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Abstract Despite the ability of current GPU processors to
treat heavy parallel computation tasks, its use for solving
medical image segmentation problems is still not fully ex-
ploited and remains challenging. A lot of difficulties may
arise related to, for example, the different image modalities,
noise and artifacts of source images, or the shape and ap-
pearance variability of the structures to segment. Motivated
by practical problems of image segmentation in the medi-
cal field, we present in this paper a GPU framework based
on explicit discrete deformable models, implemented over
the NVidia CUDA architecture, aimed for the segmentation
of volumetric images. The framework supports the segmen-
tation in parallel of different volumetric structures as well
as interaction during the segmentation process and real-time
visualization of the intermediate results. Promising results
in terms of accuracy and speed on a real segmentation ex-
periment have demonstrated the usability of the system.

Keywords Simulation and Modeling, GPU Programming,
Segmentation

1 Introduction

Medical image segmentation is nowadays at the core of med-
ical image analysis and supports e.g. computer-aided diag-
nosis, surgical planning, intra-operative guidance or post-
operative assessment. Segmentation is also present in com-
puter vision applications such as tracking and recognition.
Furthermore, segmentation attracts the interest of the Com-
puter Graphics community, by supporting e.g. visualization
of medical datasets. Although research has been very active
these last decades, segmentation is still a very challenging
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problem. The large variety of image modalities with asso-
ciated artifacts, the variability of the structures to segment
and the strong demanded requirements (e.g., high accuracy,
automation) seriously hinder the design of efficient segmen-
tation methods. In this context, the use of interactive and
fast segmentation approaches can expedite tedious parame-
ter tuning and reduce the limitations of segmentation meth-
ods since interactive control is available [22].

The rapid development of Graphics Processing Units (GPU)
was followed by the porting and adaptation of segmenta-
tion approaches to the GPU architectures. These methods
strongly contributed to the fostering of fast interactive seg-
mentation. Initially, GPU approaches stemmed from the idea
to speed-up time consuming CPU segmentation approaches
and to provide an interactive visualization of the segmen-
tation evolution. GPU programming became then easier and
more efficient yielding the implementation of more advanced
segmentation approaches.

We present in this paper a GPU framework, implemented
using the NVidia’s Compute Unified Device Architecture
(CUDA) [21], aimed for the segmentation of volumetric im-
ages based on discrete physically-based deformable mod-
els. The framework exploits parallelism and performs com-
pletely in the GPU being capable of managing real-time in-
teractive segmentation of multiple structures. To our best
knowledge, such a GPU-based 3D segmentation framework
based on discrete deformable models has not been reported
in the previous literature.

The paper is structured as follows. Related work on GPU-
based segmentation is reviewed in Sec. 2, while Sec. 3 de-
scribes our segmentation algorithm. In Sec. 4 we describe
the most important features of our GPU framework imple-
mentation. We present our results in Sec. 5 which are ana-
lyzed and discussed in Sec. 6. Section 7 concludes this paper
with possible future improvements of our GPU-based imple-
mentation.
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2 Related work on GPU-based segmentation

In general, segmentation approaches can be classified as low-
and high-level approaches. Low-level approaches directly
work on voxel information and are usually burdened by the
intensive manipulation of volumetric image data. As a re-
sult, these methods naturally appeared at first as good can-
didates for GPU implementations. Indeed, images are reg-
ular lattices on which read access can be very efficient due
to the optimized GPU texture management (e.g., caching).
We can find in the literature GPU-based implementations of
the watershed [34] and region growing methods [32], along
with Markov random fields [43] and graph cuts approaches
[24, 17]. Image registration also turned out to strongly ben-
efit from parallel computing, giving birth to a variety of
implementations based on mutual information [37], sum of
squared differences [14], demons [31, 20], viscous-fluid reg-
ularization [23] or regularized gradient flow [35].

Higher-level approaches, such as deformable models, we-
re also ported to GPU architectures by considering implicit
deformable models as image lattices (e.g., a 2D curve is im-
plicitly represented as the iso-value of a field encoded as
a 2D image). Level-sets approaches [16, 2] became particu-
larly popular in the GPU-segmentation community as signif-
icant speed-ups and interactive rendering were made avail-
able. Geodesic active contours [1], which are a combination
of traditional active contours (snakes) [12] and level-sets
evolution, were efficiently implemented in GPU [40, 26] by
using the total variation formulation, mostly to quickly seg-
ment structures by foreground and background separation in
2D images.

