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ABSTRACT

Creating high-level structured 3D models of real-world indoor

scenes from captured data is a fundamental task which has im-

portant applications in many fields. Given the complexity and vari-

ability of interior environments and the need to cope with noisy

and partial captured data, many open research problems remain,

despite the substantial progress made in the past decade. In this

tutorial, we provide an up-to-date integrative view of the field,

bridging complementary views coming from computer graphics

and computer vision. After providing a characterization of input

sources, we define the structure of output models and the priors

exploited to bridge the gap between imperfect sources and desired

output. We then identify and discuss the main components of a

structured reconstruction pipeline, and review how they are com-

bined in scalable solutions working at the building level. We finally

point out relevant research issues and analyze research trends.

CCS CONCEPTS

•Computingmethodologies→Computer graphics; Shapemod-

eling; Computer vision; Computer vision problems; Shape infer-

ence; Reconstruction; • Applied computing → Computer-aided

design.
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1 FORMAT AND PRE-REQUISITES

Format. Long (3 hours).

Necessary background. The tutorial is at the intermediate level.

Basic computer-vision and graphics background is a pre-requisite.

Intended audience. The target audience includes researchers in

geometric modeling, as well as practitioners in the relevant appli-

cation fields. Researchers will find a structured overview of the

field, which organizes the various problems and existing solutions,

classifies the existing literature, and indicates challenging open

problems. Domain experts will, in turn, find a presentation of the

areas where automated methods are already mature enough to be
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ported into practice, as well as an analysis of the kind of indoor

environments that still pose major challenges.

Previous presentations. This tutorial builds on an extensive state-

of-the-art survey that has been presented at Eurographics 2020 [Pin-

tore et al. 2019b]. The Eurographics presentation version was a

condensed STAR aimed at experts, and focused on the presentation

of the literature survey. This course significantly extends it with

tutorial-style presentations to accommodate a much more varied

audience and to make the content more self-contained.

2 COURSE DESCRIPTION

The automated reconstruction of 3D models from acquired data, be

it images or 3D point clouds, has been one of the central topics in

computer graphics and computer vision for decades. This field is

now thriving, as a result of complementing scientific, technological

and market trends. In particular, in recent years, the widespread

availability and proliferation of high-fidelity visual/3D sensors

(e.g., smartphones, commodity and professional stereo cameras and

depth sensors, panoramic cameras, low-cost and high-throughput

scanners) has been matched with increasingly cost-effective op-

tions for large data processing (e.g., cloud and GPU-accelerated

computation), as well as with novel means of visual exploration,

from mobile phones to immersive personal displays.

In this context, one of the rapidly emerging sub-fields is con-

cerned with the automatic reconstruction of indoor environments.

That is, a 3D representation of an interior scene must be inferred

from a collection of measurements that sample its shape and/or

appearance, exploiting and/or combining sensing technologies rang-

ing from passive methods, such as single- and multi-view image

capturing, to active methods, such as infrared or time-of-flight cam-

eras, optical laser-based range scanners, structured-light scanners,

and LiDAR scanners [Berger et al. 2017]. Based on the raw data

acquired by these devices, many general surface reconstruction

methods focus on producing accurate and dense 3D models that

faithfully replicate even the smallest geometry and appearance de-

tails. In this sense, their main goal is to provide the most accurate

representation possible of all the surfaces that compose the input

scene, disregarding its structure and semantics or possibly only ex-

ploiting them to maximize the fidelity of the output surface model.

A number of more specialized indoor reconstruction solutions fo-

cus, instead, on abstracting simplified high-level structured models

that optimize certain application-dependent characteristics [Ikehata

et al. 2015].
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The focus on high-level structured models is motivated by sev-

eral reasons. First of all, their availability is necessary in many

fields. For example, applications such as the generation or revision

of building information models (BIM) require, at least, the determi-

nation of the bare architectural structure [Mura et al. 2014b; Turner

et al. 2015]. On the other hand, information on the interior clutter, in

terms of 3D footprint of major indoor objects, is necessary in many

other use cases, such as guidance, energy management, security,

evacuation planning, location awareness or routing [Ikehata et al.

2015]. Even when the goal is solely for visualization, structured

simplified models need to be extracted as a fundamental component

of a renderable model. This is because narrow spaces, windows,

non-cooperative materials, and abundant clutter make the transi-

tion from the acquisition of indoor scenes to their modeling and

rendering a very difficult problem. Thus, applying standard dense

surface reconstruction approaches, which optimize for complete-

ness, resolution and accuracy, leads to unsatisfactory results.

Automatic 3D reconstruction and modeling of indoor scenes,

has thus attracted a lot of research in recent years, making it an

emerging well-defined topic. In particular, the focus has been on

developing specialized techniques for very common and very struc-

tured multi-room environments, such as residential, office, or public

buildings, which have a substantial impact on architecture, civil

engineering, digital mapping, urban geography, real estate, and

more [Ikehata et al. 2015]. In this context, the fundamental tasks

are the discovery of structural elements, such as rooms, walls, doors,

and indoor objects, and their combination in a consistent structured

3D shape and visual representation. The research community work-

ing on these problems appears, however, fragmented, and many

different vertical solutions have been proposed for the various

motivating applications. In this course, we provide an up-to-date

integrative view of the field, bridging complementary views coming

from computer graphics and computer vision.

3 COURSE RATIONALE

Reconstruction of visual and geometricmodels from images or point

clouds is a very broad topic in computer graphics and computer

vision. This course focuses on the specific problems and solutions

relating to the reconstruction of structured 3D indoor models, that

is rapidly emerging as a very important and challenging problem,

with specific solutions and very important applications. Thus, we

complement existing courses and surveys focusing on reconstruct-

ing detailed surfaces from dense high-quality data or on assigning

semantic to existing geometry, by covering the extraction of an ap-

proximate structured geometry connected to a visual representation

from sparse and incomplete measurements.

The tutorial content is based on a recent survey of the state-of-

the-art that we have published in Computer Graphics Forum [Pin-

tore et al. 2019b], and presented at the 2020 Eurographics conference.

We refer the audience to that STAR for an in-depth presentation of

the concept and a detailed reasoned bibliography.

A general coverage of methods for 3D surface reconstruction

and primitive identification is available in recent surveys [Berger

et al. 2017; Kaiser et al. 2019], and we will build on them for the

definition of general problems and solutions. In the same spirit, we

do not specifically cover interactive or online approaches; those

interested in online reconstruction can find more detail on the topic

in the survey by Zollhöfer et al. [Zollhöfer et al. 2018]. We also

will refer the audience to an established state-of-the-art report on

urban reconstruction [Musialski et al. 2013] for an overview of

the companion problem of reconstructing (from the outside) 3D

geometric models of urban areas, individual buildings, façades, and

further architectural details.

