VB2

AN ARCHITECTURE FOR INTERACTION
IN SYNTHETIC WORLDS

Enrico Gobbetti, Jean-Francis Balaguer

Daniel Thalmann
Computer Graphics Laboratory
Swiss Federal Institute of Technology
CH-1015 LAUSANNE, Switzerland

{gobbettilbalaguer}@di.epfl.ch

ABSTRACT

This paper describes the VB2 architecture for the
construction of three-dimensional interactive applications.
The system's state and behavior are uniformly represented
as a network of interrelated objects. Dynamic components
are modeled by active variables, while multi-way relations
are modeled by hierarchical constraints. Daemons are used
to sequence between system states in reaction to changes in
variable values The constraint network is efficiently
maintained by an incremental constraint solver based on an
enhancement of SkyBlue. Multiple devices are used to
interact with the synthetic world through the use of various
interaction paradigms, including immersive environments
with visual and audio feedback. Interaction techniques
range from direct manipulation, to gestural input and three-
dimensional virtual tools. Adaptive pattern recognition is
used to increase input device expressiveness by enhancing
sensor data with classification information. Virtual tools,
which are encapsulations of visual appearance and
behavior, present a selective view of manipulated models'
information and offer an interaction metaphor to control it.
Since virtual tools are first class objects, they can be
assembled into more complex tools, much in the same way
that simple tools are built on top of a modeling hierarchy.
The architecture is currently being used to build a virtual
reality animation system.

KEYWORDS

User Interface Design, 3D Interaction, 3D Virtual Tools,
Gestural Input, Virtual Reality, Object-Oriented Graphics,
Hierarchical Constraints.

1. INTRODUCTION

The latest high-speed graphics workstations and devices
make it possible to create applications in which the user
directly manipulates aspects of three-dimensional synthetic
worlds, ideally without feeling the mediation of a computer.
However, most of today's user interfaces for 3D graphics
systems still predominantly use 2D widgets, direct
interaction with the 3D world being generally limited to
interactive viewing, selection, positioning and manipulation
of points on paths or patches.

The difficulties associated with achieving the key goal
of immersion has led the research in virtual environments
to concentrate far more on the development of new input
and display devices than on higher-level techniques for 3D
interaction. It is not until recently that interaction with
synthetic worlds has tried to go beyond straightforward
interpretation of physical device data [27][2]. AT&T's
embryonic CAD modeler [39] is an example of a system
showing the importance of pattern recognition coupled to
expressive input devices, through the use of thumb posture
classification and voice input. UNC's 3DM [5] is a three-
dimensional surface modeling application using a head
mounted display and a custom made 6D mouse. In both
systems, the user interface takes little profit of 3D space,
mostly using three-dimensional menus and limiting direct
manipulation to point dragging and transformation
specification. Xerox Parc's Information Visualizer, built
using the Cognitive Coprocessor architecture, takes
advantage of the greater possibilities of 3D with novel
means of information presentation, such as the cone tree
and the perspective wall, demonstrating the potential of 3D
interfaces [29][8][28][23]. MR [34] and Bolio [41] are
general purpose packages for building interactive 3D
systems using multiple input/output devices. M R
concentrates on the integration of devices while Bolio
focuses on the construction of event-driven simulation
systems. The object-oriented graphical toolkits UGA
[40][9][19], from Brown University, and Inventor [35],
from Silicon Graphics, demonstrate how the increase in
correlation between manipulation and effect on controlled
objects makes three-dimensional widgets more powerful
and simpler to understand than their two-dimensional
counterparts.

This research work reveals the potential but also the
difficulty inherent in the design of three-dimensional
interaction techniques. 3D interface designers are faced
with systems whose structure and behavior are generally
more complex than in standard 2D applications, and have to
deal with a design space for interaction tools and
techniques that is larger and mostly unexplored. Moreover,
as stated by Myers, "the only reliable way to generate
quality interfaces is to test prototypes with users and
modify the design based on their comments" [26]. User
interface tools, such as toolkits or frameworks, have to be
used in this iterative process to reduce development time.
The lack of experience in 3D interfaces makes it
particularly important for these tools not to enforce any
particular interface style, but to provide a wide range of
interaction components, to allow rapid prototyping and
testing of novel interaction techniques.

In this paper we present the Virtuality Builder 1I (VB2)
architecture developed at the Swiss Federal Institute of
Technology. The goal of VB2 is to allow us to experiment
with 3D interaction techniques and to provide a basis for
the construction of our interactive applications.

2. SYSTEM STRUCTURE

VB2 is an object-oriented architecture designed to allow
rapid construction of applications using a variety of 3D
devices and interaction techniques. The goal of the system
is to put the user in the loop of a real-time simulation,
immersed in a world which can be both autonomous and
dynamically responsive to its actions.

DataGlove
o Rendering
Application
Spaceball Graphics
. Engine

Mouse

CD/' Rendering
EyePhone

C o)
Figure 1. Overall structure of VB2

A VB2 application is composed of a group of processes
communicating through inter-process communication
(IPC). Figure 1 shows the typical configuration of an
immersive application. Processes are represented as circles,
while arrows indicate the information flow between them.
As in the Decoupled Simulation Model [34], each of the
processes is continuously running, producing and
consuming asynchronous messages to perform its task. A
central application process manages the model of the virtual
world, and simulates its evolution in response to events
coming from the processes that are responsible for reading
the input device sensors at specified frequencies. Sensory
feedback to the user can be provided by several output
devices. Visual feedback is provided by real-time rendering
on graphics workstations, while audio feedback is provided
by MIDI output and playback of prerecorded sounds.

