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ABSTRACT

Surround-view panoramic imaging delivers extensive spatial cover-
age and is widely supported by professional and commodity capture
devices. Research on inferring and exploring 3D indoor models from
360° images has recently flourished, resulting in highly effective so-
lutions. Nevertheless, challenges persist due to the complexity and
variability of indoor environments and issues with noisy and incom-
plete data. This course provides an up-to-date integrative view of
the field. After introducing a characterization of input sources, we
define the structure of output models, the priors exploited to bridge
the gap between imperfect input and desired output, and the main
characteristics of geometry reasoning and data-driven approaches.
We then identify and discuss the main sub-problems in indoor
reconstruction from panoramas and review and analyze state-of-
the-art solutions for indoor capture, room modeling, integrated
model computation, visual representation generation, and immer-
sive exploration. Relevant examples of implemented pipelines are
described, focusing on deep-learning solutions. We finally point
out relevant research issues and analyze research trends.
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1 INTRODUCTION

This paper accompanies the course given at SSGGRAPH Asia 2024
on the topic of automatic 3D modeling and exploration of indoor
structures from panoramic imagery. In addition to describing the
course format, prerequisite, and content, we provide a brief dis-
cussion of the covered state-of-the-art with relevant bibliographic
references.

2 FORMAT AND PREREQUISITES

Format. Half-Day Course (3 hours and 45 minutes, including one
15-minute break).

Presenters. The course is organized by Enrico Gobbetti (co-author
of the material) and delivered in presence by Giovanni Pintore and
Marco Agus (speakers and material co-authors). See Appendix A
for bio sketches.

Necessary background. The course is at the intermediate level.
Basic computer vision and deep learning backgrounds are prereq-
uisites.

Intended audience. The target audience includes graduate stu-
dents, researchers in 3D modeling and scene understanding, and
practitioners in the relevant application fields. Researchers will
find a structured overview of the field, which organizes the various
problems and existing solutions, classifies the existing literature,
and indicates challenging open problems. Domain experts will, in
turn, find a presentation of the areas where automated methods
are already mature enough to be ported into practice, as well as an
analysis of the kind of indoor environments that still pose major
challenges.

3 COURSE DESCRIPTION

The automatic 3D reconstruction, modeling, and exploration of in-
door scenes has become a prominent and increasingly well-defined
research topic in recent years [Pintore et al. 2020b]. Current ef-
forts are particularly focused on developing specialized techniques
for common, highly structured multi-room environments, such as
residential, office, or public buildings, which have a substantial
impact on architecture, civil engineering, digital mapping, urban
geography, real estate, and more [Ikehata et al. 2015]. In this con-
text, the emphasis has shifted from creating dense 3D models that
assemble every measured geometric and visual detail to abstract-
ing high-level structured models that are optimized for specific
application-dependent characteristics and incorporate a degree of
semantic information [Hu et al. 2020; Ikehata et al. 2015; Pintore
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et al. 2020b]. Central to this research are the tasks of identifying
architectural elements (such as rooms, walls, windows, and doors)
and indoor objects, and integrating them into a coherent structured
3D representation and visual model.

Many options exist for performing capture, ranging from very
low-cost commodity solutions to professional devices and systems.
Among the many possible options, 360° imagery is attracting a lot of
interest [Zou et al. 2021], since it provides the widest cost-effective
coverage with just a few shots [Yang et al. 2020].

Furthermore, omnidirectional imagery is increasingly recognized
as a critical element for creating immersive content from real-world
scenes. A single-shot 360° image, which captures the entire sur-
rounding environment, inherently supports a more dynamic form
of exploration compared to traditional 2D imagery. When viewed
through a Head-Mounted Display (HMD), it encourages viewers to
explore the content by making natural head movements, thereby
facilitating an intuitive virtual reality (VR) interface [Xu et al. 2020].
For this reason, 360° image viewing has emerged as a primary
mode for exploring real-world scenes in VR [Matzen et al. 2017]
and is extensively used in applications such as indoor navigation.
However, to provide essential depth cues—such as stereopsis or
motion parallax—images alone are insufficient, and scene modeling
or view synthesis is required.

