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Abstract Today’s most widely used 3D digitization approach is a combination of
active geometric sensing, mainly using laser scanning, with active or passive color
sensing, mostly using digital photography. Producing a seamless colored object,
starting from a geometric representation and a set of photographs, is a data fusion
problem requiring effective solutions for image-to-geometry registration, and color
mapping and blending. This chapter provides a brief survey of the state-of-the-art
solutions, ranging from manual approaches to fully scalable automated methods.
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1 Introduction

In the Cultural Heritage (CH) domain, digital technologies are transforming the
way researchers, archaeologists, and curators work. It is now widely acknowledged
that accurate 3D digital models of cultural artifacts built from objective measures
are becoming central to CH research, conservation, display and dissemination of
knowledge, and have many applications, ranging from virtual restoration to visual
communication.

A large variety of active and passive non-invasive systems exists for acquiring,
at reasonable costs, a very dense and accurate sampling of both geometric and
optical surface properties of real objects. However, today the most widely used
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3D digitization approach is a combination of active a scanning device (e.g.,laser
triangulation, structured light, time-of-flight, interference) and a digital photography.
By using computational techniques, digital surfaces are reconstructed from the
scanner-generated range maps, while the color (or material) value sampled in digital
photos is transferred onto the surface by registering the photos with respect to the 3D
model, and mapping it to the 3D surface using the recovered inverse projections (see
Fig. 1). Since early demonstrations of the complete modeling pipeline (e.g., [BR02,
LPC+00]), this approach has proven to be particularly well suited to CH digitization,
because 3D scanning and photographic acquisition campaigns can be performed
quickly and easily, without the need to move objects to specialized acquisition labs.
Even though passive purely image-based methods have recently affirmed themselves
as a viable (and low-cost) 3D reconstruction technology [Rem11], the pipeline based
on active geometric scanning sensors and separate color acquisition still remain a
widely used general-purpose approach, mainly because of the higher flexibility and
reliability for a wider variety settings (e.g., featureless surfaces) [Rem11, KVI+14].
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Fig. 1 Pipeline overview. The input data is a 3D geometry and a set of photos of the real object.
First, an image-to-geometry alignment step registers the images to the 3D model, by producing a
set of corresponding camera poses. By exploiting the resulting link between 3D points and pixels, a
color mapping procedure produces a seamless color signal across the surface.

As exemplified in Fig. 1, producing seamless colored objects, starting from a
geometric representation and a set of photographs, is a data fusion operation that
requires the solution of two main problems. First, the color data must be registered
with geometric data, in order to establish the mapping between appearance informa-
tion and the 3D surface to which it must be associated. Then, once this registration is
known, the appearance, possibly coming from different sources (images) must be
mapped to the surface to produce a seamless color signal, where each surface point
has the single associated color (or material) that best approximates the original one.

In this chapter, we provide a brief overview of the many solutions that have been
proposed for effectively solving these two steps of the coloring problem. We will
show that, while early works can deal only with small and medium datasets, and are
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often limited to specific object classes, recent approaches are scalable in terms of
image and geometry side, and are mostly (and often completely) automatic, opening
the way to interesting innovative applications.

2 Image-to-geometry registration

Image-to-geometry registration takes as input a dense 3D model, representing the
shape of the imaged artifact, and a set of N photographs. Depending on the setting,
the photographic dataset can cover the complete surface of the 3D object, only a part
of it, or a larger area. The goal of registration is to find the intrinsic and extrinsic
parameters of the imaging cameras in the reference frame of the 3D object. These
parameters are required by the mapping step (see Sec. 3) to transfer color information
from the images to the 3D model.

The most straightforward way to get a 2D image data mapped to a geometry is to
rigidly fix a calibrated camera to an acquisition device. Fixed-relative (or co-located)
methods [PARD+98, FZ01, FZ03] assume that the pose of the camera is already
known and relative to the position of the range scanner (or other source of geometric
data). Hence, they have the color intrinsically calibrated with the 3D just after the
acquisition, avoiding an explicit image-to-geometry registration task.

On one hand, studies such as Yang et al. [YBS07] show as this kind of approaches,
in an hybrid framework that exploits other methods (e.g., color-based, see sec. 2.3),
can be applied in a number of interesting applications, since the color obtained in
the acquisition phase can be used to map other photos with different appearance.
Moreover, some range scanners also acquire color information at a quality that
might be high enough compared to the application needs. However, even if there
are hardware solutions able to sample geometry and color altogether, the color
quality and resolution of integrated solutions are often insufficient for CH (e.g., low
resolution, poor sensitivity), and rigidly mounting off-axis high-quality cameras often
leads to visibility problems. Moreover, in many cases, it is not possible to acquire
the 3D and the images at the same time. Sometimes the light condition needed for
the photographic dataset must be different from that used during the 3D scanning.
For instance, some sites of CH interest can be captured only at night (e.g., Piazza
della Signoria in Florence [CDG+13]). There is often an interest in mapping multiple
image datasets acquired in different moments to the same geometry, e.g., the two
image sets acquired by a professional photographer before and after the restoration
of the Michelangelo’s David statue [DCPS08]. Moreover, the different parallax of the
camera and the range sensor in fixed-relative setups possibly results in the presence of
occlusions; the color will be thus missed in some surface regions. Finally, while a co-
located camera might help in aligning additional color images, it will not work with a
general 2D signal. In the last decade a vast number of applications in CH uses multi-
spectral (MS) acquisitions (e.g., Far Ultra-Violet, Far Infra-Red Thermal images).
In contrast to reflectance signal, which is typically from a visible wavelength, these
signals might have really different appearance features; this inconsistency depends on
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variation of transmittance and absorption across the spectrum. The resulting images
must be aligned to the geometry without exploiting the presence of the co-located
camera.