Nevertheless, little work has been made in implementing
explicit discrete deformable models in GPU for segmenta-
tion purposes. That is unfortunate since discrete deformable
models offer several advantages. Indeed, they provide an in-
tuitive and more appropriate control of the shape deforma-
tions compared to implicit models. Furthermore, they are
much more robust against image artifacts than most low-
level approaches thanks to the use of shape regularization.
In GPU, methods for implementing active contours based
on gradient flow have been proposed [13, 10], but they were
limited to the case of 2D images. On the other hand, many
works exploited physically-based surface or volumetric de-
formable models in GPU in other application domains, such
as spring mass systems [19, 6], cloth simulation [25], volu-
metric mesh deformation [36] or Finite Element Modeling
[9].

In this paper, we propose hence a flexible GPU frame-
work for fully interactive parallel segmentation of multiple
volumetric objects based on discrete deformable models. We
demonstrate the interactivity of our framework implement-
ing several image-based and shape preserving forces com-

plemented with local control-point forces which demonstrate
the interaction capabilities of the system.

3 Segmentation algorithm

Our segmentation approach is based on our previous work
on dynamic deformable models [27, 7]. The general prin-
ciple is to consider mesh vertices as a set of lumped mass
particles with a state (position and velocity) subjected to in-
ternal and external forces. The concepts are hence similar
to any deformable model-based simulation with the speci-
ficity here that images are used to drive model deformation
for segmentation purpose. As a result, we might hereon refer
the segmentation to as the simulation and vice versa.

3.1 Mesh representation

A mesh j is composed of M j vertices and represented as a
2-simplex mesh [5]. A 2-simplex mesh is characterized by
the property that a vertex has exactly three neighbors (See
Fig. 1 for an example of 2-simplex mesh with a possible tri-
angular tessellation). This representation is popular in im-
age segmentation as local descriptors can be easily com-
puted, such as the curvature. Furthermore, three local pa-
rameters uniquely define vertex positions from their three
neighbors. These three parameters are independent, invari-
ant under similarity transform and are denoted as simplex
parameters. We also define for any point an elevation which
is the signed distance between the point and its projection
on the triangle formed by the 3 neighbors.
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(b) tessellation 2-Simplex mesh

Fig. 1 (a) 2-Simplex mesh representation: this example shows a 2-
simplex mesh where the cell (i.e., a face) C1 is composed of 6 points
with indices {1,2,3,4,5,6}; (b) depicts a possible triangular tessella-
tion of the mesh which is built by connecting the points to the center
of the corresponding cells (red discs).

3.2 Internal and external forces

Internal forces are necessary to regulate the segmentation
while external forces effectively drive it towards the correct
result, as detailed in the following.
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3.2.1 Internal smoothing and shape prior forces

Internal forces ensure that the model evolution is perturbed
as little as possible by image artifacts or possible numeri-
cal instabilities. Assumptions are thus made on the model
smoothness and shape. A smoothness force is expressed by
a weighted Laplacian smoothing coupled with an additional
term accounting for the average local elevation of neighbor-
ing vertices. For each point, the Laplacian smoothing at-
tracts vertices towards the barycenter of its neighbors. In
case of weighted barycenter, weights are proportional to the
area “covered” by a vertex, which is defined as the sum of
the surfaces of all triangles sharing this point according to
the presented tessellation (Fig. 1(b)). The local elevation
term minimizes the shrinking effect recurrent with Lapla-
cian smoothing.

Shape constraints are enforced by creating a force which
aims to move the vertices to have a local description iden-
tical to a predefined one. This is simply done by using the
simplex mesh parameters of a reference “average” shape [5].
This reference shape is constructed once with interactive
approaches [28] that yield models with appropriate charac-
teristics, such as smoothness and quasi-regularity of mesh
faces.

The manual creation of the reference shape may be seen
as a drawback with respect to methods using a small “seed”
primitive (e.g., tethraedron in [33]) which is e.g. placed in
the structure interior and is progressively inflated until the
structure boundaries are reached. These approaches avoid
indeed the creation of the reference model. However, as we
will see in experimental Sec. 5, shape priors expressed by
the simplex parameters of the reference model are essen-
tial to regulate the segmentation in presence of image arti-
facts. In fact, these artifacts mislead the evolution of approa-
ches which ignore shape priors and are exclusively based on
smoothness constraints (e.g., active contours [12], geodesic
active contours [1], discrete deformable models [33]). Fur-
thermore, it is important to understand that simplex parame-
ters are invariant under similarity transform and hence some
flexibility is given to the shape deformations. This implies
that the structure to segment does not necessarily need to be
very similar to the reference mesh. Figure 2 illustrates the
use of these internal forces to denoise two bone shapes and
recover their original aspect.