The application process is by far the most complex
component of the system. This process has to respond to

asynchronous events by making the virtual world's model
evolve from one coherent state to the next and by triggering
appropriate visual and audio feedback. During interaction,
the user is the source of a flow of information propagating
from input device sensors to manipulated models. Multiple
mediators can be interposed between sensors and models in
order to transform the information accordingly to
interaction metaphors.

Figure 2. Synthetic environment

The remainder of the paper describes the various aspects of
VB2 application processes, with an emphasis on the
dynamic model and on the interaction metaphors. First, we
will give an overview of the representation of dynamic
objects and of their dependencies. Next, we wi'l concentrate
on how the user interacts with dynamic models through
direct manipulation, gestures and virtual tools, and on how
the various interaction metaphors are realized in VB2. The
paper concludes with a discussion of the results obtained
and a view of future work.

3. DYNAMIC MODEL

In order to obtain animated and interactive behavior, the
system has to update its state in response to changes
initiated by sensors attached to asynchronous input devices
such as timers or trackers. The application can be viewed as
a network of interrelated objects whose behavior is
specified by the actions taken in response to changes in the
objects on which they depend.

Imperative object-oriented techniques offer appropriate
abstractions for representing application components and
sequencing relations between states, but little support in
specifying relationships between objects, since
relationships are not easily encapsulated within the objects
concerned [12][13][3]. The maintenance of these
relationships has to be delegated to a change propagation
mechanism responsible of updating dependent objects in
response to changes in the objects on which they depend.
The specification and maintenance of dependencies
between objects is one of the major problems when

building reactive applications, and system performance is
largely dependent on the cost of their evaluation. As an
example, Conner et al. reported that part of the complexity
in defining new widgets in UGA is due to limitations of
their dependency mechanism, and a large portion of CPU
time was spent in dependency evaluation [9].

Several techniques can be used to realize change
propagation in object-oriented architectures, including
using communication mechanisms such as MVC [21],
distributed event handling [37][35], one-way constraints
[15][40], multi-way constraints [4][22], or predefined
constraints on primitive objects [1][18][20]. Constraints,
being primarily declarative, free the programmer from the
arduous task of maintaining relationships by hand of
communication and event handling mechanisms. However,
the drawback of constraint satisfaction algorithms is their
limitation to specific domains or types of constraints. These
two factors also determine the time complexity of such
algorithms.

In order to provide a maintenance mechanism taht is
both general enough to allow the specification of general
dependencies between objects and efficient enough to be
used in highly responsive interactive systems, we decided
to model the various aspects of the system's state and
behavior using different primitive elements:

* active variables are used to store the state of the
system;

¢ domain-independent hierarchical constraints, to
declaratively represent long-lived multi-way relations
between active variables;

¢ daemons to react to variable changes for imperatively
sequencing between different system states.

In this way, imperative and declarative programming
techniques can be freely mixed to model each aspect of the
system with the most appropriate means. The system's
description becomes largely static, and its behavior
specified by the set of active constraints and daemons. A
central state manager is responsible for adding, removing,
and maintaining all active constraints using an efficient
local propagation algorithm, as well as managing the
system time and activating daemons.

In the following sections, we will give more details on
the different components and outline the state manager's
behavior.

3.1 Components of the Dynamic Model

3.1.1 Active Variables and Information Modules

Active variables are the primitive elements used to store the
system state. An active variable maintains its value and
keeps track of its state changes. Upon request, an active
variable can also maintain the history of its past values. A
variable's history can be accessed using the variable's local
time, which is incremented at each variable's state change,
or using the system's global time. By default, global time is
advanced at each constraint operation, but it is also possible
to specify sequences of constraint operations to be executed
within the same time slice by explicitly parenthesizing
them, much as in the programming language Kaleidoscope

[12][13]. This simple model makes it possible to elegantly
express time-dependent behavior by creating constraints or
daemons that refer to past values of active variables.

All VB2 objects are instances of classes in which
dynamically changing information is defined with active
variables related through hierarchical constraints. Grouping
active variables and constraints in classes permits the
definition of information modules that provide levels of
abstraction that can be composed to build more
sophisticated behavior. Modifying some active variables of
an information module is performed inside a transaction.
Transactions are used to group changes on active variables
of the same module. A module can register reaction objects
with a set of active variables for activation at the end of
transactions. Reactions are used to enforce object invariant
properties as well as to maintain relationships between sets
of active variables that cannot be expressed through regular
constraints. A typical use of reactions is to trigger
corrective actions that keep a variable's value within its
limits. The reaction code is imperative and may result in the
opening of new transactions on other modules as well as in
the invalidation of the value of modified variables. All the
operations performed during a transaction are considered as
occurring within the same time slice.

3.1.2 Hierarchical Constraints

Multi-way relations between active variables are specified
in VB2 through hierarchical constraints, introduced in
ThingLab II [4]. To support local propagation, constraint
objects are composed of a declarative part defining the type
of relation that has to be maintained and the set of
constrained variables, as well as of an imperative part, the
list of possible methods that could be selected by the
constraint solver to maintain the constraint.

Constraint methods are not limited to simple algebraic
expressions but can be general side-effect free procedures
that ensure the satisfaction of the constraint after their
execution by computing some of the constrained variables
as a function of the others. Algorithms such as inverse
geometric control of articulated chains, state machines, or
non-numerical relations such as maintaining textual
representations of various values, can be represented as
constraint methods. This kind of generality is essential for
constraints to be able to model all the various aspects of an
interactive application.

