriptor method and
tested it on several challenging use cases. In the following, we
first provide details on our implementation (Sec. 4.1) and then pro-
vide an evaluation on general shape analysis and on the analysis of
histopathological images.

4.1. Implementation notes

We implemented the geometry processing pipeline in Python, by
using the following packages: G-U-Net [CTT∗19] for automatic
segmentation, sklearn, skimage for contour processing and dimen-
sion reduction, interactive matplotlib for visualization. For testing
the pipeline, we developed simple interactive widgets in which
users can compare the clustering visualization in the parameter
space to the reconstructed cellular shapes in the histology images.
We tested the components through Jupyter notebooks on a Razer
Blade Stealth laptop equipped with an Intel Core i7-1065G7 and
an NVIDIA GeForce GTX 1650 Ti and connected to an eGPU
NVIDIA Titan RTX. In all results presented in this paper we used
the following settings: T = 2 iteration steps for shape smooth-
ing, N = 256 for uniform resampling over the shape contours, and
K = 64 as number of Fourier energy coefficients for representing
the shapes. Moreover, in order to amplify the signal of high fre-
quencies, we considered a frequency equalization scheme weight-
ing the InShaDe coefficients according to the square root of the
order (w(k) =

√
k). Our geometry processing pipeline can be easily

integrated with different dimension reduction schemes and clus-
tering methods: in this work, as dimension reduction scheme for
visualizing the descriptors, we considered the very recent Uniform
Manifold Approximation and Projection (UMAP) method, based
on Riemannian geometry and algebraic topology [MHM18], while
for clustering we used HDBSCAN [CMS13] or k-Means [AV06]
according to the cases.

4.2. Evaluation

After evaluation on the classic MPEG-7 shape collection com-
monly used in literature for testing shape retrieval methods, we re-
port here preliminary results obtained with our pipeline on a num-
ber of histology samples for medical diagnostics and neuroscience

Figure 6: MPEG-7 experiments: we test our InShaDe using the
classical MPEG-7 shape collection commonly used for testing im-
age processing algorithms (left). A simple Support Vector Machine
classifier over our descriptor is able to obtain classification accu-
racy en-par with standard geometry-based classification methods
(78% over the complete shape collection). We also show the full
confusion matrix obtained on the testing data (right).

Figure 7: MPEG-7 UMAP clustering: we test UMAP dimension
reduction on the proposed invariant shape descriptor for MPEG-7
collections. In order to reduce visual cluttering, the various shapes
are separated in 6 groups of maximum 12 labels.

investigations. With respect to the latter, we involved two expert
domain scientists, who also author this paper, for providing a qual-
itative evaluation of the method, and for getting suggestions for
designing a full visual analytics framework for histology images.

Preliminary validation For obtaining a first consistency valida-
tion of the InShaDe descriptor, we used MPEG-7, which is one
of the most popular datasets for evaluating and comparing the ac-
curacy of shape retrieval methods. The MPEG-7 shape collection
is composed of 1,400 binary images containing objects of 70 dif-
ferent classes [AFFT19] (see Fig. 6 left). Since these shape con-
tours exhibit strong distortions, we in this case enrich our original
InShaDe formulation with an additional processing step for mit-
igating them. To this end, we perform statistical whitening, that
is, we consider Principal Component Analysis for finding a linear
mapping between the shape contour and the unit circle, and we ap-
ply the inverse of the linear transform to the original shapes. In or-
der to test the InShaDe descriptor we consider a basic Support Vec-
tor Machine scheme, trained on an augmented dataset: to this end,
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from the images collection we compute randomly rotated images,
numbering four times the original ones. Moreover, we use an hy-
perparameter optimization scheme for computing the best SVM pa-
rameters over cross-correlation accuracy, and we test the obtained
model over the original collection. In Fig. 6 right, we show the con-
fusion matrix for classification obtained through our scheme, while
in Fig. 7 we show the UMAP projection of our descriptor over the
various shapes (we separated in groups of 12 labels to reduce clut-
ter). In terms of accuracy, we obtain results aligned with state of the
art methods using geometric features (78% for our descriptor ver-
sus 66% for Curvature based Fourier descriptor [EgBB08], 78%
for blurred shape models [EFP∗09] or 78% Morphological Pattern
Spectrum [SP14]). Better accuracy is obtained only with more com-
plicated hybrid contour-based and region-based descriptors (90%
for Zernicke moments with geometric features [AFFT19]). For
putting these results in context, we want to remind that MPEG-
7 shapes are not well suited for contour-based methods. First of
all, they exhibit strong distortions that we partially mitigate by
pre-processing the contours through Principal Component Analy-
sis normalization. Secondly, and more importantly, many shapes
in the collection, especially artificial objects, may contain internal
features that cannot be recovered by boundary based methods. Es-
pecially artificial objects with similar contours (for example, the
various classes of devices in the MPEG-7 collection) cannot be dis-
criminated by analysing the shape contours (see Figure 7 bottom
right). On the other hand, our method provides excellent accuracy
for recognizing natural shapes (like animals). Given these prelim-
inary encouraging results, showing that the proposed descriptor is
consistent for classifying shapes of natural objects, we are confi-
dent that the formulation can provide an adequate support for the
analysis of biomedical images.