Even with the extensive context provided by 360° images, recov-
ering accurate indoor models from visual input remains a highly
challenging task due to the intrinsic characteristics of indoor envi-
ronments, such as confined spaces, windows, textureless surfaces,
non-cooperative materials, and abundant clutter. In response to
these challenges, various indoor reconstruction techniques that
leverage wide contextual information and specific geometric and
holistic priors have been proposed in recent years [Pintore et al.
2020b]. Notably, the growing availability of large-scale synthetic
and reality-based data collections has facilitated the rise of data-
driven and deep-learning approaches capable of relaxing the priors
imposed by pure geometric reasoning by learning hidden relations
from examples.

In this course, we provide an up-to-date integrative view of
the field. After introducing a characterization of input sources,
we define desired output structures, the priors exploited to bridge
the gap between imperfect sources and the desired output, and
the main characteristics of geometry reasoning and data-driven
approaches. We then identify and discuss the main sub-problems in
structured reconstruction, reviewing state-of-the-art solutions for
3D room and floor-plan modeling and for interactive visual editing
and exploration in standard and immersive settings. Examples of
data-driven pipelines for depth and layout recovery, 3D floorplan
recovery, and integration within interactive Extended Reality (XR)
applications will be illustrated. The course closes with a review of
relevant research issues and an analysis of research trends.

4 OUTLINE AND SCHEDULE

The course is organized in two sessions, with a 15’ break and a
final 25’ Wrap-up and Q&A open discussion. The schedule is the
following.
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Duration Lecturer Topic Sub-topics
10’ Pintore Opening and introduc- Course motivation and outline; Presenters in-
tion troduction; course overview
25 Agus Indoor capture, model- Definitions & Applications; Tasks and model,

ing, and exploration ba- Data capture; Panoramic cameras; Artifacts;
sics Reconstruction priors; Open research data

45’ Pintore Room modeling Bounding surfaces; Exploiting priors; Deep
learning solutions; Examples of data-driven
pipelines for depth and layout recovery

15’ BREAK

45’ Pintore Integrated model compu- Multi-rooms; Multi-view; Segmentation

tation and localization; Examples of data-driven
pipelines for 3D floorplan recovery

60’ Agus Visual  representation Appearance; Immersive panoramic explo-

generation and explo- ration; Example of integration within interac-
ration tive XR applications

25’ Agus, Pintore Wrap-up and discussion Summary of techniques and assessment of

+ Q&A capabilities; Open problems; Open discussion

5 COURSE CONTENT OVERVIEW

The content of each session is summarized in the following sections.

5.1 Opening and introduction

The introductory section introduces the organizer and speakers
(see Appendix A) and provides a global overview of the course
motivation and organization.

The tutorial’s content is based on the authors’ relevant experi-
ence, which has produced surveys, tutorials, and publications that
have advanced the state-of-the-art in the various sub-fields targeted
by this course. A comprehensive review and analysis of the 3D in-
door reconstruction field has been published in Computer Graphics
Forum [Pintore et al. 2020a] and presented in a talk at Eurographics
and a half-day tutorial at SIGGRAPH 2020. A course focused on
omnidirectional images has also been presented at CVPR2023. This
course significantly expands the sub-topic centered on panoramic
images, updating the survey of recent techniques, and expanding
the section on exploration in standard and XR environments. These
prior surveys and courses provide significant background mate-
rial. We also direct the reader to complementary surveys on scene
understanding from panoramic imaging [Gao et al. 2022], as well
as extraction of 3D geometry from 360° imagery [da Silveira et al.
2022] for expanding the coverage of the subject matter.