All these reasons lead to a broad range of techniques to enable registration of inde-
pendently acquired image and 3D data sets. The available solutions include manual
registration methods (Sec. 2.1), feature-based approaches that match geometric and
image features (Sec. 2.2), color-based techniques that exploit additional color signals
from the 3D scanning device (Sec. 2.3), statistical approaches that rely on mutual
information (Sec. 2.4), as well as general techniques that convert the hard to solve
2D-3D registration task to a 2D-2D registration obtained via Structure-from-Motion
(SfM) followed by a more viable 3D/3D alignment problem (Sec. 2.5).

2.1 Manual methods

The most commong pipeline for mapping photos onto a 3D geometry consists in
asking the user to manually select correspondences between pixels in the 2D domain
and points in 3D. Hence, the initial step will be a sequence of point-and-clicks with
which the user feeds the algorithm. Then, an automatic process will take the burden
of refining the initial, manual, rough alignment via an error minimization strategy,
and it will finally estimate the camera intrinsic and/or extrinsic parameters. Initially,
the solutions proposed focused on the definition of the most usable user interfaces
to facilitate this labour-intensive task [DCPS08, FZ03]. Later, reduce focused on
speeding-up and reducing manual operations. Borgeat et al. [BPB+09] developed
an interface where possible feature matches are highlighted. Another more efficient
strategy is to include not only 2D/3D pairs, but also links between pixels in different
images [FDG+05]. Moreover, in particular settings, careful planning of image capture
might be a solution to speed-up or mostly automate the registration [MK99]. In any
case, although these semi-automatic methods are robust due to a continuous support
and check by the human on the registration process, they are hardly applicable if
the image set starts to grow high over a certain moderate cardinality (e.g., tens or
hundreds of photographs).

2.2 Feature-based methods

Feature-based techniques extract visual descriptors from the 3D model and the pho-
tographs, and solve the image-to-geometry problem by finding correspondences
between them. Although among this class of methods a number of completely auto-
matic frameworks exist, this task is generally very complex, due to the fact that the
pure geometry and the object, which is a mix of shape and texture, have very different
appearance. For this reason, the works in this area are typically tailored to models
with specific geometric characteristics, such as points, lines, circles [SLC+08], rect-
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angles [LS05], edge intensities [NK99], or viewpoint-invariant patches [WCL+08].
Their performance are mostly reliable with 3D models of buildings, which show
very sharp edges that can be easily extracted by geometric operator applied to the
3D data, and are a very clear gradient signal in the 2D images. Another class of
approaches [KSSS09, SA01] focus on the alignment of maps and/or floor plans
(which contain a number of straight lines) with both indoor and outdoor environ-
ments acquired with 3D LIDAR scanners, which exhibit several linear edges and
planes. Also the relationship between these features could help in finding a good set
of camera poses. Liu et al. [LSY+06] rely on the presence of clusters of vertical and
horizontal lines, and they exploit the orthogonality constraints to drive the registration
algorithm. On one hand they process the geometry to extract parallelepipeds, while
they find correspondences between them and rectangles in the photographs. This
method results to be very suitable for complex urban scenes.

A strong and robust feature that can be efficiently employed to find matches
between images and shapes is the silhouette. A number of methods successfully use
it to undertake the image-to-geometry alignment [Low91, BLS92]. The key idea is
that silhouette contours are very fast and simple to extract both in the image and in
the rendered input 3D model, and their appearance is very similar and independent
of object texture. Lensch et al. [LHS00] present a efficient, hardware-accelerated
implementation of such algorithms, and propose a robust similarity function. They
don’t need any manual intervention too.

Unfortunately, these techniques require the whole object to be visible in all input
photographs. They also moderately depends on the accuracy of the algorithm for
background and foreground separation, which sometimes is refined manually by the
user. This latter element might pose some restrictions on the acquisition setup and
size of the framed object (e.g., severe limitation for large scale target), reducing the
spectrum of possible applications.