3.2.2 External image forces

Image forces are based on the minimization of image-based
energies. Along the normal n of each mesh point x, an im-
age energy E is computed at various positions {y1, . . . ,ym}
regularly sampled. A force is then built to attract the vertex
towards the optimal target position y∗ with the lowest im-
age energy. We use two types of image energies. A first en-

Fig. 2 Shape denoising example. From left to right: perturbed models,
result with shape prior, and with smoothing.

ergy aims at aligning the gradient ∇I(x) with the normal n:
Eg(x) = ε∇I(x).n, where ε = 1 when the expected gradient
direction should be in the opposite direction of the normal
and ε =−1 otherwise.

Another energy E ip can be computed by intensity pro-
file (IP) similarity maximization [5, 7]. An IP is a vector
of intensity values collected in a neighborhood swept along
the normal direction during the search. At each neighbor-
hood position, the similarity between the current neighbor-
hood and a predefined reference IP is computed. The posi-
tion which returns the highest similarity is used as the target
position y∗. The computation of the reference IP is com-
puted once from a training image whose characteristics are
alike but not necessarily identical to those of the image to
be segmented (i.e., similar imaging protocol). In fact, we
used the Normalized Cross Correlation (NCC) [11] as the
similarity measure between IPs. NCC is quite robust to lin-
ear image intensity variations, which confers flexibility in
choosing the imaging protocol. In conclusion, this IP-based
force exploits the appearance of the structure of interest and
can thus assist the segmentation of structures with inhomo-
geneous intensities as demonstrated in the experimental Sec.
5.

3.3 Deformable-model evolution

The evolution of the model is based on the resolution of a
discrete differential equations system, which is the result of
the Newtonian law of motion applied to the particle system.
Given the forces and the particle state, the numerical inte-
gration yields a new state of the particle. Various approaches
are available for integration (e.g, Explicit/Implicit Euler) de-
pending on stability, accuracy and technical implementation
constraints. Choices relative to our implementation of the
numerical integration in GPU will be discussed in Sec. 4.3.
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4 GPU Framework architecture

Our GPU segmentation framework is implemented on top of
NVidia CUDA. We suggest interested readers non-familiar
with CUDA architecture to refer to the corresponding pro-
gramming guide [21]. The framework delivers interactive
performance, real-time rendering, while being flexible enough
to support new forces or even new segmentation paradigms.
The framework architecture is divided according to the ma-
jor stages involved in a simulation step (see Fig. 3). In the
following, each stage is described along with the designed
data access layer for storage and retrieval purposes of all the
basic simplex-mesh data.

Forces Computation Integration Solving Meshes Update

Visualization

Simulation

Interaction

Fig. 3 GPU segmentation: In a simulation step, forces are computed
for each particle (Sec. 4.2), whose state is updated in the numerical
integration (Sec. 4.3), before updating the parameters of the meshes
(Sec. 4.1). In parallel and asynchronously, meshes and image data
are rendered (Sec. 4.4) while user can interact with the segmentation
(Sec. 4.5).

4.1 Simplex mesh data access layer

We have designed a simple data access layer for storage
and retrieval of the simplex mesh data (see Fig. 4). In our
GPU segmentation framework, meshes are encoded as ver-
tices within one unique array. This encoding strategy has the
advantage of being very compact in terms of space require-
ments and supports a straightforward distribution of the data
for parallel processing within the GPU. We store position
and normal for each vertex using a CUDA one-dimensional
texture sampler and bound to linear memory as we need to
use this attributes in both, read and write modes. The same
strategy is used for other local parameters like the mass or
elevation of a particle with respect to its neighbors. Besides,
we store other (mostly) invariant per-vertex attributes using
2D samplers mapped to cudaArrays, because in that way
(i) bigger amounts of memory in the GPU can be allocated
and (ii) fast cached reads are available. In order to access
the desired data we just need to compute the offset in each
dimension of a 2D texture. Examples of per vertex attributes
stored using 2D textures are the neighbor indices and the

indices of the 3 neighbor cells sharing the same vertex. Fi-
nally, we store some per-cell information like the indices of
the vertices of each cell and the number of vertices forming
a cell, which is not necessarily the same for all the cells.