On those topics, the authors have introduced innovations that
will be discussed in this course, together with major publications
(see references in Pintore et al. [Pintore et al. 2020a], plus relevant
subsequent ones (e.g.,[Nauata et al. 2021; Zou et al. 2021]). These
include deep-learning solutions (e.g., scene synthesis [Pintore et al.
2023], depth estimation and completion [Pintore et al. 2021a, 2024a],
single-shot automatic emptying [Pintore et al. 2022], inference of
Atlanta-world layouts using a slice-based representation [Pintore
et al. 2021a] or of general 3D layouts with graph-convolutional
networks [Pintore et al. 2021b]), geometry-reasoning or mixed
techniques (e.g., reconstruction of multiroom environments from
overlapping images [Pintore et al. 2019, 2018] or concurrent extrac-
tion of geometric, material and semantic signals [Shah et al. 2024]),
as well as solutions for real-time exploration in XR settings (e.g.,
[Pintore et al. 2023, 2024b]), for photorealistic style transfer be-
tween indoor environments [Tukur et al. 2023b], and many others
(see Appendix A).
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5.2 Indoor capture, modeling, and exploration
basics

The goal of structured 3D indoor reconstruction is to transform an
input source containing a sampling of a real-world interior environ-
ment into a compact structured model containing both geometric
and visual abstractions. A characterization of the typical structured
indoor models and the main problems to be solved to create such
models from the given input data was provided by Ikehata et al. [Ike-
hata et al. 2015]. In this tutorial, we focus on the main problems of
individual room modeling (subsection 5.3), integrated model com-
putation (subsection 5.4), and visual representation generation and
exploration (subsection 5.5).

Regardless of the specific sub-problem addressed, each input
source typically provides only partial coverage and imperfect sam-
pling, complicating the reconstruction process and introducing am-
biguities. Berger et al. [Berger et al. 2017], focusing on point clouds,
have classified the most common artifacts into uneven sampling
density, noise, outliers, misalignment, and missing data. Such arti-
facts, also prevalent in single- and multi-view 360° inputs, take spe-
cific forms when combining indoor environments and panoramic
imagery. First of all, While 360° images capture the full context
surrounding the viewer, they often suffer from uneven angular cov-
erage and distortions due to acquisition settings (i.e., camera design)
and data interchange formats (i.e., projections such as the equirect-
angular one). Moreover, indoor scenes further complicate scene
analysis and understanding, as they are typically characterized by
narrow spaces bounded by architectural elements such as walls,
floors, and ceilings, and filled with various objects, including furni-
ture. Thus, the depth distribution in indoor environments is uneven,
ranging from furniture close-ups to distant features like ceilings,
complicating the accurate prediction of metric depths and infor-
mation extraction. Although the scene is often contained within
architectural boundaries, structure recognition can be difficult due
to cluttered and arbitrarily arranged objects that obscure large por-
tions of walls and floors. Additionally, extensive untextured regions,
such as bare walls, make associating geometric properties with spe-
cific points challenging. The presence of non-cooperative materials,
such as mirrors or semi-transparent surfaces, further complicates
the challenges.

Thus, without prior assumptions, the reconstruction problem
for indoor environments is ill-posed, since an infinite number of
solutions may exist that fit under-sampled, partially missing, or
ambiguous data. For this reason, indoor reconstruction has focused
its efforts on formally or implicitly restricting the target output
model by introducing geometric priors for structural recovery such
as floor-wall [Delage et al. 2006], cuboid [Hedau et al. 2009], Man-
hattan world [Coughlan and Yuille 1999], Atlanta world (a.k.a. Aug-
mented Manhattan World) [Schindler and Dellaert 2004], Indoor
World Model [Lee et al. 2009], Vertical Walls [Pintore et al. 2018],
and Piece-wise planarity [Furukawa et al. 2009].

While early solutions incorporated these priors within algo-
rithms that combined feature detection, matching, and geometric
reasoning, recent years have seen the emergence of data-driven
methods designed to address this traditionally ill-posed problem un-
der less restrictive constraints, particularly through deep-learning
approaches. The development and benchmarking of data-driven
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solutions are facilitated by the availability of synthetic and reality-
based datasets, including Structured3D [Zheng et al. 2020], PNVS [Xu
et al. 2021], Matterport3D [Chang et al. 2017], Stanford-2D-3D-
S [Stanford University 2017], 360MonoDepth [Rey-Area et al. 2022],
Habitat [Savva et al. 2019], Replica [Straub et al. 2019].