2.3 Color-based methods

While feature-based methods tries to extract from the geometry a visual cue com-
parable to the intensity or color signal in the photographs, color-based techniques
exploits appearance data provided by the acquisition device and, hence, already
attached to the geometric primitives (e.g., intensity, color, laser reflectance). In this
scenario, the comparison of image descriptors and the computation of matches is
naturally more efficient and reliable. The methods of Ikeuchi et al. [IOT+07] and
Sequeira and Gonçalves [SG02] rely on the extraction of edges in the reflectance
information. This data shows characteristics similar to color images, since these
edges come from the discontinuities in the materials across the surface, and they
are likely to produce gradients in the same regions both in the color and reflectance
signal. Yang et al. [YBS07] uses a co-located setup, which produces a set of colored
range maps. Then they extract image descriptors from the color captured by the
scanner and by a hand-held camera. The correspondences between these two sources
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will be employed to compute the extrinsic and intrinsic parameters of the hand-held
camera, solving the 2D/3D registration. Wu et al. [WCL+08] present a novel feature
called VIP (Viewpoint Invariant Patch), and apply it to both the image-to-geometry
problem, and to the registration of two shapes. They normalize the local orientation
and viewpoint by performing local texture rectification, and by computing a dominant
image gradient. Their method is a robust alignment strategy of images and scenes,
even if they are seen from very different viewpoints, or they have a little overlap.
This framework is particularly suitable for large-scale and complex scenes when a
lot of 2D/3D or 3D/3D registrations have to be undertaken.

2.4 Statistical methods

Statistical image registration methods based on Mutual Information (MI) are ex-
tensively used in many application. In the field of image-to-geometry registration,
MI is capable of analyzing non-linear correlations and photo-consistency between
the intensity signal in the image and some measure present in the target surface,
avoiding 3D descriptor extraction. The seminal work of Viola and Wells [VWI97]
correlates the image gradient with a particular rendering of the surface normals.
Cleju et al. [CS07] improve this work by a global approach based on a stochas-
tic mathematical framework for joint optimization of multiple image-to-geometry
registrations.

When available, an important signal for MI computation is the intensity of the
reflected laser beam. Williams et al. [WLH+04] present an automatic registration
that uses intensity comparisons between color images and geometry texture mapped
with laser reflectance. They employ a gradient descent optimization to find the
best solution that minimizes the alignment cost function. However, Hantak and
Lastra [HL06] show how in some cases the metric used in this approach produces
multiple minima within the search space, dropping down the confidence in spotting
the right minimum. Hence, they explore different information metrics applied to
different environments. This leads them to the conclusion that coupling these metrics
with global minimization techniques produce in general better results at the cost
of higher computational time. The method of Mastin et al. [MKF09] exploits the
statistical dependency that in urban scene correlates the LIDAR elevation with the
optical appearance. They measure MI between LIDAR and optical signal, and apply
the downhill simplex optimization to find camera poses. They initialize each camera
pose from GPS data, and harness the power of graphics hardware to dramatically
reduce registration times. In the field of CH, Corsini et al. [CDPS09] take the Viola
and Wells’s idea of generating an intensity signal from normals, and extend that by
including additional surface properties, such as ambient occlusion and reflection
directions. The hybrid method of Zheng et al. [ZCS10] strives to integrate, instead,
the advantages of statistical and feature-based registration [ZCS10] by projecting
the 3D surface onto 2D normal images. This enables the extraction of local geodesic
descriptors, which can be used to perform an initial image-to-image and image-to-



Techniques for seamless color registration and mapping on dense 3D models 7

geometry registration, which is then refined by using MI and a global stochastic
optimization. Recently, Dellepiane and Scopigno [DS13] proposed a MI framework
that focuses on registration refinement; they globally tune the camera poses by fitting
original color signal with the color mapping result, thus removing artifacts produced
by small image mis-alignments (see also Sec. 3.2).

Unfortunately, all these methods are robust only if they are given in advance a
good enough initial camera pose(s). Otherwise, it is likely they will not converge to
a right solution. Moreover, signals used for correlation are not always available as
geometric attributes.

2.5 Multi-view methods

In previous sections the vast majority of already mentioned approaches aim at map-
ping one single image at a time; conversely, multi-view techniques exploit the intrinsic
grouping nature of the input images and the relations among them. The fundamen-
tal insight that underlies the class of multi-view based methods is to transform the
original image-to-geometry registration problem into an image-to-image registration
step, followed by an alignment between two 3D shapes. In particular, recasting the
2D/3D matching problem into a 3D/3D alignment is made possible by using available
and mature Structure from Motion (SfM) approaches, which take an image set and
robustly generate a sparse point cloud of the framed object together with a structure
of images aligned to it. Hence, registering the original, dense geometry with the one
resulting from the SfM step will implicitly solve the image-to-geometry mapping.
Methods in this class are more generally applicable, since they do not require such
strict constraints as others did. Compared to feature-based methods (sec. 2.2) they do
not rely on specific features as circles, lines, orthogonal planes. Further, they do not
try to find correspondences between images and geometry, but they first find matches
between images(SfM step), which is a much fast and simple task, and, then, solve
a pairwise geometry alignment, which is a well studied problem too. Apart from
the completely automatic multi-view solutions, compared to statistical approaches
(sec. 2.4), the multi-view methods reduce manual intervention and completely avoid
to use any additional attributes of the geometrical primitives, which are not always
accessible, e.g., reflectance, color from the acquisition device, LIDAR elevation or
probability of detection (see sec. 2.3 and sec. 2.4). The techniques in the multi-view
class just need a moderate presence of any type of texture and/or geometrical features,
which is a normal, non-limiting requirement of the classical SfM algorithm.