The techniques surveyed in this course also have an overlap with

the domains of Scan-to-BIM or Inverse-CAD, where the goal is the

automatic reconstruction of full (volumetric) information models

from measurement data. However, the overlap is only partial, since

we do not cover the assignment of full semantic information and/or

the satisfaction of engineering construction rules, and Scan-to-BIM

generally does not cover the generation of visual representations,

which is necessary for rendering. Moreover, most Scan-to-BIM

solutions are currently targeting (dense) point cloud data, while we

cover solutions starting from a variety of input sources. It should be

noted that, obviously, relations do exist, and many of the solutions

surveyed here can serve as good building blocks to tackle the full

Scan-to-BIM problem. We will refer the audience to established

surveys in the Scan-to-BIM area for a review of related techniques

based on point-cloud data [Pătrăucean et al. 2015; Tang et al. 2010;

Volk et al. 2014], general computer vision [Fathi et al. 2015], and

RGB-D data [Chen et al. 2015a].

In addition, commodity mobile platforms are emerging as a very

common solutions both for capture and for exploration of mobile

environments. On this specific topics, we refer the audience to two

recent tutorials on the subject, which also contain sections devoted

to indoor environments [Agus et al. 2017a,b].

4 DETAILED OUTLINE

The course will be organizes in two sessions of 1.5 hours. After

providing a general overview of the subject (Session 1.1), we will dis-

cuss shape and color sources generated by indoor mapping devices

and describe several open datasets available for research purposes

(Session 1.2). We will then provide an abstract characterization of

the typical structured indoor models, and of the main problems

that need to be solved to create such models from imperfect input

data, identifying the specialized priors exploited to address signif-

icantly challenging imperfections in visual and geometric input

(Session 1.3). The various solutions proposed in the literature, and

their combination into global reconstruction pipelines will be then

analyzed by providing a general overview, pointing out the various

solutions proposed in the literature, and discussing their pros and

cons. Session 1.4 will be dedicated to room segmentation, while

Session 1.5 will cover boundary surface reconstruction from dense

3D data. After a break, we will continue with a presentation of

boundary surface reconstruction from images and/or sparse 3D

data (Session 2.1), object detection and reconstruction (Session 2.2),

final model assembly (Session 2.3), and visual representation gen-

eration (Session 2.4). We will finally point out relevant research

issues and analyze research trends (Session 2.5).
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SESSION 1.1:

Opening and introduction

In the introductory session, we will define the topic of structured

indoor reconstruction and point out to the many applications of it.

We will then provide an outline of the rest of the presentation.

SESSION 1.2:

Data capture and representation

Indoor reconstruction starts from measured data obtained by sur-

veying the indoor environment. Many options exist for performing

capture, ranging from very low-cost commodity solutions to pro-

fessional devices and systems. In this session, we first provide a

characterization of the various input sources and then provide a link

to the main public domain datasets available for research purposes.

Input data sources. Indoor mapping is required for a wide variety

of applications, and an enormous range of 3D acquisition devices

have been proposed over the last decades. From LiDAR to portable

mobile mappers, these sensors gather shape and/or color informa-

tion in an effective, often domain-specific, way [Lehtola et al. 2017;

Xiong et al. 2013]. In addition, many general-purpose commodity

solutions, e.g., based on smartphones and cameras, have also been

exploited for that purpose [Pintore et al. 2014; Sankar and Seitz

2012]. However, a survey of acquisition methods is out of the scope

of this survey. We rather provide a classification in terms of the

characteristics of the acquired information that have an impact on

the processing pipeline. Our classification will differentiate Purely

visual input sources, Purely geometric input sources, and Multimodal

colorimetric and geometric input sources.

Open research data.A notable number of freely available datasets

containing indoor scenes have been released in recent years for

the purposes of benchmarking and/or training learning-based so-

lutions. However, most of them are more focused on scene un-

derstanding [University of Zurich 2016] than reconstruction, and

often only cover portions of rooms [Cornell University 2012; New

York University 2012; Princeton University 2015; Stanford Uni-

versity 2016b; Technical University of Munich 2015; Washington

University 2014]. Many of them have been acquired with RGB-D

scanners, due to the flexibility and low-cost of this solution (see

an established survey [Firman 2016] for a detailed list of them).

We will summarize the major open datasets that have been used

in general 3D indoor reconstruction research, detailing their char-

acteristics and possible usage. These will include SUN360 Data-

base [Massachussets Institute of Technology 2012; Pintore et al.

2018a,b; Xiao et al. 2012; Yang and Zhang 2016; Zhang et al. 2014],

SUN3D Database [Chang et al. 2017; Choi et al. 2015; Dai et al. 2017c;

Princeton University 2013; Xiao et al. 2013], UZH 3D Dataset [Mat-

tausch et al. 2014; Mura et al. 2014b, 2016; University of Zurich

2014], SUNCG Dataset [Armeni et al. 2017; Chang et al. 2017; Liu

et al. 2018b; Princeton University 2016; Song et al. 2017], Bundle-

Fusion Dataset [Dai et al. 2017c; Fu et al. 2017; Huang et al. 2017;

Stanford University 2016a], ScanNet Data [Chang et al. 2017; Dai

et al. 2017a,b], Matterport3D Dataset [Chang et al. 2017; Matter-

port 2017], 2D-3D-S Dataset [Armeni et al. 2017; Stanford Univer-

sity 2017], FloorNet Dataset [Chen et al. 2019; Liu et al. 2018b,c],

CRS4/ViC Research Datasets [CRS4 Visual Computing 2018; Pin-

tore et al. 2019a, 2018a,b], Replica Dataset [Straub et al. 2019], and

Structured3D Dataset [Sun et al. 2019; Zheng et al. 2019a].

SESSION 1.3:

Targeted structured 3D model

The goal of structured 3D indoor reconstruction is to transform

an input source containing a sampling of a real-world interior

environment into a compact structured model containing both geo-

metric and visual abstractions. Each distinct input source tends

to produce only partial coverage and imperfect sampling, making

reconstruction difficult and ambiguous. For this reason, research

has concentrated on defining priors in order to combat imperfec-

tions and focus reconstruction on very specific expected indoor

structures, shapes, and visual representations. In this session, we

first characterize the artifacts typical of indoor model measurement,

before defining the structure and priors commonly used in struc-

tured 3D indoor reconstruction research, and the sub-problems

connected to its generation.

Artifacts. In this session, we will introduce the characterization

provided by Berger et al. [Berger et al. 2017] for point clouds, which

characterized sampled sources according to the properties that have

the most impact on reconstruction algorithms, identifying them

into sampling density, noise, outliers, misalignment, and missing

data. We will then show how this characterization extends to visual

and mixed data. We will then discuss how the artifacts associated

with each one of these characteristics have some specific forms for

indoor environments.