5.3 Room modeling

Room modeling focuses on reconstructing individual spaces. We
differentiate between the generation of pixel-wise information —
such as per-pixel depth, surface normals, or semantic labels - from
the layout reconstruction problem, which involves parsing room
spaces into the structural elements that bound their geometry (e.g.
floor, ceilings, walls). The main focus, here is on monocular solu-
tions, which are employed either independently or as foundational
components in multi-view or multi-room pipelines (subsection 5.4).

Monocular depth reconstruction is taken as the main example
of pixel-wise inference. While early methods mostly combined fea-
ture detection with geometric reasoning, recent research focuses
on data-driven solutions information extracted from large training
datasets [Pintore et al. 2021a]. In this context, 360° cameras are
increasingly used for their ability to capture full surroundings in
one image. Their exploitation includes adapting perspective meth-
ods through spherical convolutions [Payen de La Garanderie et al.
2018; Su and Grauman 2019; Su and Grauman 2017; Tateno et al.
2018; Zioulis et al. 2018], joint processing in mixed equirectangular
and cube-map projections spaces [Wang et al. 2020], leveraging
perspective views sampled on panoramic images before combin-
ing depth maps using transformers [Ai et al. 2023; Li et al. 2022;
Rey-Area et al. 2022], as well as direct processing equirectangular
images by exploiting gravity-aligned features to reduce network
size [Pintore et al. 2021a; Sun et al. 2019].

3D layout reconstruction is more complex than depth estimation,
since, instead of assigning a depth value to each visible pixel, it
must also extrapolate substantial portions of the invisible struc-
ture, which may be occluded by both objects and the structure
itself, resulting in multiple intersections per view ray. Thus, single-
view layout computation must be capable of plausibly hallucinat-
ing the non-visible geometry. This need is also present in most
multi-view cases, as full coverage is impractical in cluttered indoor
environments. To address this complexity, several approaches op-
erate within highly restrictive solution spaces. In particular, most
methods target variants of the Manhattan World model (MWM:
horizontal floors and ceilings, vertical walls meeting at right an-
gles) [Sun et al. 2019; Zou et al. 2021], such as the Indoor World
model (IWM: MWM with single horizontal ceiling and floor) [Wang
et al. 2021] or the Atlanta World model (AWM: vertical walls with
single horizontal ceiling and floor) [Pintore et al. 2020a]. Moreover,
the most effective approaches recover the layout by exploiting pro-
jections to lower-dimensional spaces before expanding them to
3D. However, combining 1D/2D projections with restrictive priors
limits the reconstruction capability to very few regular shapes and
makes reconstruction less robust to occlusion. To mitigate spherical
distortion and maximize the efficiency of modern deep learning
techniques such as transformers, many recent approaches project
the equirectangular input image to planar surfaces [Jiang et al. 2022;
Pintore et al. 2020a; Wang et al. 2021; Yang et al. 2019; Zhao et al.
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2022]. All these methods, however, require heavy preprocessing,
such as detection of main MWM directions from vanishing lines
analysis and related image warping [Lee et al. 2009; Zhang et al.
2014; Zou et al. 2021], or complex layout post-processing, such as
MWM regularization of detected features [Shen et al. 2023; Sun
et al. 2019; Yang et al. 2019; Zou et al. 2018]. To expand the solutions
space, it has also been proposed to directly infer a watertight 3D
mesh representation of the room shape using graph-convolutional
networks [Pintore et al. 2021b].

In the course slides (section 6), we briefly summarize the main
characteristics of these solutions and discuss the structure of their
implementation.

5.4 Integrated model computation

The structured reconstruction of a complex environment requires
not only the analysis of isolated structures, permanent or not, but
also to ensure their integration into a coherent structured model.

