
The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST

(2011)

M. Dellepiane, F. Niccolucci, S. Pena Serna, H. Rushmeier, and L. Van Gool (Editors)

Real-time Rendering of Massive Unstructured Raw Point

Clouds using Screen-space Operators

Ruggero Pintus, Enrico Gobbetti, and Marco Agus

Visual Computing Group - CRS4, Italy – http://www.crs4.it/vic/

Abstract

Nowadays, 3D acquisition devices allow us to capture the geometry of huge Cultural Heritage (CH) sites, his-

torical buildings and urban environments. We present a scalable real-time method to render this kind of models

without requiring lengthy preprocessing. The method does not make any assumptions about sampling density or

availability of normal vectors for the points. On a frame-by-frame basis, our GPU accelerated renderer com-

putes point cloud visibility, fills and filters the sparse depth map to generate a continuous surface representation

of the point cloud, and provides a screen-space shading term to effectively convey shape features. The technique

is applicable to all rendering pipelines capable of projecting points to the frame buffer. To deal with extremely

massive models, we integrate it within a multi-resolution out-of-core real-time rendering framework with small

pre-computation times. Its effectiveness is demonstrated on a series of massive unstructured real-world Cultural

Heritage datasets. The small precomputation times and the low memory requirements make the method suitable

for quick onsite visualizations during scan campaigns.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture and Image

Generation—; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—.

1. Introduction

Acquisition devices, such as mobile or aerial laser scanners,

are able to produce massive datasets. The abundance of sam-

ples finds a perfect field of application in Cultural Heritage

(CH), where both dense and extensive sampling is required.

Terrestrial Laser Scanners (TLS) or vehicle based mobile

systems (Kinematic TLS) allow us to acquire high quality

models of huge CH sites, historical buildings and urban en-

vironments. Wide range scanning is increasingly important,

since much of CH items revolves around complex modern

and ancient cityscapes. Although the typical data represen-

tation used in CH is the triangulated mesh, recently there has

been a renowned interest towards the use of point clouds,

which are easier to create and manage. Given this tendency,

CH applications involving point clouds are becoming more

and more important [SZW09, DDGM∗04]. In many cases,

acquired point clouds consists in an unstructured list of po-

sitions of sampled points, without other associated geomet-

rical attributes; for instance, in the last decade the use of

unstructured point clouds from moving LIDAR devices has

gained a lot of attention in archaeological survey. In ad-

dition, due to high acquisition ranges, sampling rates are

widely varying, and most datasets are affected by noticeable

noise. Thus, fast pre-processing and real-time high-quality

rendering of such noisy unstructured point clouds is crucial,

especially for quick on-site visualizations during scan cam-

paigns.

Some real-time methods directly draw the points as con-

stant size disks. They don’t fully take into account occlu-

sions, leaving holes in under-sampled areas, producing hard

to read images, and requiring color attribute to provide in-

formation on surface shape. Other techniques require exten-

sive pre-computations of per-point normal and spatial ex-

tent. They provide higher quality rendering, but the pre-

processing is time consuming and non-trivial, especially

for non-uniformly-sampled massive models. We propose a

method for good quality direct rendering of unstructured raw

point clouds, which exploits the high performanc of GPUs

to do all the computations at rendering time, on a frame-

by-frame basis. We introduce an on-the-fly visibility esti-

mator, which transforms the point rendering problem into

a simpler image infilling problem applied to frame buffer

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

pixels, obtaining a continuous surface representation of the

sparse point cloud. We also propose a shading algorithm

that uses a simple screen-space method to effectively convey

shape features. Unlike current high quality point rendering

approaches, we do not require point attributes, such as nor-

mals and radii, minimizing pre-computation times. To deal

with massive models, we integrate our approach within a

multi-resolution out-of-core real-time rendering framework

with fast pre-processing. Our technique is easy to implement

and provides good performance and quality in rendering of

massive unstructured raw point clouds. The lower memory

needs and faster construction times with respect to methods

requiring sampling densities and normals, make our method

suitable for a variety of CH applications.