A priority level is associated with each constraint to
define the order in which constraints need to be satisfied in
case of conflicts. In this way, both required and preferred
constraints can be defined for the same active variable.
Constraints themselves are information modules, and their
priority level, as well as their boolean activation state are
represented by active variables. This makes constraints full-
fledged constrainable objects and allows the specification
of higher-order constraints that act on other constraints to
activate or deactivate them, as well as of meta-constraints
that change other constraint priorities in response to the
change of some variable.

3.1.3 Daemons

Daemons are the imperative portion of VB2. They are
objects which permit the definition of sequencing between

system states. Daemons register themselves with a set of
active variables and are activated each time their value
changes. The action taken by a daemon can be a procedure
of any complexity that may create new objects, perform
input/output operations, change active variables' values,
manipulate the constraint graph, or activate and deactivate
other daemons. The execution of a daemon's action is
sequential and each manipulation of the constraint graph
advances the global system time. Daemons are executed in
order of their activation time, which corresponds to
breadth-first traversal of the dependency graph. Daemons
can thus be used to perform discrete simulations, as it is

done in BolioT [41]. Examples of VB2's daemons are
inverse kinematics simulation for articulated chains and
scene rendering triggers.

3.1.4 Variable Paths

In VB2, daemons, reactions, and constraints locate the
variables through indirect paths. An indirect path is an
object able to compute the location of a variable as well as
the list of intermediary variables used to make its decision.
Active variables are viewed in this context as self-
referencing indirect paths using no intermediary variables.
When a path is not capable of locating the variable, it is
said to be broken.

A simple example of indirect paths is symbolic paths
which correspond to Garnet's pointer variables [38]. A
symbolic path is an indirect reference to a variable
described by the sequence of symbolic names of the active
variables that have to be traversed to reach the referenced
variable. Another example is alternative paths which
determine a variable by choosing the first successful path in
a sequence.

Most of the daemons and the constraints in our system
make use of indirect path definitions to locate their
variables. In fact, as stated by Vander Zanden et al. [38],
the use of indirect paths allows constraints to model a wide
array of dynamic application behavior, and promotes a
simpler, more effective style of programming than
conventional constraints.

3.2 Dependency Maintenance

A central state manager ensures the coherent evolution of
the system's state by keeping the constraint network up-to-
date, triggering the execution of reactions and daemons at
appropriate times, and maintaining indirect paths and
variables' history. The primitive operations that the state
manager performs are advancing the time, and activating or
deactivating constraints, reactions, and daemons. Assigning
a new value to a variable semantically corresponds to the
activation immediately followed by the deactivation of an
editing constraint that sets the value.

3.2.1 Activating and Deactivating Reactions and
Daemons

The first operation performed to activate a reaction or a
daemon is to communicate to the state manager all of its
paths' intermediary variables. If none of the paths were

()

f VB2's daemons correspond to Bolio's "constraint modules".

broken, the object is registered to the variables located by
its paths and is ready to react to the variables' changes. In
the case of broken paths, no registration is done with
variables, and the object stays dormant until all paths can
be successfully resolved (see section 3.2.3). Deactivation is
obtained by unregistering the object from all variables.

3.2.2 Activating and Deactivating Constraints

In order to be added to the constraint network, a constraint
has to first communicate to the state manager all of its
paths' intermediary variables. If one or more paths were
broken, the constraint is left unenforced and the algorithm
terminates. Otherwise the constraint is registered to its
variables and the state manager is then asked to enforce it.
Constraint deactivation is very similar to constraint
activation. In this case, the constraint is first unregistered
from all its variables. Then, all unenforced constraints that
could potentially be enforced after the constraint
deactivation are collected and the constraint manager is
asked to enforce them. These constraints are the ones
whose priority is less than or equal to the removed
constraint's priority and that have potential output variables
lying in the portion of the graph that was affected by the
removed constraint.

3.2.3 Enforcing Constraints

The algorithm that attempts to enforce a set of registered
unenforced constraints is the central component of the state
manager. This algorithm has to find the optimal constraint
graph, to update all changed variables, to handle
modifications in broken paths, and to collect all the
information needed to update the history of variables and to
execute reactions and daemons.

The constraint solver used in VB2 is based on the
SkyBlue [32] local propagation algorithm, a successor of
DeltaBlue [11] able to handle hierarchical constraints
composed of methods having multiple outputs. The SkyBlue
constraint satisfier is very efficient and domain-
independent, since the algorithm consists on performing
method selection on the basis of constraint priorities and
graph structure alone. Furthermore, the fact that variables'
values are not used by the constraint solver allows an
effective application of a lazy evaluation strategy for
variables. The main drawback of such local propagation
algorithms is their limitation to acyclical constraint graphs.
However, as noted by Maloney et al. [24], cyclical
constraint networks are seldom encountered in the
construction of user interfaces, and limiting the constraint
solver to graphs without cycles gives enough efficiency and
flexibility to create highly responsive complex interactive
systems.

The complete process of updating the constraint
network is described by the pseudo-code fragment of figure
3. Once SkyBlue has indicated which constraints must
select a new method to obtain an optimal network
incorporating the new constraints, the variables affected by
these changes are evaluated using the method that
previously determined their value and assigned to their new
method. Then, all variables downstream of changes are
traversed to mark them out-of-date and to collect all
dependent objects. At the end of the propagation, all

objects that used a now modified variable to compute
indirect deactivated and reactivated to reconnect them to
the correct variables, as in the user-interface toolkit Multi-
Garnet [33], and all transactions opened during propagation
are closed to execute the reactions. In practice, the planning
phase (corresponding to method selection) and the
propagation phase can be separated, so as to cache
constraint plans and to reuse them when still valid (for
example when repeatedly assigning to a variable that is
only used as input in a stable constraint network).