One of the earliest works in this field has been proposed by Zhao et al. [ZNH05],
which present a way to register a video onto a point cloud. By using motion stereo,
they compute a point cloud and a set of relative camera positions from a continuous
(oblique) video. After the alignment of just two frames with a dense point cloud
directly obtained from a range sensor, they employ an ICP-based procedure to refine
the registration between the sparse and the target 3D models. This framework proved
to be very efficient for coloring large-scale digital models in urban scenes. Unfortu-
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nately, it is limited to a dense and ordered (video) sequence of highly overlapping
images. After this seminal contribution, some past methods have been updated in a
hybrid framework that includes some advantages of a multi-view processing step. For
instance, Liu et al. [LSY+06] extends their previous work on a feature-based 2D/3D
mapping [LS05], by integrating a SfM geometry and an automatic 3D registration.
They use a bunch of 3D scans to build a dense point cloud; in this step they inherit
the feature-based approach of the previous work to find correspondences between
3D lines in the range images. Then, they compute a sparse geometry from the se-
quence of the input 2D photographs. They find the rotation, scale and translation that
minimize the distance between the two 3D shapes. Stamos et al. [SLC+08] relaxed
the line-based orthogonality constraint in order to apply the algorithm not only in
urban scenes, but also in complex indoor architectures. Unfortunately, the limit of
these hybrid systems to align only 3D models of architectural items remains, so that
the spirit of multi-view has not been completely exploited to solve a more general
problem.

Since relying on ordered sets of images is a too limiting constraint, as in Zhao et
al. [ZNH05], a number of methods naturally arose that try to deal with unordered sets
of sufficiently overlapping photos. Moreover, acquisition of complex geometrical
shapes inevitably leads to a non-uniform image sampling; the capture must be
performed adaptively, and the number and density of 2D frames per region depends
on the presence and the nature of surface occlusions. This kind of acquisition strategy
eventually produces an unordered image set as input for the registration pipeline.

Li and Low [LL09] register unordered image sequences from untracked and
uncalibrated cameras onto 3D geometry. Their method is pure multi-view. However,
they make use of projectors to illuminate the scene of indoor environments with a
special light pattern, in order to increase the algorithm robustness in regions with
low presence of image features. They manually define a rough registration between
the model from SfM and the detailed one. In the refinement stage, they exploit plane
segmentation of the input geometry, and employ a cost function that is a mix of
object-space error (point-to-plane distance), and image-based re-projection error. A
further manual tuning of a heuristic parameter is required to properly weight these
two error terms. Similar semi-automatic approaches have been proposed by Banno
and Ikeuchi [BI10] and Pintus et al. [PGC11c]. The first presents an accurate texturing
method that estimates camera extrinsic parameters by computing a sparse geometry
from spherical image stereo data set. They measure the distance between the sparse
and dense geometry (from range sensor) by taking into account the uncertainty
distribution of 3D in the stereo data. After the rough manual alignment of few
images to the dense geometry, Pintus et al. [PGC11c] proposes an image-to-geometry
optimization that deform in a non-rigid manner the sparse 3D points together with
the poses of each camera independently. The error metric relies only on image-based
re-projection error. On the other hand, their method is only applicable to uniformly
sampled 3D models.

Due to the well-known problem that SfM techniques reconstruct a sparse 3D point
cloud up to a scale factor, aligning it with the geometry from the range sensor requires
an affine transformation. All the previous methods ask a minimal user intervention to
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define a approximate registration, which is the initial affine mapping condition for
the final algorithm to converge. The lack of a completely automatic pipeline is the
main drawback of these otherwise very robust techniques. To overcome this issue,
recently, two completely automatic and orthogonal approaches have been presented,
which are capable of dealing with large input datasets, and need neither a object
dependent parameter setting, nor, of course, a manual intervention.

Fig. 2 The multi-image alignment proposed by Corsini et al. [CDG+13], which uses an approach
similar to Pintus et al.: [PGC11c, PG15]: the images are used to compute a sparse point cloud
using SfM, and the cloud is then aligned to the target geometry, thus obtaining an initial camera
orientation, that will then be refined using mutual information. Reprinted from [CDG+13] (With
kind permission from Springer Science+Business Media: International journal of computer vision,
Fully automatic registration of image sets on approximate geometry, 102, 2013, 91-111, Corsini,
M., Dellepiane, M., Ganovelli, F., Gherardi, R., Fusiello, A., Scopigno, R., Fig.1) [CDG+13]