2. Related work

Point-based graphics is an extensively studied field. Here,

we are going to discuss only techniques closely related to

ours. For an established survey, see Gross et al. [GP07].

Since points have no extent, the major problem in render-

ing is to achieve smooth interpolation of surfaces, resolv-

ing visibility. Point rendering can be approached either with

object-space or screen-space methods. Object-space tech-

niques assign a size and orientation to the point replacing

it with a surface element (e.g., [PZvBG00, RL00, PSL05]).

Screen space methods start from pixels in the framebuffer,

and apply screen-space splatting [ZPvBG01], ray trac-

ing [SJ00], and surface infilling techniques to eliminate

holes [GD98,GBP04,KCLU07,MKC08,RL08].

Despite their high image quality and good performances,

they all suffer from the limitation that they need additional

point attributes, such as normals and/or influence radii, for

computing point set visibility and performing surface recon-

struction. Some techniques [GRDE10,KK05, CS09] do not

rely on normals, but still use pre-computed estimations of

point density. Often, models with attributes are not available

directly from the acquisition devices (e.g., LIDAR data in

LAS format). While attribute computation is simple in struc-

tured range-maps [XC04], massive datasets are typically un-

structured, leading to time consuming pre-processing step

to compute them. Wimmer and Scheiblauer [WS06] devel-

oped a rendering system for massive unstructured raw point-

clouds with a fast pre-processing based on Sequential Point

Trees [DVS03]. Without point attributes, that method cannot

solve visibility when point clouds are viewed from too near

a distance and it doesn’t provide any surface reconstruction

or shading.

Unlike previous techniques, our method renders in real-

time and on a frame-by-frame basis massive unstructured

raw point clouds, solving both visibility and surface re-

construction with screen-space operators and without point

attributes. Direct visibility of point sets has gained inter-

est in recent years. Apart from general analytic algorithms

(e.g. [DD02]), recent methods try to explicitly solve visibil-

ity of point sets without attributes. Given the position of the

camera, some approaches [KTB07,MTSM10] use the “Hid-

den” Point Removal operator that solves visibility in object-

space computing the convex hull of the model. The use of

this approach in a screen-space framework is not straight-

forward, and it is not fast enough for real-time rendering.

We use instead a simple screen-space visibility estimator,

and an infilling method based on bilateral filtering (see, e.g.,

[Por08]).

Without normal attributes, techniques must be introduced to

visually convey shape information. A straightforward solu-

tion could be a screen-space normal estimation from depth

buffer [KK05, KAWB09] for a directional lighting model

or for a more complex lighting. It has been demonstrated

(e.g., [LB99]) that a diffuse global lighting is preferable for

depth discrimination. A number of GPU-based techniques

have been proposed for approximating global illumination

or shadow maps [SA,BSD08,VPB∗09,LS10,Mit07,DL06].

Further, NPR techniques increase detail perception by draw-

ing lines [LMLH07], toon shading [BTM06] or estimating

curvature for shape depiction [VBGS08]. Using a single fast

screen-space operator, our simple shape depiction method

incorporates the effect of a directional lighting model, an

ambient occlusion term and a non-photorealistic line draw-

ing shape abstraction. It proves to give enough cues to un-

derstand the object curvature and to convey shape features

of very noisy, non-uniformly sampled point clouds.

3. Technique overview

The proposed technique is a multi-pass GPU-based render-

ing pipeline implemented using vertex and fragment shaders.

Fig. 1(a) and Fig. 1(b) provide an overview of how our

pipeline can render high-quality images starting from an un-

structured point cloud. First the point set is projected into

a texture. The visibility pass decides whether each pixel is

visible, providing a valid information for the current point

of view. The filling operator fills all non-visible values per-

forming a multi-pass surface reconstruction from a two-

dimensional sparse depth and color buffers of visible points

based on an edge-preserving image infilling. We obtain an

interpolated 2.5D geometry and color. The last off-screen

step consists in a multi-pass approach to compute a deferred

shading term that highlights surface curvature, features and

the overall shape of the rendered model. We combine all the

computed textures (filled 2.5D depth and color, and shading)

to produce the final image of the scene.