Reconstruction priors.Wewill show how, without prior assump-

tions, the reconstruction problem for indoor environments is ill-

posed, since an infinite number of solutions may exist that fit under-

sampled or partially missing data. We will discuss how structured

indoor reconstruction has focused its efforts on formally or im-

plicitly restricting the target output model, in order to cover a

large variety of interesting use-cases while making reconstruction

tractable, introducing in particular the separation between per-

manent structures and movable objects, and the organization of

permanent structures into a graph of rooms connected by passages.

We will then survey very specific geometric priors for structural

recovery that have been introduced in the indoor reconstruction

literature, including floor-wall [Delage et al. 2006], cuboid [Hedau

et al. 2009], Manhattan world [Coughlan and Yuille 1999], Atlanta

world (a.k.a. Augmented Manhattan World) [Schindler and Dellaert

2004], Indoor World Model [Lee et al. 2009], Vertical Walls [Pintore

et al. 2018a], and Piece-wise planarity [Furukawa et al. 2009].

Main problems. Starting from the above definitions, we identify

a core set of basic problems that need to be solved to construct

the model from observed data, which are then discussed in the

following sessions: room segmentation, bounding surfaces recon-

struction, indoor object detection and reconstruction, integrated model

computation, and visual representation generation.
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SESSION 1.4:

Room segmentation

While a number of early methods focused on reconstructing the

bounding surface of the environment as a single entity, without con-

sidering the problem of recognizing individual sub-spaces within it,

structuring the 3D model of an indoor environment according to its

subdivision into different rooms has gradually become a fundamen-

tal step in all modern indoor modeling pipelines, regardless of the

type of input they consider (e.g. visual vs. 3D data) or of their main

intended goal (e.g. virtual exploration vs. as-built BIM) [Ikehata

et al. 2015]. In this session we will discuss approaches that segment

the input before the application of the reconstruction pipeline, as

well as approaches that structure the output 3D model according to

its subdivision into different rooms.

SESSION 1.5:

Bounding surfaces reconstruction - part 1

While room segmentation deals with the problem of decomposing

an indoor space into disjoint spaces (e.g., hallways, rooms), the goal

of bounding surface reconstruction is to further parse those spaces

into the structural elements that bound their geometry (e.g. floor,

ceiling, walls, etc.). This task is one of the major challenges in in-

door reconstruction, since building interiors are typically cluttered

with furniture and other objects. Not only are these elements not

relevant to the structural shape of a building, and should therefore

considered as outliers for this task, but they also generate viewpoint

occlusions resulting in large amounts of missed sampling of the

permanent structures. Larger amounts of missed 3D samplings are

also present in visual input sources. Thus, generic surface recon-

struction approaches are doomed to fail. In this session, we will

discuss an array of specific state-of-the-art approaches, focusing

primarily on the extraction of walls, ceilings, and floors. Given the

complexity of the topic, the session is subdivided in two parts. In

this first session, we will introduce the topic and discuss methods

for reconstruction with dense geometric measures, acquired either

by stereo or by direct measurement of depth.

SESSION 2.1:

Bounding surfaces reconstruction - part 2

The second part of the bounding surface reconstruction session

will be devoted to techniques that perform reconstruction without

geometric measures as input sources and with sparse geometric mea-

sures. As we will see, these technique exploit mostly visual input

data (single- and multi-view).

SESSION 2.2:

Object detection and reconstruction

Modeling objects that occur in indoor scenes is a recurrent problem

in computer graphics and computer vision research. In this context,

the term object refers to a part of the environment that is movable

(typically, furniture) and thus does not belong to the architectural

structure. In this session, we will survey those aspects of indoor

object modeling that are integrated in the reconstruction of the

entire indoor scene. In particular, we will present approaches where

object detection is exploited for clutter removal, methods where

3D indoor objects are approximately reconstructed, and specialized

techniques targeting the detection and modeling of flat objects

attached to walls and ceilings.

SESSION 2.3:

Integrated model computation

The structured reconstruction of a complex environment requires

not only the analysis of isolated structures, permanent or not, but

also to ensure their integration into a coherent structured model. In

this session, we will first discuss how the boundary models of the

different rooms are made geometrically and structurally consistent,

ensuring for instance that the separating wall boundaries between

adjacent rooms are correctly modeled based on the specific output

representation of choice. Secondly, we will show methods that find

connections among rooms, so that adjacent rooms are connected

by doors or large passages that directly reflect the intended func-

tionality of the environment and that can therefore be integrated in

its structured representation in the form of graph edges. Moreover,

the structure of a multi-room environment goes beyond the plain

geometric description of its rooms and is strongly related to the

way such rooms are connected. For this reason, we will also present

approaches for the extraction of a graph that encodes the room

interconnections in multi-room and multi-floor environments.

SESSION 2.4:

Visual representation generation

The geometric and topological description coming out of the pre-

vious steps may not be enough for the applications that should

ultimately visualize the reconstructed model. It is therefore nec-

essary to enrich the structured representation with information

geared towards visual representation. In this session, wewill discuss

how generating visual representations translates into two different

problems: the improvement of appearance of reconstructed models

with additional geometric and visual data, and the generation of

structures to support exploration and navigation. We will then dis-

cuss techniques to improve the appearance of reconstructed models

by refining the color or by refining the geometry. We will finally

show how providing support for visualizing/exploring the dataset

has especially been tackled in the context of applications that link

the structured reconstruction to the original data, and will present

current approaches.

SESSION 2.5:

Wrap-up and discussion

In this concluding session, we will summarize the main result com-

ing out of the literature survey and provide examples of applica-

tions in which the techniques are exploiting, focusing especially

on emerging software-as-a-service approaches. We will then pro-

vide a view on open problems and current and future works. We

will particularly mention work that exploits less constraining pri-

ors, performing data fusion to combine visual and depth cues into

multi-modal feature descriptors to help reconstruction, improving

reconstruction from visual input from commodity cameras and

smartphones, as well as exploiting data-driven priors to learn hid-

den relations from the available data.
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5 TUTORIAL NOTES CONTENTS

At the end of this tutorial, we include a full bibliography, as well as

commented slides for all the tutorial sessions.

6 SCHEDULE

Duration Lecturer Topic Sub-topics

10’ Gobbetti Opening and intro-
duction

Topic definition; Main applications; Course
outline

10’ Gobbetti Data capture and rep-
resentation

Input data sources; Capture setups; Open re-
search data

15’ Gobbetti Targeted structured
3D model

Artifacts; Reconstruction priors; Main prob-
lems

25’ Mura Room segmentation Segmentation of input; Segmentation of out-
put

25’ Pajarola Bounding surfaces re-
construction - part 1

With dense geometric measures

BREAK

25’ Pintore Bounding surfaces re-
construction - part 2

Without geometric measures as input
sources; With sparse geometric measures

20’ Pintore Indoor object detec-
tion and reconstruc-
tion

Object detection for clutter removal; 3D in-
door objects detection and reconstruction;
Flat indoor objects detection and reconstruc-
tion

15’ Ganovelli Integrated model
computation

Ensuring consistency of multi-room models;
Finding and modeling connections; Multi-
room and multi-floor graphs

15’ Ganovelli Visual representation
generation

Geometry refinement; Texture refinement;
Visual exploration

15’ Gobbetti Wrap-up and discus-
sion

Summary of techniques and assessment of
capabilities; Open problems; Q&A
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Tutorial slides



Good day everybody, here is Enrico Gobbetti welcoming you to the tutorial on 

automatic 3D reconstruction of structured indoor environments. 