let T be the set of objects on which the state manager opens transactions
let H be the set of variables needing history update
let B be the set of objects with broken paths
let D be the queue of pending daemons
Find an optimal constraint graph:
Use SkyBlue to select new computing methods for a set of constraints
Update the method graph:
for each variable v that will change computing method do
if not v.is_evaluated then
v.computing_method.execute
for each variable v that has to change computing method do
v.computing_method:= computing method determined by SkyBlue
Propagate the changes:
for each variable v downstream of constraints with a new method do
if v.owner is not inside a transaction then
v.owner.open_transaction
add v.owner to T
v.owner.collect_reactions(v)
v.is_evaluated:= False
v.time:= current_time
if v keeps track of history then
addvtoH
append v.daemons to D
add all objects that used v for their paths to B
while B not empty do
remove o from B
o.deactivate
o.activate
while T not empty do
remove o from T
o.close_transaction

Figure 3. Constraint graph update

3.2.4 Advancing the Time

At the end of a time slice, all variables needing a history
update are evaluated and their value is stored in their
history list. Once done, the time is advanced, and the
pending daemons are extracted from the queue and
executed one after the other in the order of their priority.
This process continues until the queue becomes empty.
Each daemon activation may result in series of recursive
calls to the state manager caused by constraint operations,
propagation of values, or time increments.

3.3 Defining Complex Dynamic Objects

All the dynamic attributes of VB2's classes are represented
with active variables while their behavior is defined by an
internal constraint network. Active variables store the
objects' state, while internal constraints implement the
objects' behavior. Internal integrity constraints have
maximum priority to ensure that objects' invariant
properties are always satisfied. For example, we used this
approach for the design of VB2's modeling class cluster,
whose basic structure is presented in figure 5. Figure 4
shows the design notation used.

Classes Constraints and active variables
CLASS
|C0nstraint f """ d (out_variable)
T o sariabie)
SUBCLASS —— direct reference
""""" indirect reference
Instances Associations
—— Exactly one
—O Optional (zero or one)
—@ Many (zero or more)
Figure 4. Design notation
O
MATERIAL TRANSFORM_3D

o (DOF)

TEXTURE O\.
NODE_3D .i))

LIGHT CAMERA SHAPE O— (GEOMETRY)

Figure 5. Basic modeling class hierarchy.

The central component of this cluster is the NODE_3D
class, whose instances, related in a hierarchical fashion,
represent the transformation hierarchy. Position,
orientation, shearing and scaling of the reference frame are
packaged in TRANSFORM_3D objects. Degrees of
freedom can be attached to a node in order to define
additional constrained motion, as in articulated structures.
Instances of MATERIAL and TEXTURE are used to define
the behavior of physical objects with respect to light.
Placing instances of MATERIAL and TEXTURE in a node
allows instance inheritance through the hierarchy. Instances
of LIGHT represents light sources whose color and
intensity is defined by instances of MATERIAL and
TEXTURE. An instance of CAMERA represents a camera
viewing the scene. It maintains information about its
viewing frustrum and a possibly stereoscopic projection.
Instances of SHAPE encapsulate the concept of physical
objects having a geometry, material and texture in the
Cartesian space. More details on the class hierarchy of the
modeling and rendering clusters are presented in [17].

[NODE_3D \

(parent.material | ___ -/
default_node.material) Tocal marerial

(parent)

(parent.global_transf1 olobal Tohal -
default_node.global_transf) \MQM)
(dof transform | H(_local_transf)
default_node.dof.transform) =~~~ modeling_transf

dof

Figure 6. NODE_3D's simplified constraint network.

The use of indirect paths allows the declarative
specification of structured objects. Figure 6 illustrates the
use of symbolic and alternative paths in the definition of
NODE_3D's internal constraint network. The constraints
c_local and c_global maintains all transformations up-to-
date, and the constraint c_inherit realizes attribute
inheritance through the instance hierarchy.

4. DYNAMICS AND INTERACTION

Animated and interactive behavior can be thought of
together as the fundamental problem of dynamic graphics:
how to modify graphical output in response to input? Time-
varying behavior is obtained by mapping dynamically
changing values, representing data coming from input
devices or animation scripts, to variables in the virtual
world's model. The definition of this mapping is crucial for
interactive applications, because it defines the way users
communicate with the computer. Ideally interactive 3D
systems should allow users to interact with synthetic worlds
in the same way they interact with the real world, thus
making the interaction task more natural and reducing
training.

4.1 Mapping Sensor Measurements to Actions

In most typical interactive applications, users spend a large
part of their time entering information, and several types of
input devices, such as 3D mice and DataGloves, are used to
let them interact with the virtual world. Using these
devices, the user has to provide at high speed a complex
flow of information, and a mapping has to be devised
between the information coming from the sensors attached
to the devices and the actions in the virtual world. Most of
the time, this mapping is hard coded and directly dependent
on the physical structure of the device used (for example,
by associating different actions to the various mouse
buttons). This kind of behavior is obtained in VB2 by
attaching constraints directly relating the sensors' active
variables to variables in the dynamic model, as in the
example of figure 7. The beginning of the direct
manipulation of a model is determined by the activation of
a constraint between input sensor variables and some of the
active variables in the interface of the model. While the
interaction constraint remains active, the user can
manipulate the model through the provided metaphor. The
deactivation of the interaction constraint terminates the
direct manipulation. Second-order constraints that depend
on boolean state variables are generally used to trigger
activation and deactivation of interaction constraints.