The volumetric image information is stored in a raw un-
compressed format by using 3D textures. This is to take ad-
vantage of spatial locality to provide hence a fast access for
read operations, which are the most intensive in terms of
access time. Moreover, 3D textures provide a cheap trilin-
ear interpolation, which is intensively used by image-related
operations. In this first implementation of the framework,
moderate-size volume data sets are handled, so no special
compression or multi-resolution strategies are applied but
they should be easily integrated. We refer interested readers
to recent publications [8] and [4] which tackled the problem
of massive volume management by organizing the volume
dataset into a hierarchical octree based data structure. After
each numerical integration, all meshes are processed in par-
allel at once by calling a CUDA kernel responsible of the
update for each point, normal, area and elevation. Cell cen-
ters are also updated if necessary since some forces (e.g.,
smoothing and shape prior forces) or the visualization may
need them. Writing operations are then performed using data
structures in global memory space, as cudaArrays and tex-
ture memory writing operations are not yet supported by
current versions of CUDA.

4.2 Forces computation

Once the information of all meshes has been updated, the
computation of the available set of forces is ready to start.
The computation of the forces in our framework is distributed
in parallel assigning each particle to a GPU thread. Forces
can be activated and disactivated for each mesh registered in
the framework. For this purpose we maintain in the GPU a
simplex-mesh activation register storing a collection of val-
ues α

f
i , being 0≤ α

f
i ≤ 1 the contribution of the force f to

the i-th mesh. Our framework supports changes on this state
at any moment during the runtime of the segmentation al-
gorithm. The different forces are computed in a sequential
order to avoid asynchronous updates of the resultant force.
This behavior is directly related to the availability of atomic
operations, only supported by NVIDIA graphics cards with
CUDA compute capability above 1.0. In any case, forces
computation time is quite heterogeneous and so variable. In
particular when one force is much more expensive than the
others, we can assume that the total time of computation in
parallel for all the forces is almost equivalent to the time of
the most expensive force in terms of computation time (See
forces computation percentages in Sec. 6).

Most of the forces were implemented without any spe-
cial GPU optimizations as the chosen data access layer (e.g.,
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(a) per vertex GPU arrays (b) per cell GPU arrays (c) vertex/cell neighbours GPU arrays

Fig. 4 GPU arrays. (a) Per vertex gpu arrays which are shared by all meshes in the system; (b) Cell description held in GPU: e.g. cell C j is
composed of vertices {V1,V2,V3,V4,V5,V6} and the number of vertices (6) is stored in a separated GPU array; (c) Neighbor information per vertex
on the GPU: e.g. vertex Vi has 3 neighbors {V4,V8,V2}. Similarly, cell C j has neighbor cells {C1,C2,C3}.

texture samplers) and parallelism strategies (e.g. simultane-
ous processing of all vertices with one kernel) were already
carefully chosen. However, ‘interactive’ forces required more
attention and are detailed in Sec. 4.5.

4.3 Numerical integration

Once the resultant force per particle is computed, we need
to update the new particles state by solving a set of discrete
differential equations. An appropriate integration technique
is selected to reach a compromise between two conflicting
criteria:

– Simulation criterion: since force evaluations are time-
consuming, the integration technique should minimize
extra simulation timesteps, requiring the minimum pos-
sible force evaluations per step.

– Interaction criterion: since the selected solution will be
used within an interactive framework, the time we have
for performing the simulation steps as well as for other
GPU computations is severely limited.

While implicit based techniques are generally more sta-
ble and permit bigger stepsizes, the complexity of the tech-
nique in terms of computation time and programming com-
plexity is quite high. The solution generally requires to in-
vert a considerable size matrix, which dimensions depend
directly on the number of forces and on the total number of
particles involved in the system. Although some approaches,
e.g. based on the conjugate gradient, avoid the effective in-
version of the system, they rely on iterative procedures re-
quiring a considerable effort to be successfully implemented
in the GPU.

Then, since solving the integration in the CPU with an
explicit method was shown to require a small stepsize in or-
der to converge, we chose to move the calculations to the
GPU in order to decrease the stepsize and reach better in-
teractive frame rates. Among the explicit techniques imple-
mented in the GPU, we have obtained the best results with a

Verlet-based approach [42]. Our method is derived by writ-
ing two Taylor expansions of the position vector x(t) in dif-
ferent time directions. Adding these two expansions we ob-
tain

x(t +∆ t) = 2x(t)−x(t−∆ t)+a(t)∆ t2 +O(∆ t4)

where substituting v(t) = x(t)−x(t−∆ t)
∆ t gives us a position

vector equation depending just on the previous position, the
velocity and the timestep

x(t +∆ t) = x(t)+v(t)∆ t +a(t)∆ t2

Finally, the Verlet equations can also be modified to create
a very simple damping effect, consisting on a value γ , being
0 ≤ γ ≤ 1, and representing the fraction of the velocity per
update that is lost to friction. The final resulting equation
used in our framework is:

x(t +∆ t) = x(t)+(1− γ)v(t)∆ t +a(t)∆ t2 (1)

This equation is implemented in a CUDA kernel and is com-
puted in parallel for each particle of the simplex meshes. The
final result is written in the linear memory position array and
then rebound to the texture sampler.

