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Abstract
We present an automated light calibration pipeline for free-form acquisition of shape and reflectance of objects using common
off-the-shelf illuminators, such as LED lights, that can be placed arbitrarily close to the objects. We acquire multiple digital
photographs of the studied object shot from a stationary camera. In each photograph, a light is freely positioned around the
object in order to cover a wide variety of illumination directions. While common free-form acquisition approaches are based
on the simplifying assumptions that the light sources are either sufficiently far from the object that all incoming light can be
modeled using parallel rays, or that lights are local points emitting uniformly in space, we use the more realistic model of
a scene lit by a moving local spot light with exponential fall-off depending on the cosine of the angle between the spot light
optical axis and the illumination direction, raised to the power of the spot exponent. We recover all spot light parameters
using a multipass numerical method. First, light positions are determined using standard methods used in photometric stereo
approaches. Then, we exploit measures taken on a Lambertian reference planar object to recover the spot light exponent and the
per-image spot light optical axis; we minimize the difference between the observed reflectance and the reflectance synthesized
by using the near-field Lambertian equation. The optimization is performed in two passes, first generating a starting solution
and then refining it using a Levenberg-Marquardt iterative minimizer. We demonstrate the effectiveness of the method based on
an error analysis performed on analytical datasets, as well as on real-world experiments.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image processing and Computer Vision]: Digitization and
Image Capture—Imaging Geometry

1. Introduction

Multi-light reflectance processing techniques, such as Polynomial
Texture Maps (PTM) [MGW01], more generic Reflectance Trans-
formation Imaging (RTI) [MVSL05] and Photometric Stereo (PS)
[Woo78, Woo80], aim to visually characterize objects by observ-
ing them from a fixed point of view under different lighting con-
ditions. They are currently emerging as a de-facto standard in ap-
pearance and geometry acquisition due to their cost-effectiveness
and flexibility. Their range of application goes from qualitative es-
timation of image formation models, for applications such as visual
enhancement or relighting [MWGA06], to the quantitative recov-
ery of shape and material properties [AG15].

While some techniques exist for recovering shape and mate-
rial information under unknown environmental illumination con-
ditions [BJK07, HWM∗15], the most widespread approach used in
many application fields, including Cultural Heritage (CH) inves-
tigation [MMSL06], medical interventions [DBO∗15, DGL∗14],
and underwater data gathering [MCOC15], considers a single cal-
ibrated camera taking multiple images of a scene illuminated
by a single moving light. A wide variety of physical realiza-
tions exist, ranging from purely free-form methods using a hand-
held illuminator [CHI16], to different sizes of fixed light domes

[CHI16, SSWK13, Ham15]. While dome solutions allow for easier
pre-calibration, and thus more reliable data, they are more costly
and less flexible in terms of achievable object size and illumination
directions. For this reason, much research is focusing on improving
the quality of free-form solutions [GDR∗15, CPM∗16], in which a
light is freely moved in front of a still camera.

Classic methods, however, assume for simplicity either a colli-
mated and uniform light source (e.g., far point light), which means
that the light direction and its intensity are the same across the en-
tire image domain, or a local point light, which means that the only
variation of illumination is due to the inverse-square distance fall-
off. These assumption do not hold for common off-the-shelf illu-
minators, such as LED lights, which, in addition to being placed
arbitrarily close to the objects, present a variable angular radia-
tion pattern [MS08]. Such simplifying assumptions induce consid-
erable errors in the estimation of shape and material properties (see
Sec. 2).

Our approach. In this paper, we present an automated light cali-
bration pipeline for free-form acquisition of shape and reflectance
of objects using common off-the-shelf illuminators, such as LED
lights, that can be placed arbitrarily close to the objects. We over-
come the limitations of common simplified lighting models, based
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on parallel lighting or local point lights, by using a spot light model,
which is general enough to model common illuminators such as
LEDs [MS08]. The parameters that control lighting are thus the
spot light position, the direction of the light optical axis, and a spot
exponent that controls the exponential fall-off depending on the co-
sine of the angle between the spot light optical axis and the illumi-
nation direction. We recover all spot light parameters using a mul-
tipass numerical method. First, light positions are determined using
standard methods used in photometric stereo approaches. Then, we
exploit measures taken on a Lambertian reference planar object to
recover the spot light exponent and the per-image spot light optical
axis; we minimize the difference between the observed reflectance
and the reflectance synthesized by using the near-field Lambertian
equation. The optimization is performed in two passes, first gen-
erating a starting solution and then refining it using a Levenberg-
Marquardt iterative minimizer.