PRGN "
/N

Figure 7. Graphical objects grabbed by user with
constraints

Such a direct mapping between the device and the dynamic
model is straightforward to choose for tasks where the
relations between the user's motions and the desired effect
in the virtual world is mostly physical, as in the example of

grabbing an object and moving it, but needs to be very
carefully thought out for tasks where user's motions are
intended to carry out a meaning. In this latter case,
hardwiring virtual world actions to specific sensor values
forces commitments that would risk reducing device
expressiveness and can make applications difficult to use
[10].

Adaptive pattern recognition can be used to overcome
these problems, by letting the definition of the mapping
between sensor measurements and actions in the virtual
world be more complex, and therefore increasing the
expressive power of the devices. Furthermore, the
possibility of specifying this mapping through examples
makes applications easier to adapt to the preferences of new
users, and thus simpler to use.

4.1.1 Hand Gestures

VB2 uses a gesture recognition system linked to the
DataGlove. Whole-hand input is emerging as a research
topic in itself, and some sort of posture or gesture
recognition is now being used in many virtual reality
systems (see Sturman [36] for a detailed overview of
whole-hand input). The gesture recognition system has to
classify movements and configurations of the hand in
different categories on the basis of previously seen
examples. Once the gesture is classified, parametric
information for that gesture can be extracted from the way
it was performed, and an action in the virtual world can be
executed. In this way, with a single gesture both categorical
and parametric information can be provided at the same
time in a natural way [30]. A visual and an audio feedback
on the type of gesture recognized and on the actions
executed are usually provided in VB2 applications to help
the user understand system's behavior.

VB2's gesture recognition is subdivided into two main
portions: posture recognition, and path recognition. The
posture recognition subsystem is continuously running and
is responsible for classifying the user's finger
configurations. Once a configuration has been recognized,
the hand data is accumulated as long as the hand remains in
the same posture. The history mechanism of active
variables is used to automatically perform this
accumulation. This data is then passed to the path
recognition subsystem to classify the path. A gesture is
therefore defined as the path of the hand while the hand
fingers remain stable in a recognized posture. The type of
gesture chosen is compatible with Buxton's suggestion
[6][7] of using physical tension as a natural criterion for
segmenting primitive interactions: the user, starting from a
relaxed state, begins a primitive interaction by tensing some
muscles and raising its state of attentiveness, performs the
interaction, and then relaxes the muscles. In our case, the
beginning of an interaction is indicated by positioning the
hand in a recognizable posture, and the end of the
interaction by relaxing the fingers. One of the main
advantages of this technique is that, since postures are
static, the learning process can be done interactively by
putting the hand in the right position and indicating when to
sample to the computer. Once postures are learnt, the paths
can be similarly learnt in an interactive way, using the
posture classifier to correctly segment the input when

generating the examples. Many types of classifiers could be
used for the learning and recognition task. In the current
implementation of VB2, feature vectors are extracted from
the raw sensor data, and multi-layer perceptron networks
[31] are used to approximate the functions that map these
vectors to their respective classes [16].

() (b) (©)

Figure 8a, 8b. Creating a cylinder by gestural input
Figure 8c. Grabbing the cylinder through posture
recognition

The gesture recognition system is a way to enhance the data
coming from the sensors with classification information
and thus provides an augmented interface to the device.
This is modeled in VB2 by explicitly representing these
higher-level views of devices as dynamic objects with a set
of active variables representing the augmented information,
the gesture-recognition system being represented as a
multiple-output constraint responsible for maintaining the
consistency between the device data and the high-level
view. Application objects can then bind constraints and
daemons to both low- and high-level active variables to
program their behavior. Figure 9 shows how this is realized
for the DataGlove. Other more abstract views of devices
may be provided by adding other constraint networks
linking abstract device objects to more device-dependent

views.

T posire
| | / | |
(flexion)—>| recognition |—>(last_gesture)

Examples

Figure 9. DataGlove device object and gestural interface

jas}
|%
+

i

4.2 Virtual Tools

The amount of information that can be controlled on a
three-dimensional object and the ways that could be used to
control it are enormous. Gestural input techniques and
direct manipulation on the objects themselves offer only
partial solutions to the interaction problem, because these
techniques imply that the user knows what can be
manipulated on an object and how to do it. The system can
guide the user to understand a model's behavior and
interaction metaphors by using mediator objects that
present a selective view of the model's information and

offer the interaction metaphor to control this information.
We call these objects virtual tools.

Figure 10. Examples of simple virtual tools

VB2's virtual tools are first class objects, like the widgets of
UGA [9], which encapsulate a visual appearance and a
behavior to control and display information about
application objects. The visual appearance of a tool must
provide information about its behavior and offer visual
semantic feedback to the user during manipulation.

Designing interaction tools is a difficult task, especially
in 3D where the number of degrees of freedom is much
larger than in 2D. Therefore, experimentation is necessary
to determine which tools are needed and how these tools
must be organized to build a powerful workspace. In VB2,
virtual tools are fully part of the synthetic environment. As
in the real world, the user configures its workspace by
selecting tools, positioning and orienting them in space, and
binding them to the models he intends to manipulate. When
the user binds a tool to a model, he initiates a bi-directional
information communication between these two objects
which conforms with the multiple-threaded style of man-
machine dialogue supported by VB2. Multiple tools may be
attached to a single model in order to simultaneously
manipulate different parts of the model's information, or the
same parts using multiple interaction metaphors.

The tool's behavior must ensure the consistency
between its visual appearance and the information about the
model being manipulated, as well as allow information
editing through a physical metaphor. In VB2, the tool's
behavior is defined as an internal constraint network, while
the information required to perform the manipulation is
represented by a set of active variables. The models that
can be manipulated by a tool are those whose external
interface matches that of the tool. The visual appearance is
described using a modeling hierarchy. In fact, most of our
tools are defined as articulated structures that can be
manipulated using inverse kinematics techniques, as tools
can often be associated with mechanical systems.