Histopathology visual analysis For visual analysis of histopathol-
ogy images, we use public domain data coming from the MoNuSeg
contest [KVA∗19], and the very recent PanNuke dataset [GKG∗20].
The former contains 30 images from seven organs with unclassified
annotations of more than 20k individual nuclei, while the latter con-
tains more than 220K labeled nuclei from 19 different tissues and,
as of writing, it represents the largest open pan-cancer histology
dataset for nuclei instance segmentation and classification. Finally,
we apply the pipeline to a portion of a breast sample [CHG∗19]
obtained from the public repository TCIA (The Cancer Imaging
Archive).

Figure 8 shows some examples of images from the MoNuSeg
dataset [KVA∗19] labeled through our framework: specifically, we
apply UMAP and k-Means for clustering all contours of the entire
dataset (on top left), and represent the effects on specific images.
We notice how cells with similar shape features tend to form spa-
tial clusters, and this fact can provide additional visual information
to digital pathologists for diagnosis. Further investigation is needed
to understand and evaluate the clinical value, but preliminary feed-
back from pathologists confirmed that in various cases nuclear fea-
tures and clusters can provide decisive information for recognizing
specific conditions.

Figure 9 shows an illustrative example of visual analysis of
breast samples from the PanNuke dataset [GKG∗20]: in this case,
labeling was performed partially manually and partially automati-

Figure 8: Visual clustering of histology images: the InShaDe
pipeline together with dimension reduction and clustering is used
for visual classification. On top left, k-Means [AV06] is used to
create four clusters over all nuclei segmented from the MoNuSeg
dataset [KVA∗19], while the other images show the effect of cluster-
ing for specific histology images. Spatial patterns created by shapes
with similar features are recognizable.

Figure 9: Visual analysis of PanNuke segmentation: our visual
analysis pipeline is used for proofreading and checking labeling
of histology images. In this example, the neoplastic cell type is se-
lected from parameter space and rendered on one of the original
imagesof the PanNuke dataset [GKG∗20].

cally (in red neoplastic cells, in green inflammatory cells, in orange
epithelial cells). We notice how, in this case, our shape descriptor
cannot adequately discriminate the various cell classes according to
this taxonomy (on the left). However, the analysis of clusters or the
presence of outliers in the parameter space can provide pathologists
visual hints for proofreading the labeling of nuclei or evaluating the
accuracy of contours (like the neoplastic nuclei on the right).

Finally we test our InShaDe descriptor on a portion of a whole
slide image (WSI) composed by a 3x3 tile set of resolution 1K×1K
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Figure 10: Visual analysis of WSI: the InShaDe processing
pipeline is applied to the analysis of Whole Slide Images (WSI).
A portion of a breast sample from the dataset Breast Metastases to
Axillary Lymph Nodes [CHG∗19] obtained from the public repos-
itory TCIA (The Cancer Imaging Archive) is shown. Pathologists
can choose a region in the parameter space (blue cluster on the
left), and visualize the associated contours in the WSI (right), to
check for spatial clusters or patterns.

from a breast sample [CHG∗19] obtained from the public repos-
itory TCIA (The Cancer Imaging Archive). In this case, cluster-
ing was computed through k-Means [AV06] (left), and applied to
the tiles for showing eventual spatial patterns that can match with
metastatic tissues. In figure 10 we show an interactive example,
in which the blue cluster is selected in the parameter space (left)
and the associated contours are highlighted in the histology im-
age (right). Pathologists can select and create clusters and regions
in the parameter space, and check whether nuclei with similar shape
features form specific spatial clusters in the image space.

Qualitative evaluation We tested our InShaDe processing
pipeline also on biologic histology images of rodent brain samples
currently used for neuroscience investigations. To this end, we in-
volved two expert neuroscientists for providing a qualitative evalu-
ation of the framework as applied to images obtained with different
staining techniques. As a general outcome, the domain scientists
were particularly impressed by the segmentation quality and they
were able to map specific features in the shape features space to
specific patterns in the histology images.