Early approaches to infer vectorized geometries of permanent
architectural structures combined low-level image processing with
geometric reasoning and energy minimization solvers to extract
room layouts [Cabral and Furukawa 2014; Furukawa et al. 2009;
Ikehata et al. 2015; Monszpart et al. 2015; Silberman et al. 2012].
Many recent solutions adopt a hybrid approach, where neural net-
works first detect low-level primitives (e.g., corners, edges, region
segments), then optimization techniques assemble them into the
final models. Floor-SP [Chen et al. 2019] and Nauata et al. [Nau-
ata and Furukawa 2020], in particular, rely on Mask R-CNN [He
et al. 2017] to detect room segments and reconstruct polygons of
individual rooms by sequentially solving shortest path problems,
while MonteFloor [Stekovic et al. 2021] relies on Monte-Carlo Tree-
Search to select room proposals. Alternative bottom-up methods,
such as FloorNet [Liu et al. 2018], first detect room corners and
then generate wall segments through integer programming. Also
in the family of hybrid methods, diffusion approaches generate
plausible room arrangements by combining graph neural networks
with constrained diffusion [Gueze et al. 2023; Shabani et al. 2023].
Also related is the method of Shabani et al. [Shabani et al. 2021],
which takes as input sparse panoramic images to generate plausible
room displacements to find camera spatial registration.

In contrast to the hybrid solutions, several recent methods em-
ploy an end-to-end deep-learning approach. In particular, HEAT [Chen
et al. 2022] proposes an end-to-end model, based on the deformable
transformer (DETR) [Zhu et al. 2020], following a bottom-up pipeline:
first detect corners, then classify edge candidates connecting cor-
ners. Also based on DETR [Zhu et al. 2020], RoomFormer [Yue
et al. 2023] predicts floorplans from a dense point cloud using a
single-stage, end-to-end trainable neural network. Differently from
previous data-driven approaches [Chen et al. 2019], RoomFormer
encodes the floorplan as a variable-size set of polygons, which are
variable-length sequences of ordered vertices. By incorporating
additional MWM priors and post-processing steps, SLIBO-Net [Su
et al. 2023] focuses on improving RoomFormer’s semantic and local
geometric quality. More recently, PolyDiffuse [Chen et al. 2024]
refines polygonal reconstructors from point cloud density maps
through a conditional generation procedure.
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In the course slides (section 6), we briefly summarize the main
characteristics of these solutions, expanding on multi-view layout
estimation, structured floorplan reconstruction, 3D scene recon-
struction, and view localization, also providing an example of a
deep-learning 3D floorplan recovery pipeline will be presented.

5.5 Visual representation generation and
exploration

The geometric and topological descriptions coming out of the pre-
viously described steps may not be enough for the applications
that should ultimately visualize the reconstructed model. Thus, the
structured representation must often be enriched with information
geared towards visual representation.

In this session, we introduce techniques that infer visual infor-
mation, associate it with the topological and geometric models, and
modify them to support editing operations [Tukur et al. 2023b]. We
then discuss how these techniques can be exploited to create models
suitable for regular or immersive exploration, either statically or
by view synthesis. We, in particular, discuss methods for providing
stereo cues and motion parallax starting from a single panoramic
image, illustrating examples of XR applications exploiting head-
mounted displays.

Even though capturing a single shot panorama is a very ap-
pealing way to create a virtual clone of a real environment, the
limitation of presented content to what was visible around the fixed
capture location leads to constraints and artifacts [Waidhofer et al.
2022], due to the reduction in degrees of freedom to just the rotation
around the center of the panorama. In particular, binocular stereo
and motion parallax, which are important aspects of immersion in
VR, are missing. The fact that panoramas appear flat is a strong
limitation in indoor environments, given the relatively short dis-
tance from the viewer to the architectural surfaces and the objects.
Moreover, the large amount of clutter and occlusions encourages
users to move their heads not only to see other angular portions of
the environment but also to look behind occluding objects or archi-
tectural structures [Matzen et al. 2017]. To fully support immersion,
a system must thus also respond to viewpoint translation. Even
though many solutions have been proposed for multiview capture
setups (e.g., [Attal et al. 2020; Broxton et al. 2020]), performing view
synthesis from single-shot panoramas is of primary importance,
due to the convenience and diffusion of sparse capturing through
monocular 360° cameras [Waidhofer et al. 2022].