Contribution. While not all the techniques presented in this work
are novel in themselves, their elaboration and combination provide
a significant step towards creating a practical and flexible RTI and
PTM acquisition pipeline with local spot lights, such as the now
ubiquitous LEDs. We introduce, in particular, a fully automated
multipass numerical method for estimating the light parameters.
The method is flexible enough to be applied to spot lights as well
as to point light sources and Lambertian emitters. We demonstrate
its effectiveness based on an error analysis performed on analytical
datasets, as well as on real-world experiments.

Advantages and limitations. The proposed pipeline has several
advantages. It is very easy to implement and to use and does not
require any special object-dependent parameters to tune its behav-
ior, so that it can be used by non-experts in application fields (e.g.,
CH, medical, etc). The proposed spot light model is general enough
to model common illuminators such as LEDs, much better than
common directional or point lighting models. Moreover, the light
does not have to be placed far from the subject, but the light direc-
tion and intensity calibration can cope with close-range illumina-
tion. Our calibration and spotlight modeling techniques can be in-
tegrated to many existing pipelines, offering an improvement over
those in common use, using simple directional lights or local point
lights. In fact, it requires the same input data as the standard PS
captures, and it is compliant to illuminators generally used. It is
not only restricted to the case of free-form settings, but can be em-
ployed to calibrate fixed systems (e.g., dome-like light stages), or to
test the quality and accuracy of robotic-based solutions. Of course,
the main limitation is that the presence of some calibration target is
required to compute the light position in space for each image. Al-
though this excludes the application of our method to extreme wild
setups, nowadays free-form PS acquisitions are employed daily by
non-experts, which already feel comfortable to position calibration
targets (reflective spheres and white reference targets) near the ob-
ject under study before the capture session [CHI16].

2. Related work

The calibration of light direction and intensity for PS purposes is a
wide and well known research subject. In the last decades a lot of
methods have been published that deal with several types of illumi-
nants, different from the classic far, point light condition, and with

their non-trivial calibration [PSG01, AFG13, TMNM09, WSL08].
The vast majority of them tries to calibrate near, point light emit-
ters [ATS∗12, WC01]. An exhaustive review of those methods is
out of the scope of this paper, and we refer the reader to the survey
of Ackermann and Goesele [AG15] both as a good, up-to-date re-
view of the most important PS techniques, and as a useful source
of information on error and calibration issues in this field. In the
following, we provide only an analysis of the most recent and rel-
evant works related to light calibration in PS, and we discuss the
motivation of our contribution compared to them.

Some approaches try to calibrate light direction and intensity by
interpolation means in the 2D image domain [GDR∗15]. Ciortan et
al. [CPM∗16] estimate light directions in a small set of image loca-
tions by using reflective spheres (highlight pixels). They find a per-
pixel light direction l = {lx, ly, lz} across the entire image by linear
interpolating the sampled values of lx and ly components, and im-
posing ‖l‖2 = 1. They include a white planar target of known nor-
mal and albedo in the framed scene behind the captured object, and
exploit the interpolated light direction information to first remove
the Lambertian effect from measured radiance of white planar pix-
els, and then to compute light intensity for that region. Finally, they
apply a quadratic interpolation to find light intensity values for the
remaining part of the image domain. Their image-based computa-
tion does not take into account the effect due to a different depth
of highlight points compared to the plane, and, although they do
not impose a constraint on a light model, nonetheless they both
force the light direction to follow a linear polynomial, and they
make the assumption that the light intensity on the plane behaves
as a quadratic function. Moreover, they do not explicitly take into
account the fall-off due to the inverse of squared distance, by im-
plicitly including it into the quadratic coefficients. Similarly, other
methods [SSSF13, AP14] use a flat reference object with known
albedo to calibrate an arbitrary lighting vector field. They don’t
use polynomial interpolation, but they exploit measured spatially-
varying intensities to compensate the input images, and to convert
the problem into a standard collimated case. Unfortunately, since
these calibrations avoid to adopt a light model defined in the whole
3D space, they completely neglect direction and intensity varia-
tions in the z-axis. Hence, they are not generally applicable, being
valid only in the vicinity of the calibration plane. Conversely, the
proposed method relies on the camera internal calibration and the
3D calibration of target and light sources, i.e., white planar target
equation in space and the 3D position of illuminators. This allows
us to cast rays from/to the light sources and the camera, and to in-
tersect them with the reference white plane. In this way, we are
able to sample the light vector field (both direction and intensity)
with a better accuracy along the planar reference, by taking also
into account the fall-off due to the distance. Moreover, by adopting
a defined illumination model, we know the light behavior in the 3D
space, so that we can compute light directions and intensities for
points outside the calibration plane.