Information display

Information control

Figure 11. Model and virtual tool

4.2.1 Virtual Tool Protocol

The user declares the desire to manipulate an object with a
tool by binding a model to a tool. When a tool is bound, the
user can manipulate the model using it, until he decides to
unbind it.

bind

unbind

Figure 12. Tool's state transitions

Tools have a bound active variable that references the
manipulated model. Binding a model to a tool consists of
assigning to bound a reference to a manipulatable model,
while setting bound to a void reference will unbind the tool.

When binding a model to a tool, the tool must first
determine if it can manipulate the given model, identifying
on the model the set of public active variables requested to
activate its binding constraints. Once the binding
constraints are activated, the model is ready to be
manipulated. The binding constraints being generally bi-
directional, the tool is always forced to reflect the
information present in the model even if it is modified by
other objects.

When a tool is bound to a model, the user can
manipulate the model's information through a physical
metaphor. This iterative process composed of elementary
manipulations is started by the selection of some part of the
tool by the user, resulting in the activation of some
constraint such as, for example, a motion control constraint
between the 3D cursor and the selected part. User input
motion results in changes to the model's information by
propagation of device sensor values through the tool's
constraint network, until the user completes the
manipulation by deselecting the tool's part. Gestural input
techniques can be used to initiate and control a tool's
manipulations, for example by associating selection and
deselection operations to specific hand postures.

Unbinding a model from a tool detaches it from the
object it controls. The effect is to deactivate the binding
constraints in order to suppress dependencies between tool's
and model's active variables. Once the model is unbound,

further manipulation of the tool will have no effect on the
model.

All binding constraints reference the model's variables
using indirect paths through the tool's bound variable.
Second-order control is used to ensure simultaneous
activation and deactivation of all the tool's binding
constraints every time the value of the bound variable
changes.

(a). (b) (© (d)
Figure 13a. Model before manipulation
Figure 13b. A scale tool is made visible and bound to the
model
Figure 13c. The model is manipulated via the scale tool
Figure 13d. The scale tool is unbound and made invisible

4.2.2 A Simple Tool: Dr. Plane

Dr. Plane is a tool that manipulates a shape whose
geometry is a plane. In VB2, a plane geometry is a meshed
object defined on the plane XY and defined by two active
variables, its width and its height. The information required
by the tool to achieve manipulation is composed of three
variables: the width and height of the plane, used to control
its size, and its global transformation, used to ensure that
the tool's position and orientation reflect those of the
manipulated shape. The visual appearance of the tool is
defined as a set of four markers, two for the display and
manipulation of the width information and two for the
height. This redundancy is introduced so that one of the
markers be always accessible from any viewpoint. Each
marker is associated with a single translational degree of
freedom between the origin and the border of the plane.
Width control and display is achieved by placing equality
constraints between the value of the two degrees of
freedom associated with the width markers. The width
variable is constrained to be equal the value of one of the
degrees of freedom. Height manipulation is implemented
similarly.

When binding a model to Dr. Plane, three equality
constraints are started between the width variables, the
height variables, and the global transformation variables of
the shape and tool. Once the binding constraints are
activated, selection of a marker will start an inverse
kinematics constraint between the cursor and the marker,
which will modify the value of the degree of freedom and
therefore the width or height of the plane according to
user's motion. Similarly, modification of the plane's
parameters by program or by another tool will result into a

~

1
texture

(texture

¥

>
und.texture

I~

[@r MAP

= ey

Dr PLANE
bound
'HAPE_3D

..... >

(('global_transflj (global_transf)
1

=]
boupd.mapping \ /
T G]
mappre mapping T—>(widh) (widh)
L 5(height) (height)
r
global_transf) (shape_transf y— | . ¢
Q /5 NP > :
S I%I —
bound.global_transf J

()

(b)

Figure 15a. Dr. Map's simplified constraint network
Figure 15b. View of Dr. Map

motion of the degrees of freedom positioning the markers at
the correct new position. The constraint between the global
transformation variables ensures that the tool will always be
placed around the model it manipulates, even if the model
is manipulated by program or by other tools.

(Dr PLANE N

------------ >|%_|
'
(;lobal transz)

bound.geometry.width >|%_| ?Q%J
)2

j width
height

N %
B J

bound. geoniciryieigin (=] (=16 (dof 1)
Figure 14a. Dr. Plane's simplified constraint network

G

Figure 14b. View of Dr. Plane

4.2.3 Composition of Virtual Tools

Since virtual tools are first class dynamic objects in VB2,
they can be assembled into more complex tools much in the

same way simple tools are built on top of a modeling
hierarchy. The reuse of abstractions provided by this
solution is far more important than the more obvious reuse
of code.

An example of a composite tool is Dr. Map, which is a
virtual tool used to edit the texture mapping function of a
model by controlling the parallel projection of an image on
the surface of the manipulated model. The tool is defined as
a plane on top of which is mapped the texture, a small
arrow icon displaying the direction of projection. In order
to compute the mapping function to be applied to the
model, the tool needs to know the texture to be used, the
position and orientation of the model in space, and the
position and orientation of the tool in space. The textured
plane represents the image being mapped, and a Dr. Plane
tool allows manipulation of the plane in order to change the
aspect ratio of the texture's image. The constraint
c_mapping uses the model's and tool's transformations, the
texture, and the width and height values to maintain the
mapping function.