 

This is a very timely topic, since myself and my co-authors had to prepare and record 

this work from our respective homes, while enjoying various flavors of lockdown…  

1 



Let’s start with some bureaucracy: this slide is here just because, in this tutorial, we 

will sometimes be using some images from previously published works under the 

“Fair Use” exception… 

2 



Now, let’s move to the interesting  stuff! 

3 



Reconstruction of indoor environments from acquired samples is one of the most 

rapidly developing sub-fields of 3D reconstruction. 

 

As for all 3D reconstruction processes, devices sample a collection of possibly noisy 

and sparse measures of the environment, from which a clean application-dependent 

3D model must be inferred.  

 

As we will see, indoor environments themselves, as well as target applications, have 

very peculiar features that make the problem very challenging.  

 

In this tutorial, we strive to provide an up-to-date integrative view of the vast amount 

of computer graphics and computer vision research in this area. 

 

 

 

4 



Let’s start by defining more precisely our focus.  
 

First of all, we do not specifically discuss the acquisition process, but concentrate on 

the reconstruction pipeline from the acquired geometric or visual samples.  

 

Second, we mostly target full 3D reconstruction, as opposed to solutions that only 

strive to generate 2D floor plans. 

 

5 



In terms of pipelines, moreover, we do not target interactive acquisition or modeling, 

but, rather, processing pipelines that auromatically reconstruct 3D models from 

samples.  

6 



Most of the surveyed solutions, as we will see, work in a batch rather than online 

fashion, since they need to solve complex global optimization problems to generate 

their output.  

 

As a matter of fact, as opposed to plain surface reconstruction, the goal is not to 

replicate dense surface and appearance details, but to discover architectural 

elements and indoor objects, as well as to organize them in a consistent visual and 

geometric structure that captures their relations. 
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We have organized the massive amount of research done on this topic in a large survey, that we have 

recently published in Computer Graphics Forum, and presented as a state-of-the-art report at 

Eurographics 2020. 

 

In this presentation, we are going to summarize our main findings in a tutorial form, providing not only 

a coverage of related work but a full introduction to the subject.  

 

We encourage you, anyway, to refer to the article text for much more details and a very detailed 

bibliography.  

8 



This survey is a collaboration of six authors from three institutions distributed across 

Europe and funded by several collaborative projects, also mentioned in this slide.  

 

Like myself, my colleagues also prepared this presentation while enjoying various 

flavors of lockdown in their respective indoor environment.  
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All the authors collaborated on the preparation of this work, and will be presenting 

various parts of this work. Let’s start with a very short introduction. 
 

Giovanni Pintore is a senior research engineer at the CRS4 research center in Italy, in 

the group under my direction, and is a well-known expert in mobile graphics and 3D 

reconstruction from images. In this tutorial, he will be presenting the sessions on 

bounding surfaces reconstruction from images and on indoor object detection and 

reconstruction.  
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Claudio Mura is a Post-Doctoral researcher at the University of Zurich, in Switzerland, 

whose research focus is on 3D modeling and understanding of interiors, point-based 

shape analysis and point cloud processing.  

 

In this tutorial, he will be presenting the session on Room Segmentation. 
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Fabio Ganovelli is a Senior Researcher at the National Research Council in Italy, who 

has contributions in several areas of shape and appearance capture, processing, and 

display.  

 

In this tutorial, he will be presenting  the sessions on Integrated model computation 

and Visual representation generation.  
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Lizeth is a doctoral candidate at the Visualization and MultiMedia Lab of the 

University of Zurich, and an Early-Stage Researcher in the European project 

EVOCATION that involves all the groups represented here.  

 

She will not be directly presenting a session, but contributed to the preparation of 

the course material as well as of the STAR on which it is based. 
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Renato Pajarola is full professor at the University of Zurich Switzerland. His research 

interests include interactive large-scale data visualization, real-time 3D graphics, 3D 

scanning and reconstruction, geometry processing, as well as remote and parallel 

rendering.  

 

In this tutorial, he will be presenting  the sessions on Bounding Surfaces 

Reconstruction from Point Clouds.  

14 



Finally, myself, Enrico Gobbetti. I am a research director  at the CRS4 research center 

in Italy, where my group focus on the study, development, and application of 

technology for acquisition, storage, processing, distribution, and interactive 

exploration of complex objects and environments.  

 

In this tutorial, in addition to the opening and closing sessions, I will provide 

background on data capture, model representations, artifacts, priors, and pipeline 

structures.  

15 



So, let’s start with the technical presentations….  
 

We will loosely follow the organization of our mentioned state-of-the-art report…. 

16 



Starting by providing background on data capture and representation… 

17 



1 



We have all seen in recent years an unprecedented proliferation of devices to capture 

the visual appearance and the 3D shape of objects and environment.  

These devices vary greatly in terms of cost as well as quality of the capture data, 

ranging from high-quality yet expensive 3D laser scanners to low-cost panoramic 

cameras.  

2 



Despite their differences, they all generally allow to generate large amounts of digital 

measurements of real-world entities with unprecedented ease. Be it images of 3D 

point clouds, these raw data are typically noisy, unorganized, highly redundant and 

often massive in size. 

 

3 



Converting them into more compact and manageable 3D models in an automatic 

manner has been a central topic in computer graphics and computer vision, and is 

today more than ever of paramount relevance.  

4 



In this context, a number of methods have been proposed over the years that target 

general surface reconstruction: their goal is to produce 3D models that replicate with 

the highest accuracy possible the geometric and appearance details of the entities 

represented – but they do so disregarding their semantics and structures.  

 

There are indeed more specialized approaches that focus on specific domains and 

include specific priors in the reconstruction process, which also allows the contextual 

inclusion of semantic information in the reconstructed models.  

5 



A prime example of this is given by the topic of urban reconstruction.  

 

In fact, both general surface reconstruction and the more specific urban 

reconstruction are nowadays well-established topics …  

6 



… which have been recently surveyed in a complete and exhaustive manner. We refer 

you to these extensive surveys by Berget et al. and Musialski et al. for a coverage of 

those topics. 

 

For other domains, the development of specialized reconstruction approaches has 

only recently been tackled in a systematic way – and among these domains … 

7 



… that of interior scenes … 

8 



… is one of the most prominent ones, with countless application scenarios in different 
sectors of human activity.  