Considering the light form factor and a model of its behavior in
the 3D space for PS analysis is a very old and well known topic; for
instance, the seminal approach by Ikeuchi and Horn [IH79] mod-
els the image formation process given a linear light source and a
specular object. More recently, Mecca et al. [MWBK14] proposed
a mathematical formulation based on quasi-linear PDEs, which
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solves a perspective, near field photometric stereo given point light
sources. Beside directional lighting, Quéau and Durou [QD15]
show how to derive lighting models for several real-world scenar-
ios, such as isotropic, near punctual model, extended light sources,
and LCD-screen based illuminants. Although these works pose the
mathematical bases for dealing with more general lighting condi-
tions, however, the inverse calibration problem remains challeng-
ing, i.e., computing lighting model parameters from a given set of
intensity measurements.

Two recent approaches are very similar to ours, and worth men-
tioning and comparing. Huang et al. [HWBC15] propose an alter-
nating minimization formulation for computing near-light positions
and surface normals. Their model takes into account several non-
idealities, such as fall-off due to the squared distance and camera
vignetting. Although they are capable to calibrate the system with-
out knowing the light positions in advance, however, they impose a
point light model, which limits the method applicability. Although
we require that some (at least three) reflective spheres were in-
cluded within the framed scene to initially estimate light positions,
we assume that the form factor of the light source can be generally
modeled by the product of an intensity and a cosine-power term.
This is similar to the model presented by Xie et al [XSJ∗15], which
propose a LED-based photometric stereo system. They calibrate a
seven LED lamp setup through the estimation of lighting positions
and principal axis. They use a LED lighting model and a diffuse
sphere of known shape as a calibration target; the sphere exhibits
also a small specular signal. Unfortunately, they rely on a fixed
light rig (not free-form), and on the fact that the optical axis of the
LED is collinear to the incident light direction at a specular point
on the sphere, which is not always the case, and, in addition, very
rarely met in a free-form acquisition. Moreover, their approach de-
pends on a fixed LED light, whose parameters are known a-priori.
Instead, we consider the light intensity, its optical axis and the ex-
ponential as unknown variables. Compared to these similar tech-
niques, in both cases our model allows us to deal with a free-form
PS acquisition and a wide range of light sources, including ideal
point lights, Lambertian emitters and the more general spot light
illuminators.

3. Method

The main input of the proposed calibration pipeline is a set of im-
ages taken from the same view point but with different illumina-
tion conditions, together with the intrinsic parameters of the cam-
era used for capture. The images are considered already undis-
torted, so we discard distortion coefficients, and we use only the
camera matrix for our computation (i.e., focal lengths and princi-
pal point). We also require that a white Lambertian planar target
were included within the framed scene; we need as input the cor-
responding plane equation in the camera reference frame, and a
binary mask image that indicates the pixels that belong to that ref-
erence flat object. Further, the per-image light positions in the cam-
era reference frame must be estimated prior to the application of
our method. Such information can be obtained by a variety of stan-
dard means [AG15]. In this work, we derive it by using a calibrated
camera combined with reflective spheres of known size. Similarly
to Powell et al. [PSG01], sphere positions are detected in the im-

ages. Camera rays are then shot towards the observed highlight pix-
els, and the reflected rays are then intersected in 3D to find the light
position for a given image. The rest of the method is, however, in-
dependent from the technique used to find the light position.