Corsini et al. [CDG+13] propose a novel multi-stage framework for a fully
automatic 2D/3D global registration, shown in Figure 2. After the SfM procedure,
carried out similarly to Pintus et al. [PGC11c], the generated sparse point cloud is
aligned with the dense model by using a modified version of the 4 Point Congruent Set
(4PCS) [AMCO08] algorithm. While the 4PCS deals with rigid motion, they extend
it to cope with both different scales and unknown amount of overlapping regions.
Finally, a global refinement strategy is used based on mutual information, which
minimizes the color re-projection error of the images onto the geometry. The method
of Pintus et al. [PG15] is another completely automatic solution that performs a coarse
image-to-geometry alignment by using a GPU-based global stochastic registration
approach to find the optimal affine transformation between the sparse SfM 3D and
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the dense, original point cloud [AGJ+14]. They propose a robust statistics to manage
outliers, and a strategy to automatically estimate a local, adaptive tolerance to deal
with non-uniformly sampled 3D geometry. As in Pintus et al. [PGC11c], they refine
intrinsic and extrinsic parameters of each camera in a non-rigid manner, by employing
a specialized sparse bundle adjustment (SBA) step and a image-based error metric.
Compared to Corsini et al. [CDG+13], they do not require a heavy preprocessing to
densify the SfM sparse point cloud, since the global registration method employed in
the coarse alignment step recovers the globally optimal scale, rotation, and translation
alignment parameters using a stochastic algorithm for pairwise affine registration of
the coarse point cloud coming from SfM with the fine point cloud representing the
geometric model [AGJ+14].

These approaches based on fully automatic 2D/3D registration are more generally
applicable and robust. Their main advantage is that they do not put any assumption
tailored to the geometry type, size or sampling, being suitable to be applied to small,
medium and big objects of different nature. Since they are scalable, they remains
suitable even if the image set size grows, opening possibilities for new scenarios
and more interesting applications of unattended image-to-geometry alignment and
mapping (e.g., automatic web-based services). The most costly and difficult step
is the automatic global registration, which can eventually be replaced, in difficult
cases, by a simple manual initialization based on few hand-picked correspondences
between image and geometry, followed by a local refinement.

3 Mapping Color to 3D geometries

In all the described cases, the result of the image registration algorithms is the
calibration and orientation of one or more photos in the reference space of a 3D
geometry. While there are many direct uses of a set of calibrated and oriented images,
in most cases, the image alignment is is used to map the color information onto the
3D geometry, thus obtaining a colored 3D model.

The recovered camera alignment data is, basically, a perspective projection matrix.
By using this perspective projection, it is easy to establish the inverse correlation
between the color information on the photos and the 3D geometry. Using this inverse
projection, the color can be mapped onto the 3D geometry: this principle is the basis
for all the mapping methods.

The case of a single registered image is, then, trivial, since a simple inverse
perspective projection will be enough to map the color onto the 3D geometry. The
visibility problem, i.e. determine what part of the surface is directly visible by the
camera (and thus can be mapped from that specific photo), can be solved numerically
(precise but computationally cumbersome) or by exploiting the GPU, using the
well-known shadow mapping algorithm or other specialized shaders. The visibility
problem is more complex in the case of point-clouds; since a direct shadow mapping
would not work, Pintus et al. [PGC11a] use a GPU accelerated screen-space operators,
able to fill the sparse depth-map produced from the point cloud.
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The problems arise when there is more than one photo that has to be mapped on
the 3D surface. While the basic inverse projection is still used to map color from
the photos to the surface, the issue is now what happens where more than one input
photo maps on the same area of the 3D surface. It is necessary to determine, among
the available registered photos mapping in a specific area of the 3D surface, which
is the correct color information that has to be projected and/or solve the “blending
problem”, i.e. combine the available contribution to have a more continuous color
mapping. This topic will be covered in Section 3.1.

A common problem of the color mapping process is the fact that, no matter how
precise is the image-to-geometry alignment, it will never be perfect, or perfectly
coherent between images. By applying local or local-global optimization of the
cameras and projected color information it is possible to overcome the classical
artifacts of ghosting and blurring. These methods will be covered in Section 3.2.

Finally, another problem in the color projection from multiple registered cameras
is the presence of lighting and photometric incoherence between the input photos, or
the presence of view-dependent artifact (like highlights) that changes their relative
position from a photo to another. While some of these issues can be reduced or
removed by the blending process, in literature there are specific methods which can
be applied to solve these situations (see Section 3.3).

3.1 Projecting and blending

An issue that is orthogonal to the mapping method is where to store the mapped
color: a family of solutions use (or creates) a surface parametrization and store the
mapped color in the texture map; a different approach is encode color per-vertex;
finally, some algorithms may work regardless of the final color encoding.

The earliest works dealing with the mapping and blending problem tried to avoid
entirely the computation of a static color mapping, but opted for a view-dependent
texture mapping, dynamically creating a color mapping as the object was rendered.
This was done, for example, by using a per-triangle computation of the best photo, and
perspective mapping directly on the graphics hardware, like Debevec et al. [DYB98];
or by selecting the relevant images for a specific view, and then mixing multiple
images using a weighting scheme [PARD+98], blending the different contribution in
a continuous mapped image.

Although it is able to provide good results, view-dependent texture mapping is
not much used anymore, and the more modern color mapping methods all rely on
the creation of a static mapping.