4. Visibility

Given a point set and the position and orientation of a cam-

era, the visibility operator computes which points lie on the

object surface visible from that camera. The proposed ap-

proach is based on a simple insight: if there are some points

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

(a) Pipeline overview (b) Pipeline structure

Figure 1: Overview of the rendering pipeline. We first render the geometry into a texture. Then we compute point set visibility

in screen space, removing invisible points. After the depth values of invisible points are filled and a screen-space multi-level

shading term is calculated in order to help conveying object geometry and its fine details. Finally the filled color signal is

multiplied by the shading factor.

(a) Occluded point (b) Visible projected and background point (c) Visibility output

Figure 2: 2D Visibility. We trace a ray point-to-camera and we build the largest aperture cone that doesn’t contain any other

point. A small aperture cone defines a point invisible (a). A visible point has a big aperture (b). Invisible points (black dots) are

set equal to 1 in depth and are mutable (in next pipeline steps), while visible points (red and blue dots) are immutable (c).

that reduce the “accessibility” of a point with respect to the

camera, this point is marked as occluded; in other words,

a point is visible if it is possible to build a large enough

solid angle viewed by the point that contains the point-to-

camera line and has no other points inside. Further, the pur-

pose of visibility operator is also to give some constraints

that could better drive the anisotropic filling operator, which

cannot rely on points attributes (e.g., influence radii) to avoid

boundary artifacts in the surface reconstruction task.

Straightforward screen space visibility is computed at pixel

level simply enabling the depth test culling during the ge-

ometry rendering pass. It obviously leaves a lot of false-

visible pixels in the frame buffer. Thus, for each pixel we

need to check if it is occluded by neighboring points in

the depth buffer. For simplicity we show the algorithm in

2D (Fig. 2). Red dots are projected points that has passed

depth test culling, while black dots are background pixels.

We trace a ray between each point and the camera, and find

the maximum angle that contains this ray, has the point as

apex and have no other points inside. A threshold on this

angle define a point visible or not. Fig. 2(a) and Fig. 2(b)

respectively show an occluded and a visible projected point.

The green angle is the visibility angle, i.e., minimum angle

that defines a point visible. We apply our operator to back-

ground pixels too (Fig. 2(b)), to prevent the anisotropic fill-

ing from expanding boundary and creating reconstruction ar-

tifacts; pixels marked as visible remain unchanged over the

next pipeline step. In Fig. 2(c) red and blue dots are visible

pixels, while black dots are marked invisible.

In 3D, we define an object space solid angle as visibility

threshold. Given a pixel in the depth buffer (grey pixel in

Fig. 3(a)) we compute the maximum solid angle viewed by

the corresponding 3D point. Given the discrete nature of

the screen-space domain and since points have no dimen-

sion, we subdivide the region around the pixel in sectors

(Fig. 3(b)) and, for each of them, we compute the largest

cone sector that has the point-to-camera ray as a generatrix

line and doesn’t contain any other point. Each cone sector

defines a solid angle and if the integral of all angles from all

cone sectors is bigger than the threshold, the point is marked

as visible. We compute a normalized vector~v that goes from
the 3D position p0 of the center pixel to the camera. We take

a sector and, for each neighbor pi within, we take another

normalized vector ~c = pi−p0
‖pi−p0‖

and we compute ~v ·~c. The

biggest dot product represents an horizon pixel that defines

the maximum cone aperture for the chosen sector. Fig. 3(c)

and Fig. 3(d) respectively show the horizon pixels (red) and

resulting cones for each sector.

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

(a) Projected points (b) Visible points (c) Anisotropic filling (d) Ground truth (e) Depth buffer error

Figure 4: Surface reconstruction error. We consider the projected point cloud of a Buddha model (a) and we apply visibility

(b) and anisotropic filling (c) operator. We compare (c) with the ground truth depth buffer (d) from the original triangle mesh

and we obtain the error (e). The error is normalized to the 1% of the maximum screen-space depth error.