4.4 Visualization

To ensure real-time interaction, we established a balance be-
tween simulation and visualization tasks by fixing the maxi-
mum amount of time that the simulation can spend. As long
as we are within the bounds of this time interval, one or
more segmentation iterations are performed. Straight after-
wards the simplex meshes are rendered employing the Ver-
tex Buffer Object (VBO) OpenGL extension, in order to
minimize the data transfers between GPU and CPU.

The sequence of operations needed for updating and dis-
playing the simplex-mesh data in the VBO are shown in
Fig. 5. First, all the VBO attributes array are mapped in the
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Fig. 5 Interactive Visualization Pipeline. In order to synchronize inter-
action and visualization while performing an interactive segmentation,
we employ a timer to decide how many simulation steps we would like
to perform each new frame. For the rendering itself, we employ the
OpenGL VBO extension and the glDrawElements call.

GPU linear memory. Next, we perform a series of simulation
iterations and write the partial result in the memory used by
the VBO. Meshes are then updated in parallel before the
VBO is unmapped. All meshes are then rendered by (i) cal-
culating the offset in the index array, (ii) binding all VBO at-
tribute arrays in OpenGL, (iii) setting all particular simplex
mesh parameters (e.g. color or clipping planes) and finally
calling the glDrawElements OpenGL command with the
current index offset and bounded arrays as parameters. Fi-
nally, we restore the default OpenGL state by unbinding the
vertex and index arrays. In addition, we display other useful
information such as standard axial, sagittal or coronal slices
to explore the volumetric image. To render these slices, the
Pixel Buffer Object (PBO) OpenGL extension was used as it
supports interoperability with the CUDA architecture. More
specifically, a PBO buffer is declared and the 2D slice of our
interest is written by using a kernel. Finally, the PBO is used
to define a 2D texture which is rendered on a simple quad.

4.5 Interaction

All the parameters affecting the segmentation (e.g., force
contribution αi, timestep) can be dynamically changed, pro-
viding a first level of interactivity. Such actions are how-
ever insufficient to accurately interact with the segmenta-
tion, and “pictorial-input” is rather preferred [38, 22]. We
implemented an interaction based on attraction points (AP).
For each mesh j, different attraction points can be positioned
in the 3D space by clicking on rendered slices. Given Ck

j the
k-th AP associated with mesh j, we find the closest mesh
point P0

j to Ck
j and its p-order neighbor points Pi

j,∀i∈ [1,Np]

(e.g., a 2-order neighborhood is composed of the neighbors
of neighbors of P0

j as exemplified in Fig. 6(a)), and compute

the following weighted attraction forces fa applied on each
vertex Pi

j:

∀i ∈ [0,Np], fa
Pi

j
=

wi(Ck
j −P0

j )

∑k∈[0,Np] wk
(2)

wi = α
a
j /

∥∥∥Ck
j −Pi

j

∥∥∥ (3)

In practice, various N-tuples of APs {Ck
1 , . . . ,C

k
N} are se-

quentially processed (Fig. 6(b)), where N denotes the num-
ber of meshes. Note that this N-tuple can actually have less
than N elements as not all meshes have the same number of
APs. Given a N-tuple of APs, the closest point P0

j is found
on each mesh j by (i) running in parallel a kernel on each
mesh point xi

j that computes the squared Euclidean distance
between Ck

j and xi
j, and by (ii) applying a parallel reduction

on the array of squared distances to get for each mesh j the
index of the closest mesh point P0

j . Since for each mesh j of
M j points, M j CUDA threads will access the same memory
location containing the coordinates of the AP Ck

j , this infor-
mation is initially loaded into shared memory to speed-up
read-accesses. Furthermore, the possibility to interactively
select, move or delete each AP is provided to users by intu-
itive point and grab actions, leading to a real-time control of
mesh deformation.

AP

AP

(a) Interactive mesh deformation
by APs
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(b) APs processing

Fig. 6 Interaction by attraction points: (a) a point and its 2-order neigh-
borhood (small discs) of a spherical mesh are attracted by an attraction
point (AP) yielding the mesh deformation. (b) In a sequential manner, a
N-tuple of APs is processed in parallel to find the points on each mesh
to be attracted.