In these early examples, however, it is already possible to see the two opposite
strategies that can be used when multiple photos are projecting on the same element
of the 3D geometry that has to be mapped (a triangle, in texture mapping, or a vertex
for per-vertex color mapping or in point clouds):

• among the available contributions, the “best” photo for that specific element will
be chosen, according to some criteria, and mapped on the surface
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• all the available contributions will be blended, using some form of weighting, and
the interpolated result will be mapped on the surface

The advantage of the fist strategy is that the detail of the mapping remains at the
same level of the input photos, but there will be discontinuities (color shift and details
misalignments) in the borders between areas assigned to different input photos. On
the other hand, the color mapped using the blending strategy will produce a much
smoother result, without discontinuities, but at the price of a less sharp appearance,
and the presence of ghosting and blurring if the input photos are not perfectly aligned
to the 3D geometry. The various methods available in literature try to cover the
spectrum between these two extreme, providing solution that combines these two
basic strategies.

The “best” contribution is one of the oldest strategies in color mapping, it is still
used a lot in both open and commercial tools [WJP08], especially when the final
result of the mapping has to be a texture map. As the registered photos define a
perspective projection, in most cases, the projective transformations from the 3D
surface to the input photos results in a natural and usable parametrization. Some
mapping methods [LHS01, RCMS02, CCS02] build a parametrization for the 3D
surface by dividing the triangulated mesh in patches, each one assigned to the “best”
input image,parameterized using the perspective projection of that input image and
packed in a texture map. Lensch et al. [LHS01] and Rocchini et al. [RCMS02] filter
the border between adjacent patches, to reduce the discontinuity, while Callieri et
al. [CCS02] apply a texture-wide color/luminance correction to uniform the color
across the different photos.

Instead of using a simple “best contribution” criteria, but still wanting to directly
use fragments of the original images, it is also possible to rely on existing image
mosaicing and stitching optimization techniques, derived from the research on 2D
image processing. Sinha et al. [SSS+08] use a graph-cut optimization using a Markov
Random Field (MRF) minimization framework to define, at a per-texel level, the
most suitable photographic source to minimize incoherence, and then apply a Poisson
blending to clear the remaining discontinuities. Lempitsky and Ivanov [LI07] also use
this kind of MRF minimization, but at a per-triangle level, while Gal et al. [GWO+10]
also introduce a parametrization shifting order to corrects image registration errors.

A different strategy may be to separate the high and low frequencies of the input
images, and use different strategies to combine different bands, to obtain simultane-
ously a smooth mapping, but with sharp details. Baumberg [Bau02] separates the
input images in two bands: in every given area of the 3D model all the low-frequency
components are blended using weights, while the only the “best” high-frequency
details is mapped. This solution is also used by Allène et al. [APK08] and by Pintus
et al. [PGC11a] on point-clouds.

Among the methods blending all available contributions, performing a weighed
sum is the most used way to combine contributions [PARD+98, BMR01, CCCS08,
PGC11a, PGC11b, BJM+15]. All use weighted blending. The weights used in these
and other works are many, and are related to different aspects of the dataset. They may
be related to geometry (depth discontinuities), camera (image sharpness, low quality
on borders, image discontinuities), geometry-camera relationship (orthogonality of
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the photo with respect to the surface, distance from the object). A useful feature of
weighting schemes is that it is easy to add new metrics which are specific for a given
dataset or acquisition/ reconstruction technology.

In order to combine the different contributions in a single mapping, blending is
simple and effective, but prone to blurring. To obtain a more continuous but sharp
mapping, it is possible to solve a Poisson equation over the 3D surface [CLB+09],
taking in account the input image gradients, building a continuous yet non-blurred
color field. Another interesting method is to use a super-resolution approach over
the texture space [GC09], resulting in a texture which is more detailed of the input
photos.

Even though point-clouds are widely used directly, without converting them to a
triangulated surface, there are not many color mapping methods suitable for this kind
of data. Pintus et al. [PGC11b, PGC11a] work directly on the point-clouds, mapping
color to each vertex, using a weighted blending 2-band strategy, able to work on very
large dataset. Conversely, Arikan et al. [APS+14] use the point-clouds to create a
series of local meshes, defined by the areas framed by the registered photos, which
are then properly stitched during rendering.

Many of the discussed techniques assume that both geometry and images fit in
memory, which severely limits the scalability of the methods. Some methods assume,
instead, that the 3D model is very small and fits in memory, while the image and
mask dataset are stored in out-of-core structure (e.g., [XLL+10, CCCS08]). The
approaches that scale to large amounts of color and geometric data, are typically based
on some variation of the weighted blending approaches. Callieri et al. [CCCS08] and
Bettio et al. [BGMP13, BJM+15] deal with massive models by using two out-of-core
structures, one for the model and one for images and masks. By contrast, Pintus et
al. [PGC11b, PGC11a] use a streaming framework for efficiently blending images
on massive point clouds in a low-memory setting and through memory-coherent
operations, providing unprecedented performance (fig. 3). In addition, the latter
approach supports adaptive geometry refinement as a function of image content,
which is achieved during the blending phase by selectively refining the point cloud
in areas with high-frequency image contents (fig. 3, second row).