3.1. Lighting model and unknowns

Consider the region W of pixels w = (u,v) belonging to the planar
target. This region is the same for all images, since the PS/RTI setup
requires a fixed view point. We model the formation process of
image i by using the near-field Lambertian equation [HWBC15]:

I (i,w) = ρ(w)
L (i,w)

d (i,w)2

(
l̂ (i,w) · n̂(w)

)
(1)

Each pixel with brightness I corresponds to a 3D point P in the
target with albedo ρ and unit normal n; d is the distance be-
tween the point and the light source position PL (i), while l̂ (i,w) =
(PL (i)−P(w))/‖PL (i)−P(w)‖ is the light direction at point
P(w). L is the emitted light intensity along the direction l̂. We make
the assumption that L is a function of the light optical axis â and the
specific light direction l̂, by using the cosine-power term [XSJ∗15]:

L (i,w) = L0
(
l̂ (i,w) · â(i)

)m
(2)

where L0 is the maximum emitted intensity (i.e., the emitted light
intensity along the optical axis â) and m is the exponential that reg-
ulates the intensity fall-off due to the angle between the light direc-
tion l̂ and its optical axis â.

The provided mask defines the set of pixels W for all images cor-
responding to the white planar target, and the input set of images
in that region gives us the per-pixel measured values of I. We con-
sider ρ = 1 for the white target, and we know from its equation the
value of n̂; this quantities are independent from w. By exploiting
camera intrinsic parameters we can cast rays from the camera to
the plane, and we can compute for each pixel the corresponding 3D
point P(w). Given the known light position PL (i) for each image
i, it is straightforward to compute both d (i,w) and l̂ (i,w). Given
this a-priori knowledge we compute from equation 1 the measured
value of L̃ (i,w) as:

L̃ (i,w) =
I (i,w)d (i,w)2

l̂ (i,w) · n̂
(3)

For an input image set of cardinality N, we have to find N + 2 un-
known variables, i.e., L0, m and â(i) for i = 1...N. Here we propose
to solve this problem through a non-linear minimization strategy:

argmin
L0,m,â(i)

N

∑
i=1

∑
w

∥∥L̃ (i,w)−L (i,w)
∥∥2 (4)

3.2. Spot light calibration

In order to estimate the spot light parameters, we solve the global
non-linear optimization problem using a two-step approach, in
which a coarse global solution is obtained with a simplified model
and then refined by a local minimization of a more complex objec-
tive function.

The first step is thus to find a reliable starting point for the search
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of the local minimum of the sum of squares of nonlinear functions
defined in equation 4. For each image we need to estimate the initial
guess for â(i), and then we need to find a global initial value both
for L0 and m.

In our approach, in order to find the coarse initial solution, we
first separately solve the problem in parallel for each single image,
then merge the results. For each single image i, we follow a brute
force approach; for simplicity, since we are dealing here with only
one image, we omit the i in the description. For a fixed subset S of
pixels in the image (see section 3.3 for details) we cast rays from
the camera center of projection to the scene, and we compute the
intersections of those rays and the plane defined by the planar tar-
get. For each of those 3D point P(s) we define a candidate axis
â(s) = (PL−P(s))/‖PL−P(s)‖, where PL is the position of the
light for this specific image. Note that S is a subset of the entire im-
age, and it is not correlated to the set W ; this is because, for the sake
of generality, the optical axis of the light might falls outside the re-
gion W . Conversely, at least for the initial guess, we assume that it
falls within the framed scene. To find a pair {L0 (â(s)) ,m(â(s))}
for each candidate axis we use the logarithmic least-squares fitting

y = A+Bln(x) (5)

applied to equation 2, where y = y(w) = ln(L (w)), A =
ln(L0 (â(s))), B=m(â(s)), and x= x (â(s) ,w) = l̂ (w) · â(s). Con-
sidering all the NW image pixels in W , it leads to:B = m =

NW ∑w(yw ln xw)−∑w yw ∑w ln xw

NW ∑w(ln xw)
2−(∑w ln xw)

2

A = ln(L0) =
∑w yw−B ∑w(ln xw)

NW

(6)

For each candidate axis we compute the residual of the logarithmic
fitting:

R = ∑
w
‖A+Bln(xw)− yw‖2 (7)

We initialize the light optical axis for the selected image with the
value â(s) corresponding to the minimum residual, and we keep
both the residual and the associated pair {L0 (â(s)) ,m(â(s))} for
further processing.