9 



An obvious question at this point is: why do we need specialized techniques for 

interior scenes?  

 

It turns out that in many specific fields of application there is a strong need for 

structured indoor models, high-level representations that abstract the low-level 

measurements into the main scene elements and their relations. Such 

representations are optimized to meet specific needs: for instance, in the 

Architecture, Engineering and Construction domain it is often required to generate 

and update Building Information Models that are largely focused on the architectural 

structure of the environment. On the other hand, applications like emergency 

management and indoor navigation additionally require a description of the 

cluttering elements inside these scenes. All these needs are not guaranteed by 

standard surface reconstruction. 

 

On top of this, specialized solutions are also needed to deal with the specific 

problems that are typical of raw input representations of interiors. These are partly 

linked to the technological limitations of the devices used for indoor capture, but 

more importantly by the properties of the scene themselves: interior environments 

are often cluttered and have many unreachable areas; moreover, they contain  

10 



transparent as well as textureless surfaces, which give rise to a number of specific 

artifacts, as we will discuss shortly. 

10 



In fact, the specific type of input data is a factor that influences many aspects of the 

indoor modeling process. We can distinguish three main types of data sources that 

can be used to survey an indoor environment: 

 

Purely visual data… 

11 



… – in the form of plain RGB images – are probably the most ubiquitous type of input 

data, since they can be generated with low-cost, easy-to-operate cameras. Besides 

individual still image, which have a limited field of view, 360 full-view panoramic 

images are popular purely visual representations, since they can provide the full 

context of a single room. To properly describe multi-room environments, however, it 

is necessary to use collections of images or panoramas, each taken from a different 

view point and registered together. Obviously, these representations do not explicitly 

include any 3D information on the scene 

 

Conversely, … 
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… pure geometric information is provided by representations like 3D point clouds, 

which consist of dense collections of individual 3D points. Normally, these data have 

very low measurement noise and are acquired using expensive and bulky terrestrial 

laser range scanners, though recently there has been a shift towards solutions that 

are faster, more mobile – and significantly cheaper. Just like for images and 

panoramas, multiple point clouds taken from different positions AND registered into 

a single reference frame    are needed to properly describe large and complex 

environments 

 

It is increasingly common to see input representations that combine … 

13 



… colorimetric and geometric information. Colored 3D point clouds can be obtained 

directly from multi-modal devices that combine depth sensors and color cameras, or 

by registering 3D point clouds and color images acquired separately. Often, multi-

modal devices output registered color images together with the generated point 

clouds. With the recent widespread diffusion of cheap RGB-D cameras, registered 

collections of color and range images are becoming increasingly popular, and are 

reaching quality levels comparable to those offered by more expensive laser 

scanners. 

 

It is often useful to categorize indoor modeling approaches based on the type of 

input data, as this factor plays a role in the techniques of choice for the 

reconstruction process. 
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…also due to the fact that the specific data source used in the acquisition is directly 

linked to the artifacts that appear in the input data. 

 

Generally speaking, the artifacts that one can expect to find are the same as those 

indicated by Berger and colleagues in their survey on “general” surface 
reconstruction.  

However, in the case of indoor environments, these take specific forms and are more 

or less evident depending on the specific acquisition device used. 

 

All acquisition technologies generally exhibit some degree of measurement noise and 

have problems with transparent and highly reflective surfaces; this can cause sparse 

scattered outliers off the actual sensed surfaces or larger and more structured 

ghosting artifacts - essentially, measurements corresponding to non-existent 

geometry caused by mirror-like reflections of the light rays that hit these surfaces.  
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An insufficient or irregular sampling density is also a recurring issue. In laser-scanned 

point clouds, this is mainly due to the fact that the rays emitted have uniform angular 

spacing and can hit scanned geometry in a non-uniform way. However, non-uniform 

sampling is also an issue for 3D data generated from visual sources, for instance in 

the presence of texture-less surfaces 
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Misalignments can also occur, either between registered 3D point clouds or between 

individual frames of an RGB-D stream, for instance due to loop closure failures caused 

by drift 

 

This is a relatively standard problem, only exacerbated by the possible scarcity of 

feature points detected in texture-less indoor environments, … 
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On the other hand, high amounts of missing data are a distinctive trait of indoor 

scenes, which are typically highly cluttered. This makes it difficult to capture 

unaccessible parts of the scene and originates many shadowed areas, caused by 

objects occluding the line of sight of the sensing device to the structures of interest. 
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One can find plenty of examples of these artifacts in the many research datasets of 

indoor scenes that have been publicly released in recent years. 

 

We don’t have the time for an in-depth description here, so for additional details we 

refer you to the tutorial notes in the proceedings, as well as to our survey articles. 
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Given the acquired input measurements of an indoor environment, the ultimate goal 

of automatic structured indoor modeling approaches is to convert them into a 

structured model. 

 

We mentioned already that this is a high-level model that abstracts the main 

elements of the environment and their relations. More specifically, also based on the 

work by Ikehata and colleagues and the more recent paper by Armeni et al., we can 

describe this model as an architectural graph-based data structure: the nodes 

correspond to elements of the scene (rooms, walls, floors, ceilings, but also movable 

objects contained in the scene) and are associated to both geometry and visual 

appearance; the edges correspond to geometric relationships between the nodes – 

typically, adjacency.  

 

So based on this, a scene can be described as a graph of rooms bounded by walls, 

floor and ceiling , connected by portals (doors and passages), and possibly containing 

furniture or other movable items. 
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So this graph has a topological part (the connection graph), a geometric part (the shape of the 

various components) and a visual part (the appearance model of the different nodes). 

 

This representation serves two fundamental purposes: 

- First, it simplifies semantic analysis of the scene and enables a number of domain-specific applications, for 

instance indoor navigation 

- Second, it makes the indoor modeling process tractable by implicitly constraining the possible output – and 

this is particularly important, since indoor scenes normally exhibit extreme variability in both architectural 

shapes and object arrangements 
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In fact, besides the implicit constraints set by the graph itself, there are a number of explicit assumptions that are 

commonly made on the architecture of the environment – which are presented here in increasing order of 

complexity 

 

The most restrictive one is the FLOOR-wall prior , which assumes that the 

environment is composed of a single flat floor and straight vertical wall, essentially ignoring the 

ceiling. 

The cuboid prior assumes that the room has a cube-like shape and is therefore bounded by six rectangles placed 

at right angles 

According to the indoor world model, the environment must have a horizontal floor and ceiling and vertical walls 

which all meet at right angles; this is a slightly more restrictive version of the more widely used Manhattan World 

prior, which allows floors and ceilings to be at different elevations. The Atlanta World prior – or Augmented 

Manhattan World –  lifts the restriction that walls must meet at right angles. 