3.2 Fixing misalignments

Color projection on 3D models is straightforward and convenient way to obtain a
visually pleasing result starting from a simple input. Nevertheless, annoying artifacts
may appear on the model, regardless of the mapping strategy chosen.

One of major issues is due to the misalignments of images that have to be projected:
this leads to the aliasing/blurring of fine details of models, since the images are simply
projecting the same data on slightly different positions of the surface. Misalignments
are less visible in the case of methods where a single image is chosen for projection:
misalignments may be visible in the borders between adjacent patches. Unfortunately,
the selection of a single image for each portion of a surface usually works well on
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Fig. 3 First row: image blending on massive point clouds, the case of the Michelangelo’s David
statue (0.25mm dataset). It is a 470 million point 3D model with color coming from a 548 Mpixel
dataset (67 photos). Second row: the effect of the image based adaptive point cloud refinement on
final color signal; we present two images of the final colored model, and a comparison between
the image blending on the original point cloud and the image blending on the adaptively refined
geometry. (With kind permission from Eurographics Association: Eurographics 2011 Area Papers,
A Streaming Framework for Seamless Detailed Photo Blending on Massive Point Clouds, 25-32,
2011, Pintus R., Gobbetti E. Callieri M., Fig. 7,8,9) Scopigno, R., fig.1) [PGC11b]

simple cases, but when the number of images rises, it leads to very fragmented color,
where artifacts are visible again.

The misalignment issues are only partially inherent to the registration and projec-
tion methods. They usually come from the quality of input data, in particular:

• The camera parameters: it’s important to stress that image registration is obtained
by applying a camera model to fit real cameras. This means that in particular cases
there will be no possibility to achieve a perfect alignment, since the model is not
able to perfectly describe the camera.

• The quality of 3D model: if the geometric representation of the object is not
accurate, a perfect alignment will not be possible

• The quality of images: similarly as above, if the quality of 2D data is low, even
semi-automatic methods may fail. Moreover, low quality images may strongly
concur in blurred and aliased details.

Given that the input data are not perfect, fixing the misalignments may not be an
issue related to a better estimation of camera parameters. Some methods take this
into account to get the best color: for example Lempitsky and Ivanov [LI07] inserted
in their minimization function a term that should reduce misalignments artifacts. All
these methods are based on a quite strong assumption: that the 3D model is accurate
enough to allow an accurate color projection.
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More recently, Dellepiane and Scopigno [DS13] proposed a global refinement
method to reduce misalignments. The result of any image-to-geometry registration
method can be the input of this approach. The method is based on mutual information.
The camera parameters of each image are refined by trying to fit the color projected
by all the other images on the 3D model. In this way the error is globally distributed,
and fine details are better preserved. This works regardless of the quality of the 3D
model, and only camera parameters are changed.

The main way to achieve an optimized alignment, though, is to be able to modify
all the elements of the projection dataset. In the following, we review the recently
proposed methods.

The quality of color projection can be improved by modifying all the elements of
the projection set: camera parameters, geometry, images. Recently the problem came
out after the rise of multi-view-stereo matching techniques. In this case, similarly
to the work by Gal et al. [GWO+10], the big advantage comes from the fact that
geometry and color are produced starting from the same input: the images. Given
this, the geometry can be modified to better fit the images. Alternatively, taking
into account the matching among images enables to preserve detail. The work by
Waechter et al. [WMG14] shows that this can be used to obtain large scale 3D
texturing.

In a more general case, geometry and images are acquired in a different moment,
so it could be harder to handle them. Pintus et al [PGC11a] used a frequency analysis
and the increase in data density to improve the projection on point clouds. In the case
of triangulated surfaces, a possibility is to warp images so that they will project the
same color information in the same part of the surface. Eisemann et al. [EDDM+08]
used it to fit textures to body models. They propose a GPU implementation of the
method that reaches real-time performances. Hence the algorithm can be employed
not only in off-line image-to-geometry registration frameworks, but also in image-
based visualizations.

Dellepiane et al. [DMC+12] extended the concept to more complex cases: for
each portion of the surface, an image is chosen as the “leading” one. All the other
images are warped using optical flow, in order to project the same color detail as the
leading one. The border between adjacent parts is handled by mixing the warping in
order to avoid discontinuities. This approach is able to put together the advantages of
the “best photo” approach (high quality fine details) with the advantages of blending
approaches (coherent color, no discontinuities).

More recently, Zhou and Koltun [ZK14] proposed a method to map color on
data coming from depth cameras. The method puts together the camera parameters
refinement and the flow based approach in a unique system to be optimized. Given
the complexity of the problem, the system is solved in an iterative way (by refining
cameras and flow one at a time), but the results are more than satisfying.
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3.3 Fixing color and lighting issues

The other issue when dealing with color mapping from images is that the color is
projected “as it is”, without any previous knowledge of illumination conditions. This
leads to the fact that illumination artifacts (highlights, shadows) are projected on the
model.