5 Experimental results

5.1 MRI bone segmentation

Our GPU segmentation framework was evaluated under real
conditions for the segmentation of the hip joint bones, i.e. fe-
mur and hip bone, from Magnetic Resonance Imaging (MRI)
(Figs. 8(a)-8(d)). MRI bone segmentation is generally very
challenging due to (Fig. 7(a)):
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1. Inhomogeneous imaged bone intensity caused by differ-
ent cortical and trabecular bone tissues [18, 30],

2. A strong proximity of bones in the joint area with un-
clear and diffused boundaries [33, 30]

3. A possible low image resolution (as in our test images)
causing a large partial volume effect.

The first issue affects segmentation approaches such as
thresholding, edge detection, level-sets and region growing
as they are usually unable to segment a structure with a very
inhomogeneous intensity. This issue is addressed by exploit-
ing a prior knowledge of the appearance of the structures to
segment, which we consider with our IP-based image force.
Similarly, the second and third pitfalls of MRI images also
hinder these segmentation approaches as they might diffuse
the segmentation evolution across the close and fuzzy bone
boundaries (i.e. “leaking” phenomenon). Once again, we ef-
ficiently tackle this problem by using a shape prior-based
force which regulates the segmentation evolution and re-
duces its sensitivity to image artifacts.

5.2 Setup

We acquired 28 MRI images of female subjects in the supine
position with a 1.5T Philips Medical Systems MRI. The ac-
quisition protocol was: Axial 3D T1, TR/TE= 4.15/1.69ms,
FOV/Matrix= 35cm,256×256, resolution= 1.367×1.367×
5 mm3. The field of view fully covered both right and left hip
bones and femurs.

For each bone side (right/left) and type (femur/hip bone),
a low resolution simplex mesh was created and initialized in
the image by using an interpolation technique [7]. This ini-
tialization technique only required the placement of 7 land-
marks per bone in the image, which was performed in less
than 5 min. A coarse-to-fine strategy was then adopted. All
meshes at a given resolution level were simultaneously de-
formed for a fixed number of iterations. Afterward, the res-
olution of the meshes was increased and a new simulation
was carried out again. The process was repeated until the
finest resolution was reached.

We used three different resolutions per bone and adopted,
based on empirical tests, an iteration schedule consisting on
300 iterations for the lowest resolution, 100 for the medium
resolution and 20 for the highest resolution. Obviously this
schedule must be tuned in order according to the number of
levels-of-detail (LOD) used in the multi-resolution scheme.
In practice, each particle was attributed a mass proportional
to its coverage area (Sec. 3.2) multiplied by an arbitrary den-
sity. Due to the construction process of the reference mesh,
faces were quasi regular and vertices were uniformly dis-
tributed over the model surface. As a result, particle mass
was almost the same for all particles. Profile size, search
depth and weights for image forces were chosen based on

our previous works [27, 7]. In particular, we use intensity
profiles with 25 and 5 samples spaced by 0.5 mm in the mesh
interior and exterior, respectively. Segmentation parameters
were kept identical throughout all trials. Furthermore, gold-
standard segmentations were produced based on supervised
segmentations performed by an experienced researcher un-
der the guidance of a radiologist. The error metric to assess
the segmentation accuracy was the average symmetric sur-
face distance (ASSD) [41] measured in mm.

5.3 Results

coarse medium fine
ASSDGPU (mm) 1.93±0.50 1.66±0.43 1.62±0.44
ASSDCPU (mm) 2.07±0.70 1.60±0.63 1.58±0.63
timeGPU (s) 1.85 (0.006) 1.27 (0.012) 0.42 (0.021)
timeCPU (s) 44.9 (0.15) 57.2 (0.57) 29.9 (1.49)
#iterations 300 100 20
#vertices 2656 10624 42496

Table 1 MRI Hip joint bone segmentation results for each mesh reso-
lution level: accuracy error (ASSD) for GPU and CPU; times for GPU
and CPU with time/iteration in parenthesis; #iterations is the number
of iterations and #vertices the total number of vertices for all meshes

We have compared the accuracy and speed of our GPU-
framework against our CPU-based implementation of dis-
crete deformable models [27, 7], without collision detec-
tion and any advanced shape priors (e.g., statistical shape
model) forces in order to make comparison more fair for
the GPU version (See Table 1). Experiments were run on
a single-core 3.40 GHz PC equipped with an NVidia GTX
8800 graphics board with 768 Mb TRAM. Computation times
listed in Table 1 do not account for loading, saving and ren-
dering of the meshes.