Specifically, in figure 11 left we show the outcomes of Nissl
staining of mice brain sections: clustering was obtained with k-
Means [AV06]. The Nissl staining is not specific for particular cell
type and is commonly used for cell counting, since it provides an
excellent contrast between the cellular and extracellular space. On
the other hand, it does not provide a very good contrast between the
cytoplasm and the cell nucleus. In the example reported, the con-
trast allowed the automated algorithm to efficiently segment cell
profiles, but only few nuclei were segmented (mostly in light blue).
Even in this case, the usage of the parameter space for highlight-
ing the contour shapes in the image space provides visual hints
for recognizing particular features, like blurred segmentations of
soma mixed with dendrites. To this end, neuroscientists consider
the framework potentially useful for proofreading the quality of the
staining.

Figure 11: Visual analysis of mouse brain sections: our visual
analysis pipeline is used for a neuroscience investigation. Top: a
brain section fixed with paraformaldehyde is stained with Cresyl
Violet, which highlights Nissl substance in the cytoplasm of neu-
rons. Bottom: toluidine blue is used in an attempt to discriminate
nuclei from blood vessels and artifacts.

Finally, Figure 11 right shows a portion of somatosensory cor-
tex used on an ultrastructural work on ageing [CWB∗18,ABG∗18,
ACAA∗19]. Nuclei were stained with toluidine blue on semithin
sections prepared for electron microscopy in order to count cells.
The extracted contours were clustered through k-Means [AV06].
In this case, the shape feature space enabled scientists to distin-
guish immediately between blood vessels (in red), wrong segmen-
tations (in blue), and nuclei from different kind of neurons (pyra-
midal neurons mostly in light blue and pink).

Discussion The main outcomes of our preliminary evaluation can
be summarized as follows.

• Relationships between shape parameter space and image
space: in various cases we notice that spatial clusters of cells
exhibit similar shape features. Further investigation is needed to
understand whether and in which cases spatial patterns or clus-
ters in the image space correspond to patterns or clusters in the
parameter space, and to associate shape clusters to specific tax-
onomies. In this context, we would like to remind that perform-
ing clustering on parameter space obtained after dimension re-
duction is still considered a complex task prone to producing
unreliable results [STMT12]. Therefore, we plan to explore dif-
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ferent automatic and manual dimension reduction techniques to
support domain scientists during their analysis.

• Coupling with image descriptors: according to the analysis
that we carried out on labeled data, our descriptors do not pro-
vide enough information for discriminating tumoral cells (see
PanNuke dataset [GKG∗20]). In order to improve classification,
we plan to integrate InShaDe with sparse coding [MF13] for de-
composing the inner part of nuclei as function of specific texture
patterns with different physical and molecular characteristics.

• Caveats due to staining techniques: depending on the struc-
ture to be identified within a cell, or the type of tissue, a large
plethora of immunohistochemical staining techniques are avail-
able. The proposed geometry framework can provide effective
proof-reading tools for checking the quality of staining methods
and semi-automatically individuating the structures of interest.

• Taxonomy-based visual analytics system: a real challenge in
the analysis of histology images is the difficulty to individuate
correct taxonomies of nuclei in order to simplify understand-
ing and diagnosis. A visual analytics framework incorporating
contour analysis, image analysis, and expert domain knowledge
would help digital pathologists in labeling and proof-reading,
and would provide fast ways for creating labeled data for more
sophisticated artificial intelligence frameworks. To this end, our
geometry processing pipeline provides encouraging results and
can be easily integrated in such systems.

• Arc-length parameterization: While we have yet to observe
our arc-length parameterization algorithm to diverge, we do not
have a formal proof of convergence at the time of writing. We be-
lieve it works so well since changes in u happen very gradually
and the original curve remains untouched. Each reparameteri-
zation attempt therefore slides vertices around the input curve.
While formal analysis is hindered by the fact that our method is
discontinuous at original vertices, we believe a full treatise to be
an interesting direction for future work.

5. Conclusion

We have presented a general shape processing framework rooted in
a novel differential-geometry-based descriptor of closed contours.
Our descriptor provides an embedding into a fixed-dimensional fea-
ture space that can be utilized for various applications, which range
from serving as input feature for deep and shallow learning tech-
niques to supporting dimension-reduction schemes for providing
a visual reference for clustering collection of shapes. While our
methods are of general use, our work is motivated by the study of
cellular nuclear envelopes extracted from histopathological images.
In this context, we have shown the capabilities of the proposed
framework for visual analysis and unsupervised classification. Our
results are very encouraging, and we identify several major areas
of future work in the previous section. In particular, for our spe-
cific use case, we plan to integrate our contour descriptors with tex-
ture descriptors to improve discrimination capabilities among nu-
clei with similar shapes but different physical and molecular char-
acteristics. Moreover, we plan to develop, on top of our pipeline, a
taxonomy-based visual analytics system to simplify study and di-
agnosis.
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