(a) Visibility search space (b) Screen-space sector subdi-

vision

(c) Horizon pixels (d) Maximum cones

Figure 3: 3D Visibility. For a pixel (grey pixel) we consider

a neighborhood of projected points (white pixels) (a). We

subdivide this region in sectors (b). We find horizon pixels

(c) and we compute the solid angle corresponding with the

maximum cone (d). If the integral of cone solid angles is

bigger than a fixed threshold, the point is marked as visible.

5. Anisotropic Filling

The visibility pass produces a depth (and color) frame buffer

with two kinds of pixels: already filled (visible) and empty.

The value is unknown for empty pixels, while it is fixed for

visible ones. It turns a 3D problem of surface reconstruction

into the 2D problem of finding a meaningful value for un-

known pixels starting from a sparse two-dimensional field.

For solving this problem, we choose an iterative anisotropic

filtering approach implemented in a multi-pass GPU frag-

ment shader.

Throughout all passes, we use a 3x3 pixel neighborhood and

we apply the operator only to empty pixels. In the first pass,

all empty pixels have a non-valid depth (color) value. At

each step, for each pixel we perform two possible operations.

If it is non-valid, we initialize it to the median of valid depth

values in its neighborhood (if any), otherwise we leave it

unchanged. The choice of median instead of average comes

from an edge preserving filling strategy. If the depth is valid,

we update its depth and color with a weighted sum of the

neighbors. Each of them has a weight equal to

wi =
(

1−
ri

2

)

[

1−min

(

1,
|zi− z0|

δ

)]

(1)

where ri is the distance in pixel from the center, while zi
and z0 are respectively the depth value of the neighbor and

the current empty pixel. δ > 0 modulates the contribution of

depth distance, and ri
2 ensures that the radial weight is non-

zero for pixels inside the kernel and is zero for the closest

pixel outside the kernel. The number of iterations should be

twice the visibility kernel size in pixel, that implicitly de-

fine the biggest possible hole to fill. The output consists in

two filled textures (depth and color). Fig. 4 compares the re-

constructed depth buffer of a Buddha point cloud with the

ground truth depth buffer obtained by the corresponding tri-

angle mesh. Fig. 4(c) and Fig. 4(d) prove how our proposed

method reliably approximates the real surface from its sparse

representation. Fig. 4(e) shows the absolute value of the dif-

ference between reconstructed and ground truth surface; the

minimum value is zero (black pixels), while the white pixels

correspond with an error higher than 0.5% of the screen-

space depth. As for other methods for screen-space surface

reconstruction from sparse data the error is concentrated

along object contours.

6. Shape depiction

After the filling step we have a complete 2.5D surface (depth

and color). However, relying on color signal is not enough

for the user to properly convey object geometry and features

from a single view; moreover, sometimes color attribute is

missing. We need to perform some deferred shading that

helps to effectively convey surface shape. One solution is

to compute screen-space normals and to apply a standard

deferred shading method. Moreover, our interest is not a

photo-realism effect, but a fast way to visualize object de-

tails for an enhanced model readability. We propose a multi-

level approach that, without explicitly computing normals

from depth buffer, incorporates in a single, simple and fast

screen-space operator three types of shading contribution:

directional light, ambient occlusion and line drawing shape

abstraction.

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

We start from the filled depth map D0; we consider a 3x3

neighborhood and compute, for each pixel i, the expected

depth value µ0 and its variance σ0. To remove outliers,

we define a depth interval
[

d0imin ,d
0
imax

]

, where d0imin = µ0 −

σ0 and d0imax = µ0 + σ0. Our shading term at level k = 0

(Fig. 5(a)) is obtained by the following equation

ω0
i = clamp

[0...1]