The proper way to be able to remove artifacts would be to acquire the color under
controlled light conditions (i.e. by knowing the position and intensity of the main
sources of light in the scene). This is quite impractical during an on-site acquisition,
or when working outdoors.

A possible approach is to analyze the images to detect and remove artifacts, but
the purely image based approaches are prone to errors and false positives [XYWZ05,
GDH11]. Another possible approach is to take advantage of the fact that more than
one image will cover each part of the surface. In this case, some artifacts can be
detected as outliers, and removed. These methods work reliably only when several
images of the same portion are available [FFGG+10]. This is not always possible,
especially when high quality images are needed. Hence, an alternative way is to have
a better knowledge of the lighting environment.

That being said, except for laboratory conditions and object of small size, it’s
rarely possible to setup a controlled light environment. Alternatively, it’s possible to
try to estimate it: once the 3D model, the camera parameters and the light positions
are known, the lighting artifacts can be easily detected and removed. The lighting
environment can be acquired using ad-hoc devices [CCC08]. An alternative solution
can be to use the object itself as a light probe. The analysis of the behavior of artifacts
(i.e. the change in position of highlights) can be used to estimate the position of
the main light sources in the scene. Palma et al. [PCDS12] used video sequences to
estimate the illumination environment, and also extract a simplified description of
the material of an object.

Another source of light that could be possibly estimated is the sky. Haber et
al. [HFB+09] analyzed the sky and the appearance of an object to estimate the
sky-dome environment, and relight images. Dellepiane et al. [DBS10] estimated the
sun position (in an automatic or semi-automatic way) to remove hard shadows.

Finally, an interesting example of controlled but easy to use light setup is
FlISS [DCC+10], where the integrated flash light of the digital camera was used. This
type of light has the advantage of being always at the same position w.r.t. the camera,
and to provide a dominant lighting in the scene. Hence, it’easy to detect and remove
artifacts, and it’s possible to obtain a partially calibrated color after a calibration step
to be performed once-in-a-lifetime. Starting from the consideration that medium- to
high-end single-lens reflex (SLR) cameras support fairly uniform flash illumination
and RAW data acquisition modes that produce images where each pixel value is
proportional to incoming radiance [KLL+12], Bettio et al. [BGMP13, BJM+15] take
the simpler approach of using a constant color balance correction for the entire set of
photographs and apply a per-pixel intensity correction based on geometric principles,
taking into account distance and surface orientation.
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4 Conclusions

We have provided an overview of many different approaches that have been proposed
for effectively solving image-to-geometry registration and color mapping and blend-
ing. Despite the fact that in recent years a lot of powerful pure vision-based methods
have been developed and widely used to reconstruct both geometry and color, the
interest in aligning 2D maps onto 3D surfaces remains very high. This is due to the
fact that different types of signals, or data acquired at different times, still need to
be registered. Effectively solving 2D to 3D mapping and fusion is therefore of high
importance for many application domains, including cultural heritage.

While the various methods can be mixed and matched to create a pipeline for
aligning and a separate one for producing seamless colored objects after alignment,
we have seen that solutions of these two problems are often intertwined. In particular,
a recent trend has been to perform fine registration steps during the color blending
passes to produce seamless models. Moreover, while early techniques were mostly
manual, most modern methods tend towards semi-automatic or automatic behaviors.

In CH practice it is however still common to introduce a human in the loop, in
order to control the fine behavior of algorithms. However, as data size is increasing,
since acquisition becoming fast and inexpensive, this fine control is increasingly
becoming impractical, and we expect that automated methods will increasingly
become standard even in this application field. The increasing size of datasets is
also forcing algorithm development to tackle scalability issues using specialized
techniques. For this reason, while early methods, especially for the mapping step,
required global operation with all data loaded into memory, modern method strive
to schedule localized operations, so as to minimize peak memory needs and I/O
bandwidth.

The availability of modern fully scalable and mostly automatic techniques opens
the door to innovative applications. In particular, cloud solutions based on web
services are emerging for performing heavy operations, with lean user interfaces
often working on mobile graphics devices.

While in this work we have focused mostly on the registration of color images
onto the geometry, the technique presented here are the basis for managing a number
of multimodal fusion operations. Recent trends highlight in particular the need of a
enhancing geometric scans not only with the local body color of an object, but also
with a detailed representation of the material and the appearance properties. In many
cases, the rationale of the techniques reviewed here is still valid to deal with this
more complex data, with limited modifications to implement the mapping and fusion
(e.g., different descriptors for automatic alignment). On the other hand, sometimes
micro-scale data acquired as 2D maps is also providing information at the geometric
level. For instance, Reflectance Transformation Imaging acquisitions [MGW01]
make it is possible to compute high resolution normal maps, which, once registered,
can be employed to refine the initial geometry [NRDR05, BFR14]. While this is
usually done in a post-pass, a stronger coupling of the various phases of registration,
mapping, and enhancement could lead to better and faster results, especially when
dealing with massive amounts of data. An interesting avenue of future work would
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thus be to exploit the power of both approaches into a common scalable framework,
in order to create highly detailed objects with higher resolution geometries combined
with detailed digital models of materials.
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