 

Allowing floors and ceilings to be sloping – while keeping the verticality of walls – results in the Vertical Walls  

prior; finally, the Piecewise Planarity  assumption also includes sloping walls, thus allowing rooms to be general 

polyhedra. This imposes the least restrictions, but at the same time requires full 3D reasoning on the scene. 
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These priors influence the different aspects of the structured modeling process, 

allowing to manage its complexity at different levels.  

To better capture this complexity, it is useful to identify a number of basic sub-

problems that should be solved to obtain the final model from the measured data. 

 

We denote as room segmentation  the problem of separating the measured data 

based on the room to which they belong 

The task of bounding surfaces reconstruction aims to recover the geometry 

bounding the individual room shapes 

Another conceptual sub-problem is the detection and reconstruction of the indoor 

objects, with the goal to remove elements that represent clutter and possibly 

reconstruct their footprint or shape 

After the individual rooms and the contained objects have been reconstructed, they 

are fused into a single consistent model – a step that we denote as integrated model 

computation 

The last conceptual problem is focused on adding visual attributes to the generated 

model, making it suitable for interactive visualization and navigation. 

 

So let’s now delve into the details of these five problems… 
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…starting from room segmentation.  

 

We now move from Sardinia to Switzerland, where my colleague Claudio will discuss 

this topic… 
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As we have seen before the break, the approaches can be usually summarized
according to their input.
We have already discussed the reconstruction from dense geometric input

2



In this specific part of this talk, we focus instead on the first two options. 
In the first case, we have methods that reconstruct the layout without geometric
measures available, that is the case of single image methods.
Here the geometric information is obtained from image features assuming strong 
priors.
Then we have methods that recover the structure from sparse geometric information, 
like in the case of data fusion or structure from motion.
In this case we have less restrictive priors.
These, in many ways, are very important in real-world applications, since obtaining a 
real dense and uniform coverage, in terms of geometric samples, is not trivial.
Moreover the modern trend in terms of acquisition is to use rgb-d devices that 
combine high-definition visual data with less dense depth data.
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Starting from the first option, we have early methods from a single perspective image 
and based on heavy constrains.
For example the approach of Delage, recover the floor-wall boundary form each
image column, and then returns an indoor model composed by a single floor and the 
main walls.
Later we have the introduction of geometric context concept, where a cuboid-like
model of the room is recovered from surface labels assigned to the image, 
and then we have orientation maps method based on Manhattan World vanishing
lines, returning Manhattan planes bounding the room.
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Geometric context and orientation maps are the basis even of modern indoor 
geometric reasoning.
For example, Flint proposes an efficent dynamic programming approach based on GC 
and OM, assuming that horizontal floor and ceiling
Are related by an homography.
Such kind of geometric reasoning can be extended also to panoramic images:
In this case input sheremaps are convered into virtual perspsective, and then results
are projected back to sphere.
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Indeed the main limitation on single image is given by the field of view, that results in 
a limited geometric context,
So in the recent years research focused in expoliting full panoramic format images.
With such a format a scene can be captured with just one or at least few shots, 
moreover this format has been also adopted for modern geometry capture devices,
Such as RGB-D cameras.
One of first and prominent work in this field is the work of Zhang, where GC and OM 
are combined to recover room bouding box joined with the majors obtects inside.
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When dealing with panoramic images, first we have methods based on geometric
reasoning, like the works of Yang and Pintore.
In the first case the room shape is obtained from a set of oriented super-pixels facets
under canonical Manhattan World constrain,
in the second case the problem is solved in a top-down 2D domain using a specific
spatial transform, adopting the less restrictive Atlanta World model.
More recently arise many data-driven approches, and i some ways this is a very active
research field, leading to impressive results in terms of accuracy and speed.
All these methods have a common pipeline: first they perform a MW rectification of 
the image, based on the well know GC and OM, 
then they segment the rectified image through an encoder-decoder scheme, and 
finally the recover the layout after a regularization of the result.
Some prominent methods are: Layoutnet, where the corner positions are obtained as
sparse features, Dulanet, which employes the same E2P transform of Pintore 2016,
And Horizonnet, where the corners are obtained from an 1 dimensional encoding of 
the panorama.
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Indeed working with a single pose has limits. For example all the important structures
of the room must be visible from a single point of view.
To this end, more recent research is focused on exploiting multiple poses, possibly
registered between them.
Dealing with multiview in the indoor environment is very challenging, since we have
poor untextured surfaces, fatal occlusion and complex visibility reasoning,
So is not possible to have a dense nad regular sampling just from images in the 
indoor.
So, common approaches usually follow two approaches to recover a 3D model: the 
first one try to densify the sparse multiview features using MW stereo and then using
a volumetric fusion approch to find the model. However such pipelines usually return
unstructured meshes.
A second option instead, is a data fusion approach, which try to combine the sparse 
3D features with single image analysis.
So, since we are interested in structured models, we only discuss this second option
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Here we have some prominent example: in the work of Cabral the geometric
reasoning on single panoramas is exploited to integrate a densified point cloud.
They adopt MW piecewise planarity as assumption, exploiting image data to 
complete the holes in the externally calculated point cloud.
In the other example, insted, a 3D facets representation is extraceted directly form
the panoramic images, which are registered in common floorplan space.
they assume only vertical walls, so the can reconstruct also sloped ceiling and walls
with not right angles.
In this work 3D information is recovered directly form image registration and a spatial
transform is locally applied to each super pixel to transform it in a 3D facet,
So 3D facets from different images are joined toghether.
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Once we have seen an overview of methods, we introduce an example of application, 
and in particular a typical pipeline to recover rooms layout from a collection of 
panoramic images.
A common structure for such a pipeline includes a pre-processing step, before the 
proper model processing and then a post-processing final step.
As an input we can have a single panoramic image covering the scene, or, for larger
and complex spaces, a set of registered images.
As output of the pipeline instead we expect to have a 2.5D floorplan, or in general a 
structured 3D layout composed by one or more rooms.
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In the pre-processing step we have as input one single equirectangular image 
covering the environment, or multiple registered images.
In this second case we also have available multi-view information, like a reference
frame for each camera and a bunch of 3D features.
The typical pre-processing step is similar to dense 3D data processing, but here
starting from 2D input, so that we extract low-level features from images and we
then we aggregate them in to high-level features and into spatial elements.
As output we obtain a per pixel geometric context, that is spatial attributes for each
point of the image.
Additionally many methods require a trasformation of the image, in order to adapt
equirectangular projection to specific priors.

11



The pre-processing step starts extracting low level features from the image.
Common features are edge maps, to identify vanishing Manhattan lines or to identify
room edges and corners projected to the floorplan.
Edges are usually exploited to provide geometric context and orientation maps, as
seen in previous methods.
Then we have super-pixels, based on the assumption that there is a relationship
between color distribution and spatial properties, and then we have multi-view
features associated to sparse parts of the images.
It is also common when dealing with panoramic images to perform spatial
transforming on the image itself.
This is common for for two main reasons: first, because fundamental methods like
geometric context and orientation map estimation are basically targeted to 
perspective images,
So many methods convert equirectangula images to a set of virtual perspective
images, calculate the features, and project back the result to equirectangular space.
Other approch instead applied priors like atlanta or vertical walls to work directly on a 
floorplan space where room structure is highlighted.