The GPU approach was consistently about 25−70× fas-
ter than the CPU version to execute a single time step. As
expected, this difference became more significant when the
number of vertices increased, as e.g. the CPU needed 1.49
s to process 42K vertices while 21 ms were only necessary
for the GPU implementation. These figures also show that
the parallelization is not fully performed at the vertex level
as an increase of the vertices yielded a sensitive increase
of the time spent to perform an iteration. Nevertheless, this
time did not scale linearly with the number of vertices (it
seems to double when the number of vertices is quadrupled)
which highlights the presence and good performance of the
underlying parallelization. Most importantly, the update fre-
quencies of the GPU approach were consistently above the
minimum 10Hz of refresh rates required for interactivity.

In terms of accuracy, both CPU and GPU approaches re-
turned similar results. Indeed, the final ASSD error of the
CPU segmentation was 1.58± 0.63 against 1.62± 0.44 for
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(a) (b) (c) (d)

Fig. 7 Correction of bone segmentation by attraction points (APs). a)
The hip joint area is challenging to segment due to a strong difference
in intensity between cortical (bone exterior, white arrow) and trabecu-
lar (bone interior, gray arrow) bone. Furthermore, hip bone and femur
are very close and may present fuzzy boundaries. b) Result without
APs where the red arrow points at mesh inter-penetrations. c) Cor-
rected result with APs, which are displayed as d) small spheres in a
3d view with a transparent hip bone.

the GPU implementation. Similarly, errors between both ap-
proaches were very close at the end of each iteration se-
quence which exploited a given mesh resolution. These sim-
ilar accuracy results highlight the correct implementation of
the segmentation into the GPU formalism.

A visual inspection (Fig. 8) confirmed a satisfactory seg-
mentation in most bony regions. Nevertheless, the current
GPU approach suffered from mesh inter-penetrations ob-
served in the joint area (Fig. 7(b)). However, thanks to the
new possibilities of higher update frequencies of the GPU
approach, attraction points could be easily added in real-
time to correct bad segmentation results as shown in Fig. 7(c),
where inter-penetrations were avoided improving the ASSD
about 9% (1.52 to 1.40 mm) for this particular subject.

6 Discussion

In this Section, we discuss our GPU implementation with
respect to key aspects of image segmentation. Comments on
possible improvements of the framework through extensions
are also provided.

6.1 Accuracy and robustness

In terms of accuracy, both CPU and GPU approaches re-
turned similar results. Small discrepancies between both ap-
proaches can be explained by the use of single precision
floating-point in the GPU approach, compared to double pre-
cision for the CPU segmentation. Furthermore, the image
interpolation performed by the texture sampler may slightly
differ from a CPU calculation. These minor differences can
yield after several iterations to minor variations observed in
the results.

Regardless the chosen approach, the segmentation achie-
ved satisfactory results given the relatively low image reso-
lution of these clinical images (1.367×1.367×5 mm3). The
sub-voxel standard deviation error also revealed the consis-
tency of the segmentation over the trials with the 28 sub-
jects. Visual inspection of the segmented images (See Figs.
8(a) to 8(d)) confirmed the good quality of the segmenta-
tion in most of the bony regions. However, the articular area
sometimes presented segmentation errors mainly due to the
pitfalls listed in Sec. 5.1, namely the bone proximity and the
presence of fuzzy boundaries.

We discussed the possibility to tackle these errors in the
articular region by using attraction points (Fig. 7). While
this interactive action is efficient in most of the cases, it is
preferred to exploit additional corrective techniques to min-
imize or simply remove the user interaction. One of them
is the use of more appropriate internal regularization forces.
Typically, the exploitation of more sophisticated shape pri-
ors such as statistical shape models (SSM) has proven to
be quite effective to segment these challenging MRI im-
ages [27, 29]. Moreover, collision response and detection
techniques could prevent mesh inter-penetrations and hence
bring additional robustness. The implementation of SSM-
based forces in GPU may demand quite complex numerical
tools. In particular, Singular Value Decomposition (SVD) is
required to achieve the alignment of point-sets [39] in order
to apply the SSM iterative regularization process [3]. Many
of these tools are common but demand effort to be efficiently
implemented into GPU formalism. Thankfully, they are pro-
gressively ported to CUDA, like the SVD implementation
of Lahabar and Narayanan [15]. However, their integration
into an existent framework is not always straightforward as
special data structures are often required. These structure do
not necessarily satisfy the requirements of our simulation,
and as a result this may demand a careful (re-)design of the
framework.