After we loop for all the images we obtain the initial assignment
of all â(i) for i = 1...N. Now we need to find the initial values of L0
and m, which are common to all the input images. From the previ-
ous computation, for each image i, we keep the minimum residual
(we call it now R(i)) and the corresponding intensity and exponen-
tial estimations (we call them now {L0 (i) ,m(i)}). We first order
these pairs by increasing residual and, to discard possible outliers,
we keep only pairs with residual values less than the median resid-
ual. For the remaining pairs, we choose the one that minimizes the
sum of squared residuals in equation 7 across the entire input image
set.

Finally, starting from the coarse solution just computed, we re-
fine calibration by a local minimization of the logarithmic version
of equation 4, globally computed within the set W across all input
images, i.e.:

argmin
L0,m,â(i)

N

∑
i=1

∑
w

∥∥ln L̃ (i,w)− lnL (i,w)
∥∥2 (8)

This local nonlinear minimization problem is efficiently solved
with the Levenberg-Marquardt optimization algorithm [LA04].

3.3. Implementation notes

As we mentioned above, the calibration pipeline is completely au-
tomatic. It does not need any user-defined parameter tuning that
depends on the input data nature, and, in particular, it is indepen-
dent from pixel resolution and number of light positions. However,
some hidden parameters must be taken under control in order to
make the pipeline scalable. More specifically, the cardinality of the
sets W and S might strongly affect the computational time, so we
need a strategy to keep those under a certain threshold. Thus, the
algorithm will not consider the entire pixels in the mask (W ), nor
the entire image when computing candidate axis (S). In both cases,
it automatically performs an uniform sub-sampling over these do-
mains, by automatically setting two hidden parameters. The num-
ber of white planar pixels (cardinality of W ) influences the speed
of the Levenberg-Marquardt optimization algorithm; we drive the
sampling over the masked region across all images so that the num-
ber of measurements in the optimization will not exceed 105. Sim-
ilarly, for each image we will extract no more than 104 candidate
axes (cardinality of S). These two parameters are fixed once and
never changed whatsoever. Further, to avoid effects due to a grid-
like sub-sampling of pixels in those regions, in both cases we use
a two-dimensional low-discrepancy picking sequence (Halton se-
quence [KN12]).

(a) Light constellation (b) Input mask

Figure 1: Synthetic setup. We use a controlled synthetic setup to
validate light calibration accuracy. The light positions are taken
from one real-world acquisition, and are shown here as a constel-
lation of highlights on one of the sphere(a). The mask used to select
white planar target pixels(b) has been created with a non-regular
pattern (e.g., a simple rectangle) to simulate a real scenario with
real objects occluding the planar target.

4. Results

The proposed light calibration algorithm has been tested both on
synthetic and real datasets. The pipeline has been implemented
on Linux using C++ and the OpenCV library [Ope13]. We em-
ploy as optimization code the Lourakis’s open source C++ li-
brary for solving non-linear problem by Levenberg-Marquardt al-
gorithm [Lou04]. Our benchmarks were executed on a PC with 4
Intel Core i7-4510U CPU @ 2.00GHz processors, and 8GB RAM.

In order to test and validate the quality of the proposed light
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(a) Input image #6 (b) Point light re-
rendering

(c) Spot light re-
rendering

(d) Input image #24 (e) Point light re-
rendering

(f) Spot light re-
rendering

Figure 2: Re-rendered synthetic images. We take two input origi-
nal images, #6 (a) and #23 (d), and we compare them with the re-
rendering of the diffuse plane done with the light parameters com-
puted by two different calibration models, i.e., point light (b) (e)
and spot light (c) (f). Spot light model behaves better in fitting typ-
ical common LED-based emitters.

Method Min Max Average Median Std
Point light 0.0 0.24 0.07 0.07 0.05
Spot light 0.0 0.06 0.02 0.01 0.01

Table 1: Average re-rendering error statistics.