Similarly, the material editing tool is built out of a color
tool and the light tool is built out of a cone tool. By reusing
other tools we enforce consistency of the interface over the
entire system, allowing users to perceive rapidly the actions
they can perform. Building tools by composing the
behavior and appearance of simpler objects is relatively
easy in VB2: for example, Dr. Map tool was built and tested
by one person in less than a couple of hours. The fast
prototyping capabilities of the system are very important
for an architecture aimed at experimenting with 3D
interaction.

Figure 16. View of some other composite tools

5. IMPLEMENTATION AND RESULTS

VB2 is implemented in the object-oriented language Fiffel
[25] on Silicon Graphics workstations, and is currently
composed of over 500 classes. The 3D input devices
currently available are the Spaceball and the VPL
DataGlove. Audio feedback is provided through MIDI
output or by triggering playback of prerecorded sounds on a
NeXT Cube. Visual feedback is provided by rendering a
pair of stereo images on one graphics workstation
connected to a VPL Eyephone through a custom-made
image splitter. In the current implementation of VB2,
rendering is performed directly by the application process.

Complex applications composed of thousands of
variables and constraints can be run at interactive speed.
The performance analysis of full scale 3D applications
shows that the redraw speed of the hardware is the limiting
factor on interaction speed. Figure 17 presents the
constraint network statistics of the immersive application of
figure 2 at the moment corresponding to that frame. The
number of triangles composing the scene was 5905. The
frame rate of the application was 8 Hz, and the average
redraw time was 110 ms, leaving only 15 ms to perform the
other system's tasks.

Constraints 1677

Active constraints 1521 (91 % of constraints)

Indirect constraints 1120 (74 % of active constraints)
Variables 3514

Free variables 1110 (32 % of variables)

Constrained variables 2404 (68 % of variables)

Pure input variables 884 (37 % of constrained variables)
Pure output variables 445 (19 % of constrained variables)
Input/output variables 1075 (45 % of constrained variables)
Unevaluated variables 557 (37 % of out and in/out variables)

Figure 17. Constraint network statistics of an immersive
application

All the statistics presented in this section were obtained on
a Silicon Graphics Crimson VGX.

5. CONCLUSIONS AND FURTHER WORK

We have presented the VB2 architecture for the
construction of three-dimensional interactive applications.
A VB2 application is composed of a group of continuously
running processes that asynchronously produce and
consume IPC messages to perform their tasks. A central
application process manages the virtual world's model and
simulates its evolution in response to events coming from
the processes that encapsulate the input devices. Multiple
devices can be used to interact with the synthetic world

10

through various interaction paradigms. Interaction
techniques range from direct manipulation, to gestural input
and three-dimensional virtual tools. Adaptive pattern
recognition is used to increase input device expressiveness
by enhancing sensor data with classification information.
Tools, encapsulations of visual appearance and behavior,
present a selective view of the manipulated model's
information and offer the interaction metaphor to control it.
Since tools are first class objects, they can be assembled
into more complex tools, much in the same way simple
tools are built on top of a modeling hierarchy. New three-
dimensional tools are easily added to the system, and their
number is rapidly growing.

Hierarchical constraints, active variables, and daemons
are used to uniformly represent the system state and
behavior. The use of an incremental constraint solver based
on an enhancement of SkyBlue makes it possible to run, at
interactive speed, complex applications composed of
thousands of variables and constraints. The redraw time of
the hardware is still the limiting factor on interaction speed.

We believe that VB2 provides a good platform for
prototyping and integrating a large variety of three-
dimensional interaction metaphors to control all the
different aspects of synthetic environments. We are
currently extending the architecture with tools for
animation control in order to build a virtual reality
animation system.

ACKNOWLEDGMENTS

We would like to thank Michel Gangnet, Geoff Wyvill for
reviewing this paper, Gilles Van Ruymbeke and Marc
Ledin for building the VB2 image splitter, and Angelo
Mangili and Russell Turner for participation in the design
and implementation of an early version of VB2.

This research was partly sponsored by Le Fonds
National Suisse pour la Recherche Scientifique.

REFERENCES

[1]

(2]

[11]

Avesani P, Perini A, Ricci F (1990), COOL: An
Object System with Constraints. Proc. TOOLS 2.

Balaguer JF, Mangili A (1992), Virtual
Environments. In Thalmann D, Magnenat-Thalmann
N (Editors) New Trends in Animation and
Visualization, John Wiley and Sons: 91-105.

Blake E, Hoole Q (1992), Expressing Relationships
Between Objects: Problems and Solutions. Proc.
Third EUROGRAPHICS Workshop on Object-
Oriented Graphics: 159-162.

Borning A, Duisberg R, Freeman-Benson B, Kramer
A, Woolf M (1987), Constraint Hierarchies, Proc.
OOPSLA: 48-60.

Butterworth J., Davidson A., Hench S., Olano TM
(1992), 3DM: A Three Dimensional Modeler Using
a Head-Mounted Display. Proc. SIGGRAPH
Symposium on Interactive 3D Graphics: 135-138.

Buxton WAS (1986), Chunking and Phrasing and
the Design of Human-Computer Dialogues. In
Information Processing. North Holland. Elsevier
Science Publishers.

Buxton WAS (1990), A Three-state model of
Graphical Input. In Diaper D, Gilmore D, Cockton
G, Shackel B (Editors) Human-Computer
Interaction: Interact, Proceedings of the IFIP Third
International Conference on Human-Computer
Interaction, North-Holland, Oxford.

Card SK, Robertson GG, Mackinlay JD (1991), The
Information Visualizer, An Information Workspace.
Proc. SIGCHI: 181-188.

Conner DB, Snibbe SS, Herndon KP, Robbins DC,
Zeleznik RC, Van Dam A (1992), Three-
Dimensional Widgets. SIGGRAPH Symposium on
Interactive 3D Graphics: 183-188.