6.2 Speed and interactivity

The GPU approach was consistently about 25− 70× faster
than the CPU version to execute a single time step. This was
predicable since the GPU implementation benefited from
parallel processing while the CPU-based approach operated
in a sequential manner. In all cases, the time taken by a sin-
gle GPU iteration is perfectly matching with interactivity
constraints. Indeed, update frequencies for the GPU were
about 47−162Hz, thus easily supporting the minimum 10Hz
of refresh rates required for interactivity. On the other hand,
the CPU version was unable to fully support interactivity,
since update frequencies were about 0.6− 6.7Hz. Having
full support to interactivity paves the way to novel segmen-
tation approaches, in which the user is fully able to interact
with the segmentation loop.
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(a) (b) (c) (d) (e) (f)

Fig. 8 GPU-based MRI hip joint bones segmentation examples: from a) to d) axial slices are shown without and with white mesh overlays
respectively on top and bottom of the subfigure. In e), a coarse mesh is initialized at the beginning of the segmentation, and in f) the final result is
shown with meshes at their higher resolution

Different steps in the simulation (i.e. mesh update, forces
computation and numerical integration) are performed in a
sequential order for both GPU and CPU implementations.
For each step, we look for a parallelization at vertex level.
The speed-up found between both GPU and CPU versions is
thus essentially dictated by the number of particles involved
in the simulation.

We have measured that, in the GPU implementation, force
computation accounts for approximatively 99% of total time
per iteration, mesh update and numerical integration contri-
butions being below 1%. Hence, an additional level of paral-
lelization could be achieved by computing all forces in par-
allel. This force parallelism could be achieved with atomic
operations which would sum up the force contributions in
parallel in the force accumulation array. Since atomic oper-
ators availability depends on the CUDA compute capabil-
ity of the GPU, an alternative approach consists in using a
proper array for each force to avoid memory writing con-
flicts and thus the use of atomic operations. However, such
an implementation is obtained at the expense of a larger
memory consumption.

In our segmentation context, effort should be instead spent
in speeding up image-based forces, and especially those us-
ing intensity profile. In fact, Fig. 9 reports the time taken
by each type of force in the GPU implementation. IP-based
force clearly dominates with its 93% of the total force com-
putation time. Despite we used an efficient computation of
the NCC by caching invariant quantities only dependent of
the reference profiles and by using an iterative summation of
denominator terms, this force remains very expensive. The
main reason is that during the search for the optimal tar-
get position y∗ with the lowest image energy, we compute
the IP-based energy m times in a sequential manner. Hence,
once again we could parallelize the computation of the en-
ergy for each position yi, i∈ [1, m]. Before considering such

parallelization, special attention should be paid in preserv-
ing a good tradeoff between memory usage, speed and im-
plementation complexity.

93% IP

3% gradient2% shape
2% smoothing

Fig. 9 Average time distribution for forces in GPU implementation.

Finally, it is sure that a multi-core CPU hardware archi-
tecture exploited with an efficient parallel implementation,
will notably perform faster. Nevertheless, the speed-up ob-
tained is expected to be not as significant as the one obtained
with our GPU-based approach. However, CPU architectures
have some non-negligible advantages compared to GPU’s,
such as a greater flexibility in programming or a universal
support for double precision arithmetics.

7 Conclusions and future work

The goal of this work was to design a simple yet efficient
and extensible framework to allow the simulation, manipu-
lation and rendering of deformable models for segmentation
purpose. Since, to date, any segmentation approach is prone
to errors due to the extreme variety of segmentation condi-
tions, the focus of this work was to devise a fast approach
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which provided an interactive control on the segmentation
evolution. Its performances were illustrated in a challeng-
ing segmentation scenario in which possible segmentation
errors were interactively corrected. The GPU hardware re-
quirements were not very demanding, as a slightly outdated
CUDA compatible graphics board already demonstrated an
excellent interactivity.

Still, potential limitations of the GPU framework will
be overcome through extension mechanisms, we particularly
target better segmentation accuracy and robustness by con-
sidering additional segmentation strategies such as internal
forces based on statistical shapes models and collision de-
tection techniques to prevent mesh inter-penetrations. Al-
though this is not an easy task as many existing approaches
do not easily translate into GPU parallel formalism. Further-
more, effort will be spent in finely tuning the CUDA imple-
mentation to better address technical aspects such as mem-
ory bank conflicts or multiprocessor occupancy. Finally, richer
interactive visualization approaches will be also explored,
such as advanced volume rendering built upon efficient im-
plementations able to handle larger volumetric images.
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