1−

∣

∣

∣
d0i −d0imin

∣

∣

∣

d0imax −d0imin + ε

 (2)

where d0i is the depth of the pixel i and ε is a non-negative

term, very small in a numerical sense, that avoids having a

zero denominator. This term behaves as a directional light

shading, because, if the surface is a plane facing the viewer,

then d0imin = d0imax = d0i and ω0
i = 1, while it decreases as the

plane normal becomes orthogonal to the point-to-camera di-

rection. This effect is evident in the smooth parts of David’s

face (Fig. 5(a)) or in the floor in front of the church entrance

in Fig. 7(b). Due to a conservative approach for outlier re-

moval that results in an interval defined by mean and vari-

ance instead of minimum and maximum depth values, ω0
i

saturates in the presence of sharp edges producing dark or

white lines over the surface. The line drawing effect is vis-

ible in David’s hair (Fig. 5(a)) or in the sharp contours of

buildings in Fig. 8(b).

(a) Level k = 0 (b) Level k = 10 (c) Level k = 30

Figure 5: Our shading term at different smoothing levels.

Our shading term computed at each smoothing level; (a)

base level, (b) after 10 , (c) after 30 iterations.

Similarly to Rusinkiewicz et al [RBD06], we introduce a

multi-level computation to add a global lighting term to our

deferred shading. We consider Dk as the depth signal af-

ter k smoothing steps, and at each step we set the (k+1)-
depth as the average of the kth mean value and the kth

lower depth limit dk+1
i =

(

µk+dkimin

)

/2, reducing the num-

ber of necessary smoothing steps in a logarithmic manner.

For each depth smoothing level we found the corresponding

ωk
i . Fig. 5(b) and 5(c) show this term for two of these levels.

At the end of K multi-level off-screen rendering passes, we

merge all ωk
i in a single shading signal as

ωi =
K−1

∑
k=0

ωk
i

(k+1)ξ
(3)

where ξ decides how the weight decreases as a function of

smoothing level. The more is ξ, the sharper is the shading.

The less is ξ, the more is the contribution of the global light-

ing term to the final deferred shading. Fig. 6 shows the shad-

ing with a constant weight (i.e. ξ = 0) (Fig. 6(a)), with ξ = 1

(Fig. 6(b)) and with ξ = 3
2 (Fig. 6(c)). We choose this latter

weight for the experiments in Sec. 8. Finally, Fig. 7 com-

pares a general screen-space global illumination term with

our hybrid shading.

(a) Volumetric Obscurance (b) Our shading

Figure 7: Volumetric obscurance vs. our shading. A

comparison between a screen-space obscurance algorithm

[LS10] (a), and our term (b), which is a mix of directional

light, ambient occlusion and line drawing shading.

7. Multi-Resolution structure

The proposed technique was integrated in a multi-resolution

framework. We employed a data representation based on a

multi-resolution point hierarchy, to randomly access differ-

ent portions of the dataset to compute view-dependent cuts

of the graph during real-time rendering. The input is a set of

unstructured N positions, and eventually colors. Our multi-

resolution structure is a coarse-grained kd-tree partition of

the input dataset, with leaves containing less than a prede-

fined target sample count and with inner nodes containing

a filtered version of their children, with a number of sam-

ples equal to the target count. The multi-resolution structure

is built off-line. First, we start adding points into an exter-

nal memory array. If the number of points N is less than a

fixed sample count M, a leaf node is generated , otherwise

samples are distributed to the two children by bisecting the

bounding box at the midpoint of its longest axis, and recur-

sively continuing the partitioning procedure. Then, we build

inner nodes from their children: the parent node is subdi-

vided in a fixed-size grid of M cells and each cell conatins

one sample created by merging children samples.

8. Results

Our method was implemented on Linux using C++ with

OpenGL. In Table 1 we list the models used for testing:

David and Ostiano are acquired using triangulation and

time-of-flight scanner, while Sirmione, Loggia and Toronto

are noisy unprocessed raw LIDAR datasets. First we build

an out-of-core multiresolution hierarchy. Our performances,

computed with a processor Intel 2.4GHz, are comparable

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

(a) Level weight = const (b) Level weight∝ (k+ 1)−1 (c) Level weight∝ (k+ 1)
−

3
2

Figure 6: Level contribution for final deferred shading. Different types of weights for the kth level contribution in the final

deferred shading computation: (a) constant contribution, (b) and (c) two different hyperbolic contributions.