12



In the second step of pre-processing low-level features are aggregated by using
typical indoor priors.
For example several approaches propagate ceiling, wall and floor labeling to each
pixel of the image, assuming that the upper part of the image is surely ceiling, the 
bottom floor and the middle part wall.
Then geometric properties or measures are associated to image patches, for example
Manhattan World segments, or multi-view 3D features.
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As a results we obtain a per pixel geometric context providing 3D properties for each
poin tof the image, and associated oriented facets, usually aligned with the reference
indoor model.
Optionally several methods adopt such spatial information to transform the original
equirectangular image.
As, for example, for data driven methods which expect images aligned with the three
main MW axes.
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Then, starting from the pre-processed images, different approaches can be exploited
to recover the main elements of the structure, such as room shape, the layout height
or the rooms position. These generally alternative approaches can be classified in the 
conventional optimization methods or in the more recent data-driven approaches.
The first branch is more often used in the case of multiple images combined, while 
the second, although more performing, is usually used for single images.
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So, the first approach is usually based on optimization methods. We start from a 
simplified segmentation into wall, ceiling a floor facets, then a constrained graph of 
facets is exploited to recover each room.
Single view approaches recover the 3D information applying Manhattan World or less
restrictive Atlanta World, while multi view approaches recover 3D from sparse multi-
view features.
For these multi image methods the 2D fooprint of the room can be recovered just 
projecting and merging ceiling and floor facets.
As a result we obtain the 2D floorplan of one or more rooms, coupled with the ceiling
heights.
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A more recent option to recover room layout is instead using modern data-driven
methods.
In this case the input must be at least an undistorted image, so that the structure
depicted in image is aligned to the canonical manhattan axes.
This is basically for two reason: the output of the network, that is also the ground
truth for training, is a representation of the room layout as corners and boundaries in 
the equirectangular image. In this way we expect that at least corners of the same
edge lie on the same vertical line. 
Second, the output is noisy, so heavy priors need to be applied on the shape at post-
processing time, based on Manhattan alignment.
However, these methods out-perform standard optimization approaches at least for 
the single images, returning 2D footprint, corners and layout heights.
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Finally, at post-processing time, all elements are joined to obtain the final layout.
In this step we usually perform a 2 dimensional regularization on the room footprint, 
3D extrusion and , eventually, rooms displacement.
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The regularization process is common when dealing with noisy or uncomplete
shapes.
A typical approach is to consider the room shape as a 2D projection on the floorplan.
In the case of data/driven output, for example, is common to exploit manhattan
world priors, by warping the equirectangular image so that walls are aligned with 
horizontal and vertical directions.
Here we have some approaches, in the first case, the wall segments are regressed
and clustered into horizontal and vertical lines, 
In the second one instead the wall lines are fitted starting from corners position with 
a voting scheme based on ceiling and floor boudaries.
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Finally, in order to define the 3d layout, is common to perform an extrusion using the 
layout height, which is a single value for manhattan and atlanta models, or multiple 
values for the vertical walls model.
Moreover, for multiroom and complex scene, we need to join several rooms in the 
same model. This is usually accomplished using camera reference frames from the 
multi-view registration,
Since each room reference system is the camera center, that is the sphere center.
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So to summarize:
Modeling the room boudaries usually requires an heavy use of priors.
Moreover, almos all solutions work in 2D and 2.5D domain, using common 
assumptions like:
Large planar surfaces, vertical walls and often assuming horizontal floor and ceiling.
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Fully 3D approaches are still open problems, in order to obtain, for example, free-
form shapes.
In this context RGB_D cameras can help data fusion, as well as recent data-driven
methods.
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So, once we have recovered the room boundaries we need to deal with the modeling
of the elements inside, as for example furnitures and functional objects, in order to 
complete the model of the scene
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We are going to see this in the next session.
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In our context, we define an indoor object as a part of the scene not belonging to the 
architectural structure.
Typical examples are furniture, lamps or some everyday items.
Indeed object detection is a large topic itself, 
in our course we focus only on object detection and reconstruction embedded in a 
structured indoor model
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Here the main goals for indoor modeling are basically three:
First, object detection as clutter removal, that is the case of methods focused on the 
permanent structures instead of the movable objects modeling.
this is the typical goal of methods starting from dense 3D data without images.
Then we have the methods that actually reconstruct the objects.
In this case we have objects that are intendended as functional part of model, such as
3d objects with a non-zero volume, or even flat objects, such as outlets or lights.