A first class of approaches targets the problem of providing a
restricted motion, e.g., to support just stereo of small head move-
ments. In the first case, the eyes move in a circle around the original
capture position, while in the second case, they remain in a small
volume (e.g., a ball around 50cm). This knowledge makes it possi-
ble to focus on specialized solutions to handle moderately small
perspective changes and disocclusions. It also enables the creation
of compact and fast-render customized representations valid for
the known viewing environment.

A panoramic image with an accompanying depth map can be
utilized for view synthesis using diverse approaches, such as di-
rectly rendering point clouds [Huang et al. 2017], generating and
rendering view-independent meshes from depth maps [Tukur et al.
2023a], or integrating and blending depth maps or generated meshes
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with multiple images or signals [Bertel et al. 2020; Luo et al. 2018;
Pintore et al. 2016]. Recently, end-to-end view synthesis networks
have been proposed to generate shifted panoramic views at run
time [Pintore et al. 2023; Xu et al. 2021]. While these networks
excel at inferring immersive views within a limited volume around
the viewer, their computational demands preclude direct execution
on embedded platforms. Consequently, Head-Mounted Displays
(HMDs) are exclusively supported using these techniques at run-
time via remote rendering [Pintore et al. 2023]. The generation of
novel views by interpolating images taken at nearby viewpoints
has also been widely researched, with effective solutions being pro-
posed, even in the absence of a prior depth estimation step [Reda
et al. 2022; Trinidad et al. 2019]. However, end-to-end networks
tackling this task face similar computational constraints as depth
estimation, limiting their applicability to interactive-rate frame gen-
eration on Head-Mounted Displays (HMDs). For this reason, often
these methods are not directly used to generate images in response
to head motion, but as building blocks to create precomputed rep-
resentations that are faster to render.

An emerging approach for rapid novel viewpoint synthesis in-
volves employing layered depth representations, associating each
pixel with multiple depth values [Hedman and Kopf 2018]. This
methodology has been effectively expanded to operate with single
panoramic images [Lin et al. 2020; Serrano et al. 2019], as well as to
create light field videos through layered mesh representations [Brox-
ton et al. 2020]. For perspective views, multi-plane panoramas (MPI)
have also been proposed as an output representation produced with
convolutional neural networks [Tucker and Snavely 2020; Zhou
et al. 2018]. However, MPIs are limited to viewpoints close to the
origin and degrade when the viewpoint moves further. To address
this limitation, adaptive sampling schemes have been proposed [Li
and Khademi Kalantari 2020]. The concept of capturing the scene at
multiple fixed depths has been extended for panoramic imaging by
considering different capturing proxies like multi-spherical images
(MSI) [Attal et al. 2020] or multi-cylinder images (MCI) [Waidhofer
et al. 2022]. For the particular case of stereo-generation, Pintore
et al. [Pintore et al. 2024b] have recently proposed to synthesize a
discrete set of panoramic slices that cover the circular trajectory
made by both eyes during head rotations and are oriented towards
the main view directions. These images are subsequently blended
to form an omnidirectional stereo pair comprised of two multiple-
center-of-projection (MCOP) equirectangular images. The method
builds on the multiperspective technique [Rademacher and Bishop
1998] based on circular projection stereo [Peleg and Ben-Ezra 1999]
that aims to combine in a single image all the information required
for stereo. For viewing, each vertical column of an equirectangular
image has a different center of projection, corresponding to the
position of the eye viewing it. By generating an image for the left
eye and another one for the right eye, stereo is achieved. However,
when viewing such an image in VR, stereo is only correct at the
center of the image and degrades for peripheral vision. For this
reason, other works in this area have concentrated on generat-
ing images that dynamically adapt to the user’s gaze through the
view-dependent rendering of depth images [Marrinan and Papka
2021].
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For larger displacements from the original capture position,
the input panorama must be transformed into a complete 3D ren-
derable model. A first set of solutions exploits prior knowledge,
learned from large sets of examples, on the semantics of the imaged
room. Representative examples are Pano2CAD [Xu et al. 2017],
Auto3DIndoor [Yang et al. 2018], DeepPanoContext [Zhang et al.
2021], and PanoContextFormer [Dong et al. 2024], which com-
bine the estimation of single-room geometry or layout (see sub-
section 5.3) with the recognition of the type and pose of known
objects. A full 3D model is then reconstructed. However, in real-
world captures, interior environments are filled with objects with
undefined/unrecognized semantics, leading to these methods failing
to reconstruct complete real-world scenes.