(a) Single-pass point splat using normals and radii (b) Our method without using normals or radii - single-pass

shading

(c) Our method without using normals or radii - multi-pass

shading

(d) Our method without using normals or radii - multi-pass

shading with different weight function

Figure 8: Toronto (260Mpts): (a) single pass point splat using normals and radii, and our method with (b) single-pass or (c)

multi-pass shading. (d) multi-pass shading with increased weight in the first pass. With such noisy data our method proves to

be very effective and it helps to appreciate the city layout and gives enough cues to better understand the depth information.

with state-of-the-art fast pre-processing methods for mas-

sive unstructured raw point cloud rendering. Wimmer et

al. [WS06] built a 260Mpts model and no attribute computa-

tion in 2 hours with a processor Intel 3.2GHz, and Wand et

al. [WBB∗07] took 100 mins for a 76Mpts dataset. Our point

pre-processing rates (without attribute computation) range

from 30Kpoints/sec to 60Kpoints/sec.

The algorithm was tested on an Intel 3.2GHz and a NVidia

GeForce GTX 480. Depending on the sparse nature of the

dataset, to obtain the proper rendering quality, the user has

Model Points Model Points

David 470Mpts Ostiano 213Mpts

Sirmione 100Mpts Toronto 260Mpts

Loggia 110Mpts

Table 1: Dataset sizes.

to choose the visibility kernel. The user could choose a sin-

gle pass shading, that results in a sharp visualization with

directional lighting and line drawing effects, or a multi-pass

term to include a global illumination too. These signals can

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

be optionally merged with different weight functions to have

the desired visualization. Here we use visibility kernel sizes

ranging from 4x4 to 9x9 pixels. Further various shading con-

ditions are considered. For a 1024x768 window size, we ex-

perimented a frame rate going from 15fps up.

(a) Point projection only (b) Single-pass point splat using

normals and radii

(c) Pull-push using normals and

radii

(d) Our method without using nor-

mals and radii

Figure 9: Sirmione (100Mpts): (a) point projection without

visibility estimation, (b) single-pass point splat and (c) pull-

push infilling with normals and radii, and (d) our visibility

and infilling without normals, radii and shape depiction.

The first data is the city of Toronto, a complex urban envi-

ronment. It is very noisy and our method proves to be very

effective in its visualization. Fig. 8(a) shows the single-pass

point splat rendering, while Fig. 8(b) and Fig. 8(c) are two

renderings with our method using respectively a single pass

and a multi-pass shading approach. A different weighting

function results in the shading effect of Fig. 8(d); here we

assign to the first shading pass a weight equal to the sum

of the weights of all other shading steps. This signal helps

to appreciate the city layout and gives enough cues to bet-

ter understand the depth information too. Another dataset is

the city of Sirmione (Fig. 9 and Fig. 10). Fig. 9(a) shows

the straightforward visualization of the projected points in

a view close to a building. The model is difficult to un-

derstand because we see both the building and the rest of

the data beside it. The dataset becomes clear after apply-

ing visibility estimation and surface reconstruction. Fig. 9(b)

and Fig. 9(c) respectively show the results of the single-pass

point splat and pull-push technique (without shading). If the

data is noisy, point splat rendering gives a less clear visu-

alization, while pull-push techniques produce better render-

ings; however, they use normals and radii to reconstruct the

surface and implicitly solve visibility, requiring extensive

pre-processing. Fig. 9(d) shows our rendering technique af-

ter the visibility and filling steps. The quality of our recon-

struction is comparable to the pull-push technique, but we

do not need any pre-computed attribute. In Fig. 10 we com-

pare again our rendering (Fig. 10(c)) with a classical single-

pass point splat (Fig. 10(a)) or pull-push (Fig. 10(b)) tech-

nique. Fig. 10(c) shows our multi-pass shape depiction shad-

ing technique, which helps to better convey some details and

depth discontinuities that are not evident using only the visi-

ble filled model (Fig. 10(c)). Finally, in Fig. 12, we compare

single-pass point splatting with our method, applied to the

Loggia dataset (Brescia, Italy), while Fig. 11 shows a visual-

ization of the church La Pieve di Ostiano in Cremona (Italy)

with the proposed technique. Our method is more effective

to perceive geometrical and color details in the presence of

very noisy datasets.