calibration pipeline, we present here results obtained on synthetic
data as well as a real-world acquisition. For the generation of all
synthetic examples, we provide as input the same camera intrin-
sic parameters, and 53 light positions arranged in the hemisphere
above the scene; figure 1(a) shows the light constellation as seen
from one of the glossy spheres. We didn’t compute the light con-
stellation analytically, but instead we took it from one free-form
real acquisition, in order to consider a reasonable real-world dis-
tribution. The size of the acquired field and the distance between
the scene and the light sources are the same as common RTI cap-
ture setup. Accordingly, we set illumination parameters similar to
the most common LED light emitters. As in the paper by Xie et
al. [XSJ∗15], we chose a LED with an emitting angle of θ = 15◦;
this means that the light exponential is m = −ln2/ln(cosθ) ≈ 20.
Since the equation 1 includes the inverse of the squared distance,
light intensity value is set to L0 = 522000 in order to produce a
meaningful average exposure value across the rendered images un-
der the chosen light constellation. The light axes are randomly set
within those that fall on the visual portion of the plane; in other
words, no light axis intersects the plane in a point not visible from
the camera. Finally the input mask is created with a non-regular
pattern in order to simulate objects positioned within the scene that
occlude the planar white target (Figure 1(b)). In all the experi-
ments images the signal is a grayscale brightness, and its range is
normalized to [0,1].

(a) Minimum error (b) Maximum error

(c) Median error (d) Error standard deviation

Figure 3: Re-rendering error plots. We consider the pixels belong-
ing to the diffuse plane and we plot the per-image minimum (a),
maximum (b), and median (c) re-rendering error, and its corre-
sponding standard deviation (d). The spot light re-rendering (or-
ange lines) exhibits a much lower error than the point light one
(green lines).

Method Min Max Average Median Std
Point light 0.03 5.3 2.6 2.7 1.3
[GDR∗15] 0.04 13.1 6.3 6.1 2.9
Spot light 0.03 3.1 1.6 1.6 0.6

Table 2: Normal angle error statistics (degrees).

4.1. Synthetic plane

We first test our approach on a controlled, simple scenario, i.e., a
synthetic diffuse plane. The plane is rendered by using the near-
field Lambertian model in equation 1. We first test the difference
between the ideal point light assumption and the calibration of a
spot light. In the first case, only light positions are required, and
we need to find only an estimation of the light intensity, in order to
take into account fall-off due to the inverse of squared distance. In
the case of spot light, light intensity and positions are not enough,
and we require also light optical axis and decay factor. To measure
the quality of the two assumptions, we re-render the images of the
diffuse plane by using the parameters computed in the two cali-
bration approaches (point light vs spot light) and the equation 1.
In Figure 2 we show two examples. For each of them we present
the original image, and the two diffuse planes re-rendered by using
point light and spot light model. In the first row the simulated light
is directly above the scene (see highlights in the spheres) while, in
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(a) One input image (b) Compensated - Point light

(c) Compensated - [GDR∗15] (d) Compensated - Spot light

(e) Single row plot of compensated signals

Figure 4: Compensated signal. We give the same synthetic planar
dataset to the light calibration pipeline based on point light source,
2D interpolation [GDR∗15], and to our algorithm. We show here
one of the input image (a), and the three respective compensated
images after the light calibration (b) (c) (d). Since the framed
object is a plane, the compensated image should have a flat, uni-
form appearance. We compare the signal of the three methods by
plotting a selected part of a single row 4(e). This result measures
how our method exhibits a higher capacity in compensating non-
uniform lighting.

the bottom row, we have a more raking light. In both cases the light
optical axis points toward the central part of the image. It is clear
how the spot light model fits better the simulated LED illuminant.
To compare them numerically, we compute some error statistics in
the two cases of point light or spot light re-rendering. In Figure 3

we plot the per-image minimum 3(a), maximum 3(b), and median
error 3(c), and the corresponding standard deviation 3(d). The spot
light calibration (orange lines) clearly outperforms the point light
one (green lines). For the sake of readability the y-axes ranges of
the plots are all different. In table 1 we present the average values of
the same statistics computed across all images. Here we also show
how the average and the median are almost equal; the same holds
for the per-image values, so that we omit the corresponding plot in
Figure 3.

In Figure 4 we show one of the original input images from the
synthetic planar dataset. After the light calibration, the knowledge
of light direction and intensity allows for the computation of a
corrected compensated image, as if the light was a perfect uni-
form point light emitter. We compare the quality of calibration by
computing this image with the three methods based on point light
model, quadratic light intensity interpolation [GDR∗15] and spot
light model. What we expect is that, since the framed object is a
plane, the higher is the accuracy of light calibration, the flatter will
be the signal in the compensated image. Figure 4(b), 4(c) and 4(d)
respectively show these compensated images. In order to make the
result more readable, we selected a part of a row in these three im-
ages (red lines), and we plot only that signal (Figure 4(e)). Our pixel
values are flatter than those found with the other light calibration
pipelines, so spot light model allows for a better counterbalance of
the non-homogeneous light intensity across the image.