Without requiring semantics, approaches based on Neural Radi-
ance Fields (NeRF) [Mildenhall et al. 2021] or 3D Gaussian Splats
(3DGS) [Kerbl et al. 2023] have demonstrated remarkable results
in rendering novel views, but in their original formulation require
a large number of views to work. Based on their concepts, many
single-view novel-view synthesis methods have emerged. The un-
derlying idea for these single-view extensions is to train the NeRF
of 3DGS with synthetic novel views inferred by one of the above-
described methods from the input panorama, letting the NeRF or
3DGS optimizer perform the merging of possibly inconsistent views.
Representative examples of such methods include DietNeRF [Jain
et al. 2021], Pix2NeRF [Cai et al. 2022], SinNerF [Xu et al. 2022],
NerfDiff [Gu et al. 2023], NerDi [Deng et al. 2023], PERF [Wang
et al. 2024], PixelSplat [Charatan et al. 2024], and Pano2Room [Pu
et al. 2024]. Single-panorama novel view synthesis is handled, in
state-of-the-art solutions [Pu et al. 2024; Wang et al. 2024] by gen-
erating images with depths corresponding to novel views and per-
forming collaborative RGB-D inpainting to drive the creation of
final NeRF representation. Dense sequential inpainting, as used in
PERF [Wang et al. 2024], however, forces the virtual camera used
for generating the virtual 3D views to stay on predefined trajecto-
ries. Since the views are merged in a sequence and several areas
are under-sampled, ghost geometries are generated by underfit-
ted model optimization. In addition, the large differences among
views created by individual novel-view inferences lead to heavy
blurring in occluded areas. Pano2Room [Pu et al. 2024] improves
over this method by first converting the input panorama into a
mesh through depth estimation (subsection 5.3) and then iteratively
refining the mesh by leveraging a panoramic RGB-D inpainter to
generate occluded color and geometry. The new content is gradu-
ally incorporated into the inpainted mesh, checking for visibility
conflicts at each step. Finally, the inpainted mesh is converted to a
3D Gaussian Splat, training it with collected 3D-consistent pseudo
novel views.

In the course slides (section 6), we provide an overview of these
solutions and illustrate a reference implementation.

5.6 Wrap-up and discussion

Surround-view panoramic imaging provides the quickest and most
complete per-image coverage and is supported by a wide variety
of professional and consumer capture devices. For this reason, it is
the target of much research. This course provides a comprehensive
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overview of the rapidly advancing field of 3D indoor model infer-
ence from 360-degree images and. more briefly, of the techniques
for exploring such models. The course slides (section 6) summarize
the main take-home messages.

6 MATERIAL AND RESOURCES

The course website (https://www.crs4.it/vic/sigasia2024-course-
pano/) provides the commented slides for all the tutorial sessions.
The main discussed works are included in the bibliography of this
article. Complementary information can be found in our survey on
indoor reconstruction [Pintore et al. 2020a], on the SIGGRAPH 2020
course on the same topic (https://doi.org/10.1145/3388769.3407469)
and on our CVPR 2023 tutorial focusing on indoor reconstruc-
tion from panoramic imagery (https://www.crs4.it/vic/cvpr2023-
tutorial-pano/).
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