(a)

(b) A detail

Figure 11:Ostiano (213Mpts): (a) and (b) our method with-

out using normals, radii and shape depiction. The detail

proves how our edge-preserving infilling helps to perceive

fine color details on a such noisy dataset.

(a) Single-pass point splat using nor-

mals and radii - with shading

(b) Our method without using normals

and radii - with shape depiction

Figure 12: Loggia (110Mpts): (a) single-pass point splat

with shading and (b) our method with shape depiction.

9. Conclusions and Future Works

We have presented a real-time rendering technique to visu-

alize unstructured raw point clouds using screen-space oper-

ators and without any geometric attribute pre-computation.

Our results prove the applicability to very noisy datasets. In

c© The Eurographics Association 2011.

R. Pintus et al. / Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators

(a) Single-pass point splat using nor-

mals and radii

(b) Pull-push using normals and radii (c) Our method without using nor-

mals and radii

(d) Our method without using nor-

mals and radii - with shape depiction

Figure 10: Sirmione (100Mpts): (a) single-pass point splat and (b) pull-push infilling algorithm using normals and radii, our

method without using normals and radii, without (c) and with (d) our shape depiction shading approach.

CH, fast pre-computation makes our approach suitable for

on-site quick previews, which are very important for fast vi-

sual checks during scanning campaigns. We plan to inves-

tigate other shape depiction strategies to produce more ex-

pressive visualizations.

Acknowledgments. This research is partially supported by EU

FP7 grant 242341 (INDIGO). David dataset courtesy of Digital

Michelangelo project. Data of Sirmione, Ostiano and Loggia cour-

tesy of Gexcel.

References

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SIGGRAPH (2008). 2

[BTM06] BARLA P., THOLLOT J., MARKOSIAN L.: X-toon: An
extended toon shader. In Proc. NPAR (2006), ACM. 2

[CS09] CORDS H., STAADT O.: Interactive screen-space surface
rendering of dynamic particle clouds. JGT 14, 3 (2009), 1–19. 2

[DD02] DUGUET F., DRETTAKIS G.: Robust epsilon visibility.
ACM Transactions on Graphics 21, 3 (July 2002), 567–575. 2

[DDGM∗04] DUGUET F., DRETTAKIS G., GIRARDEAU-
MONTAUT D., MARTINEZ J.-L., SCHMITT F.: A point-based
approach for capture, display and illustration of very complex
archeological artefacts. In VAST 2004 (Dec. 2004), pp. 105–114.
1

[DL06] DONNELLY W., LAURITZEN A.: Variance shadow maps.
In I3D (2006), pp. 161–165. 2

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER

M.: Sequential point trees. ACM ToG 22, 3 (2003), 657–662. 2

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.: Deferred
splatting. Computer Graphics Forum 23, 3 (2004), 653–660. 2

[GD98] GROSSMAN J. P., DALLY W. J.: Point sample rendering.
In EGWR (1998), pp. 181–192. 2

[GP07] GROSS M., PFISTER H.: Point-Based Graphics. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. 2

[GRDE10] GROTTEL S., REINA G., DACHSBACHER C., ERTL

T.: Coherent Culling and Shading for LargeMolecular Dynamics
Visualization. In EUROVIS (2010), vol. 29, pp. 953–962. 2

[KAWB09] KLASING K., ALTHOFF D., WOLLHERR D., BUSS

M.: Comparison of surface normal estimation methods for range
sensing applications. In Proc. ICRA (2009), pp. 1977–1982. 2

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D., UYTTEN-
DAELE M.: Joint bilateral upsampling. ACM ToG 26, 3 (July
2007), 96:1–96:5. 2