Finally we compared the plane normal computation by apply-
ing photometric stereo to the three calibrated image sets. Since we
already know the normal of the synthetic plane, we computed the
angle error statistics produced by point light model, image based
interpolation and spot light assumption. The typical quality of a
normal estimation in PS algorithm is in the range [2,5] degree er-
ror [AG15]. We can see how our approach is in line with state-of-
the-art baseline accuracy, and performs better than the point light
based calibration and the image-based approaches [GDR∗15].

(a) It. Bronzital 10c (b) It. Copper 10c (c) Roman Quad.

Figure 5: Samples. Photos of the real-world coins used to test the
proposed light calibration approach: (a) an Italian Bronzital 10c
coin; (b) a severely degraded Italian copper 10c coin; (c) a bronze
roman coin.

4.2. Physical acquisition results

In order to have an early validation of our method in a practical
setting, we present here results obtained for the acquisition of a

c© 2016 The Author(s)
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Figure 6: Normal map errors. Difference between PS estimated
normals from the reference microprofilometer normals.

Table 3: Median angular distances of the PS estimated normals
from the reference microprofilometer normals.

Non-calib. [GDR∗15] Point Spot
Bronzital 10c 15.08 5.95 7.39 4,93
Copper 10c 20,62 11,41 12.29 8.06
Quadrans 13.84 6.82 8.38 6.68

small bronze Roman coin (quadrans) and two 10 cent antique Ital-
ian coins (see Figure 5). The Roman coin, dated 9 BC, is made of
bronze and damaged by scratches. One exemplar of the 10c Ital-
ian coins, dated 1931 is made of copper and is severely degraded,
while the second one, dated 1939, is made of a special alloy with
nickel called Bronzital, which has been used to improve corrosion
resistance.

The digital camera used for the experiment is a DSLR Nikon
D810 with CMOS sensor (36x24mm, spatial resolution of 36MP
for the full format image area), with a AF-S FX Nikkor 50mm
f/1.8G lens and was remote-controlled to avoid vibrations. The light
source used for the experiment was a white LED (color temperature
6500K). All images were acquired at ISO 32, aperture f8, shutter
speed 0.8s, with custom white balance and manual focus. The dis-
tance from the camera to the acquisition plan was approximately
95cm, while the light was positioned at a distance of about 1m.
from the target object. 49 light directions were acquired around the
object. The position of the lights and of the calibration plane was
estimated from highlights in four reference spheres of known size
placed at the corners of the acquisition area.

In order to test the accuracy of shape capturing, we compared
a PS reconstruction of the normal field with measures of the same
coins taken with an optical microprofilometer with a transversal
resolution (XY grid) of 50 microns with a repeatability (Z heights)
of 0.1 microns. Normals were reconstructed without any correction,
as done in many RTI approaches for relighting or shape enhance-
ment applications, as well the in-plane calibration using low-degree
polynomials [GDR∗15], a point light model, and our spot light

model. Normal maps of the photographic and microprofilometric
acquisitions were registered with a mutual information maximiza-
tion approach after a manual pre-alignment.

As shown in Table 3 and Figure 6, light calibration sensibly
improves normal quality, and the spot light model consistently
provides measurable improvements with respect to the other ap-
proaches.

5. Conclusion and future work

We have presented an automated light calibration pipeline for
achieving accurate free-form RTI acquisition using common off-
the-shelf illuminators, such as LED lights, that can be placed ar-
bitrarily close to the objects and can loosely point at them. Re-
construction is achieved by modeling the moving illuminator as a
spot light, and recovering the parameters through a multipass nu-
merical method that optimizes the difference between the observed
reflectance on a reference white planar target and the reflectance
synthesized by using the near-field Lambertian equation with a spot
light illuminator.

Our results on synthetic and real data demonstrate that this model
produces measurably more accurate results in normal reconstruc-
tion than competing methods based on local point light modeling
or in-plane low-frequency lighting correction.

In order to further improve its accuracy and light modeling capa-
bility, we plan to further extend our method to estimate a multiple-
lobe radiation pattern for the moving light [MS08]. We also plan to
use this technique in material characterization applications.
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