Fels SS, Hinton GE (1990), Building Adaptive
Interfaces with Neural Networks: The Glove-Talk
Pilot Study. In Diaper D, Gilmore D, Cockton G,
Shackel B (Editors) Human-Computer Interaction:
Interact, Proceedings of the IFIP Third
International Conference on Human-Computer
Interaction, North-Holland, Oxford: 683-687.

Freeman-Benson BM, Maloney A (1989), The
DeltaBlue Algorithm: An Incremental Constraint
Hierarchy Solver. In Proceedings of the Eighth
Annual IEEE International Phoenix Conference on
Computers and Communications, March.

Freeman-Benson BN (1990), Kaleidoscope: Mixing
Objects, Constraints, and Imperative Programming.
Proc. ECOOP/OOPSLA: 77-81.

Freeman-Benson BN, Borning A (1992), Integrating
Constraints with an Object-Oriented Language.
Proc. ECOOP: 268-286.

Gleicher M, Witkin A (1991), Snap Together
Mathematics. In Blake EH, Wisskirchen P (Editors)
Advances in Object-Oriented Graphics 1: Proc.

11

[16]

[17]

EUROGRAPHICS Workshop on Object-Oriented
Graphics: 21-34.

Giuse D (1992), KR: Constraint-Based Knowledge
Representation, Technical Report, Carnegie-Mellon
University.

Gobbetti E (1992), Reconnaissance de gestes pour
l'interaction, Technical Report, EPFL/DI-LIG.

Gobbetti E, Balaguer JF, Mangili A, Turner R
(1993), Building an Interactive 3D Animation
System. In Meyer B, Nerson JM (Editors) Object-
Oriented Applications, Prentice-Hall.

Helm R, Huyhn T, Marriot K, Vlissides J (1992), An
Object-Oriented Architecture for Constraint-Based
Graphical Editing. Proc. Third EUROGRAPHICS
Workshop on Object-Oriented Graphics: 1-22.

Herndon KP, Zeleznik RC, Robbins DC, Conner
DB, Snibbe SS and van Dam A (1992), Interactive
Shadows, Proc. UIST: 1-6.

Kass M (1992), CONDOR: Constraint-Based
Dataflow. Proc. SIGGRAPH: 321-330.

Krasner GE, Pope ST (1988), A Cookbook for
Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. Journal of Object-
Oriented Programming 1(3): 26-49.

Leler WM (1988), Constraint Programming
Languages: Their Specification and Generation.
Addison Wesley.

Mackinlay JD, Robertson GG, Card SK (1991), The
Perspective Wall: Detail and Context Smoothly
Integrated. Proc. SIGCHI: 173-179.

Maloney J, Borning A, Freeman-Benson BN (1989),
Constraint Technology for User Interface
Construction in ThingLab II. Proc. OOPSLA: 381-
396.

Meyer B (1992), Eiffel: The Language. Prentice-
Hall.

Myers BA (1989), User-Interface Tools:
Introduction and Survey. IEEE Software. 6(1): 15-
23.

NSF (1992), Research Directions in Virtual

Environments, NSF Invitational Workshop, UNC at
Chapel Hill, March 23-24: 154-177.

Robertson GG, Card KS, Mackinlay JD (1989), The
Cognitive Coprocessor Architecture for Interactive
User Interfaces. Proc. UIST: 10-18.

Robertson GG, Mackinlay JD, Card SK (1991) Cone
Trees: Animated 3D Visualizations of Hierarchical
Information. Proc. SIGCHI: 189-194.

Rubine DH (1991), The Automatic Recognition of
Gestures, PhD Thesis, CMU-CS-91-292, Carnegie
Mellon University.

Rumelhart DE, Hinton GE, Williams RJ (1986),
Learning Internal Representations by Error
Propagation. In Rumelhart DE, McClelland JL

(Editors) Parallel Distributed Processing, Vol. 1:
318-362.

Sannella M (1993), The SkyBlue Constraint Solver.
TR-92-07-02, Dept. of Computer Science,
University of Washington.

Sannella M, Borning A (1992), Multi-Garnet:
Integrating Multi-way Constraints with Garnet. TR-
92-07-01, Dept. of Computer Science, University of
Washington.

Shaw C, Liang J, Green M, Sun Y (1992), The
Decoupled Simulation Model for Virtual Reality
Systems. Proc. SIGCHI: 321-328.

Strauss PS, Carey R (1992), An Object-Oriented 3D
Graphics Toolkit. Proc. SIGGRAPH: 341-347.

Sturman DJ (1991), Whole-Hand Input, PhD Thesis,
MIT.

Turner R, Gobbetti E., Balaguer JF, Mangili A,
Thalmann D, Magnenat-Thalmann N (1990), An
Object-oriented Methodology with Dynamic
Variables for Animation and Scientific
Visualization. Proc. CGI: 317-328.

Vander Zanden B, Myers BA, Giuse D, Szeleky P
(1991), The Importance of Pointer Variables in
Constraint Models. Proc. UIST: 155-164.

Weiner D, Ganapathy SK (1989), A Synthetic
Visual Environment with Hand Gesturing and Voice
Input. Proc. SIGCHI: 235-240.

Zeleznik RC, Conner DB, Wlocka MM, Aliaga DG,
Wang NT, Hubbard PM, Knepp B, Kaufman H,
Hughes JF, van Dam A (1991), An Object-Oriented
Framework for the Integration of Interactive
Animation Techniques. Proc. SSIGGRAPH: 105-112.

Zeltzer D, Pieper S, Sturman DJ (1989), An
Integrated Graphical Simulation Platform, Proc.
Graphics Interface: 266-274.

12