[KK05] KAWATA H., KANAI T.: Direct point rendering on gpu.
In ISVC (2005), pp. 587–594. 2

[KTB07] KATZ S., TAL A., BASRI R.: Direct visibility of point
sets. ACM ToG 26, 3 (July 2007), 24:1–24:11. 2

[LB99] LANGER M. S., BULTHOFF H. H.: Perception of Shape

From Shading on a Cloudy Day. Tech. Rep. No. 73, 1999. 2

[LMLH07] LEE Y., MARKOSIAN L., LEE S., HUGHES J. F.:
Line drawings via abstracted shading. ACM Transactions on

Graphics 26, 3 (July 2007), 18:1–18:5. 2

[LS10] LOOS B. J., SLOAN P.-P.: Volumetric obscurance. In
Proc. I3D (New York, NY, USA, 2010), ACM, pp. 151–156. 2, 5

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In ACM

SIGGRAPH 2007 courses (2007), SIGGRAPH ’07, pp. 97–121.
2

[MKC08] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Ef-
ficient image reconstruction for point-based and line-based ren-
dering. Computers & Graphics 32, 2 (Apr. 2008), 189–203. 2

[MTSM10] MEHRA R., TRIPATHI P., SHEFFER A., MITRA

N. J.: Visibility of noisy point cloud data. Computers and Graph-
ics In Press (2010). 2

[Por08] PORIKLI F.: Constant time O(1) bilateral filtering. In
Proc. CVPR (jun. 2008), pp. 1 –8. 2

[PSL05] PAJAROLA R., SAINZ M., LARIO R.: Xsplat: Exter-
nal memory multiresolution point visualization. In Proc. VIIP

(2005), pp. 628–633. 2

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: Surface elements as rendering primitives. In SIG-

GRAPH (2000), pp. 335–342. 2

[RBD06] RUSINKIEWICZ S., BURNS M., DECARLO D.: Ex-
aggerated shading for depicting shape and detail. ACM Trans.

Graph. 25, 3 (2006), 1199–1205. 5

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: A multiresolu-
tion point rendering system for large meshes. In SIGGRAPH

(2000), pp. 343–352. 2

[RL08] ROSENTHAL P., LINSEN L.: Image-space point cloud
rendering. In Proc. Computer Graphics International (2008). 2

[SA] SHANMUGAM P., ARIKAN O.: Hardware accelerated am-
bient occlusion techniques on gpus. In I3D’07, pp. 73–80. 2

[SJ00] SCHAUFLER G., JENSEN H. W.: Ray tracing point sam-
pled geometry. In EGWR (2000), pp. 319–328. 2

[SZW09] SCHEIBLAUER C., ZIMMERMANN N., WIMMER M.:
Interactive domitilla catacomb exploration. In VAST09 (Sept.
2009), Eurographics, pp. 65–72. 1

[VBGS08] VERGNE R., BARLA P., GRANIER X., SCHLICK C.:
Apparent relief: a shape descriptor for stylized shading. In Proc.

NPAR (2008), ACM, pp. 23–29. 2

[VPB∗09] VERGNE R., PACANOWSKI R., BARLA P., GRANIER

X., SCHLICK C.: Light warping for enhanced surface depiction.
ACM Transactions on Graphics 28, 3 (July 2009), 25:1–25:8. 2

[WBB∗07] WAND M., BERNER A., BOKELOH M., FLECK
A., HOFFMANN M., JENKE P., MAIER B., STANEKER D.,
SCHILLING A.: Interactive editing of large point clouds. In PBG
(2007), pp. 37–46. 6

[WS06] WIMMER M., SCHEIBLAUER C.: Instant points: Fast
rendering of unprocessed point clouds. In PBG (2006). 2, 6

[XC04] XU H., CHEN B.: Stylized rendering of 3d scanned real
world environments. In NPAR 2004 (June 2004), pp. 25–34. 2

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In SIGGRAPH (2001), pp. 371–378. 2

c© The Eurographics Association 2011.