3



In the first case, methods are focused on the as-bulit modeling, so clutter needs to be 
removed as early as possible.
In this context the solutions usually depend on the input data, and the techniques are 
designed to maximize the recall of the permanent components.
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From 3D input there are different ways to filter the clutter.
Some techniques start directly fitting 3D primitives and then remove the outliers
points,
Other methods first project the 3D data on a floorplan to remove all points not
belonging to primitives.
Or other methods first partion 3D data into oriented rectangles and then check if the 
rectangles are connecting floor and ceiling.
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There are also some cases of clutter removal for methods starting from visual input.
In this case the visual information is exploited to improve the boundary
reconstruction.
A typical approach is identify foreground and background elements of the scene, and 
then remove foreground objects from boundary computation.
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In terms of reconstruction of 3D objects, a first branch of methods start from a single 
pose input.
These methods leverage on two strong assumptions:
The object planes are parallel to the walls and the object lie on the floor.
Some common approaches are based on object model fitting, for example fitting a 
small set of candidates, or using generative models,
Or a larger set of candidates using a branc and bound strategy.
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More recently data-driven approaches are becoming more popular, exploiting in 
some cases top-down matching between models in a database and the image, 
Or estimating object poses using rendered and rastered models.
Again, methods migrate to panoramic images, using both bottom-up and top-down 
strategies.
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Compared to external boundary extraction, recovering objects requires more 3D 
clues and in general more view-points.
To this end several methods exploits joined single and multi-view reasoning on 
images,
Starting from pin-hole images to reconstruct a full layout of a small indoor scene,
Or from panoramic images, exploiting a plane-sweeping approach to join multiple 
image segmentations and reconstruct cluttered floorplans.
On the other hand several solutions start from RGB-D images, exploiting volumetric
segmentation and a database of objects.
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Many data-driven solutions to match the objects adopt, for example, virtual scanning, 
depth segmetation,
Other explit rgb data to complete missing parts instead work without a specific
database, for example finding recurrent object instances. 
More recently some methods exploit supervised training on generative adversarial
networks, or voxel-level semantic labeling.
A recent example works directly on rgb images, recovering a contextual prediction of 
room layout, camera pose, object bounding boxes and their meshes.
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A specific mention is deserved flat objects recognition.
Infact, many important functional objects have no 3D evidence, so previous
mentioned approaches are ineffective.
In this case the approches for detection are based on images, meanwhile 3D clues are 
needed to map the objects into a structured model.
In this context some approches evaluate geometric consistency of multi-view
features, 
Or in the context of panoramic images, some methods adopt a distortion-aware
recognition exploiting the underlying 3D structure.
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Now we’ll see an example of a full pipeline for structured object modeling. The 
presented example is a part of larger system to model a large and complex indoor 
scene, just form a small set of panoramic images.
Such a system provided the multi-room model with the major objects inside the 
rooms, modeled with their 3D pose and size.
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Since we have a multi-room environment, first we start clustering the images in to 
rooms.
Then, for each cluster, we adopt a plane-sweeping approach to combine data-driven
object detection and multi-view geometric reasoning.
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Such a system adopts some of the priors we have seen in previsious parts of this talk.
In general the whole structure is a vertical walls model, and we represent the objects
in the environment with their oriented bounding volume.
Such a model is suitable for most real-world applications, like content creation for 
security, path planning or guidance.
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As a first task we need to group the images in to different rooms. We have already
seen this step in the room partitioning section before.
Just to summarize, here we build a graph connectiong images, where each arc links
images which have common multi view features, and we assign to each arc weight
depending by a specific similarity function.
Such a function is the 1D warping cost between two images, calculated on a textured
strip from the images horizon.
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Now, for each room, we model the clutter by introducing virtual plane sweeping
approach.
To do this, firstly we set a virtual camera on the top-down view along Z axis, that is
along the height of the layout.
Then we need to define a parametrization and a cost function.
We adopt a Z parametrization, like the proposed sphere to plane trasform seen in the 
previous section.
Such trasnform is commonly adopted to recover piece-wise floor and ceiling
footprint, a so to infer the 2D shape of the room.
As it is this transform is suitable only for the external boundary, since it expects to 
project the spherical image on a single horizontal plane.
In other words is not applicable directly to objects since each one has different
height.
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So, for this reason, we need to introduce a local spatial transform, applied time 
by time to each single object visible in the image.
To do this we need to segment the image in to background, or permanent
structure, and foreground objects.
We combine in this case state-of-the-art methods to for image foreground
segmentation, such as data-driven object detection and saliecy detection.
In the indoor environment object detection algorithms work well when the 
entire object is visible.
However, they fail in the cases where the object is occluded or the object is 
unusual. 
So saliency detection helps in these situations because partially visible or 
unusual objects typically show up as being salient.
Starting from the segmentation mask of each object the local transform returns the 
2D object footprint hypotesis, parametrized for each Z.
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Now, for each object, we combine multi-view information through the plane-
sweeping.
So, varying Z, we minimize a cost function based on three components:
The first component takes in account of the shape consistency, in terms of 
intersection over union between each object masks from different images.
As we can see we are working in the transformed space.
The second component take in account the color consistency between object
projections
While the third component evaluates the significant edges consistency, that is the 
case of objects higher than the camera level, we will see later an example.
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So, varying Z as parameter we obtain a first cuboid approximation, which is given by a 
2D footprint, that is the bounding rectangle of best intersection over union, with its
associated height.
Then, in a second step, we optimize all the 6 parameters defining the cuboid by 
levmar minimization , also inserting a further component, which takes in account 
fitting of the model with the closest sparse 3D points.
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Here we have an example of trend of the different components, shape, color, edge at
the first optimization step, when Z is varying.
In the first case, the object, that is a bad, is below the camera, so we found that the 
most discriminative components are the shape and the color.
In the second case on the right instead, the cabinet is higher than the camera 
position, in this case the most discriminative component is the edge, relative to 
cabinet visible edges.
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Here we have some numerical results of the presented system on large mulit-room 
scenes, in term of position and size error.
We also see as considering the object poses improves the whole layout recovery, also
in terms of rooms boundaries reconstruction.
In particular, using clutter information reduces the number of images needed to 
estimate the floorplan structure.
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Here we have performances in terms of object recovery and some failure cases.
Tipically such a system fails if there is a wrong object matching between different
images, or in case of a fatal occlusion in the object mask.
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To summarize, we have seen that the approaches from pure 3D data only focus on 
the permanent structure and the clutter is filtered a noise.
On the other hand approaches from pure visual or mixed 3D data have a broader
focus, but provide just a coarse approximation of the object., or at least a matching
with an object library.
Recent works from visual data provide contextual room layout, 3d object poses and 
refined meshes exploiting data driven methods, however they are still limited to very
small scenes.
So recovering the real, detailed shape of multiple objects, especially in a large and 
complex environment is still an open research problem.
Also in this case using data fusion approaches can bridge the gap between scene 
understanding and geometric reasoning.
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We have seen the methods for the indoor object modeling embedded in a whole 3D 
room layout.
Indeed a complex and large environment it is defined by many rooms and spaces
joined togheter.
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To this end we need to integrate recovered rooms in a consistent way, as we are 
going to see in the next section.
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Many modern pipelines model individual rooms as individual entities, reconstructing a 
single 3D model independently for each of them. This is useful under many aspects – first 
of all, it increases computational efficiency – but introduces the need for an explicit step to 
integrate these partial results into a single coherent structured model.
In this context, it is first of all important to ensure that the individual room models are 
assembled correctly – which means, ensuring a consistent treatment of the separation 
between the two sheets of a wall shared by different rooms, or avoiding geometric artifacts 
when merging two room models into a single one.
On top of that, once all the room models are given it is important to extract basic 
information about their interconnections, which requires the systematic detection of doors 
and passages on the reconstructed boundary walls and, possibly, handling the case of 
interiors that span multiple storys.
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Enforcing coherent boundaries between adjacent rooms involves different techniques 
depending on how exactly boundaries are represented.

Walls can be considered as part of the reconstruction just like rooms are. After all the 3D 
samplings return surfaces which are boundaries both  of the walls and the rooms alike.
Ochmann and colleagues [Ochmann 16] harnessed  this duality and consider the floor as a 
planar straight lines graph where the edges are the walls, the faces are the rooms and the 
corners are the points where walls cross each others.
In their approach, the input data are analyzed to  find wall as pairs of parallels vertical 
surfaces. The middle line of each wall is considered and extended so that the set of 
extended walls induces a partition of the dataset in cells. Also, the scan position, which are 
assumed to be known, provide a coarse subdivision of the space in rooms. Than a labeling 
problem is set up where the goal is to assign a label to each of the cells from the partition. 
In this labeling problem, the smoothness term penalizes the assignment of the same label 
to adjacent regions when they are separated by a wall supported by enough points of the 
dataset in the boundary between the cells.
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A labelling approach is also used in the work by Mura and colleagues. They  use planar 
priors and fit oriented rectangles with the point cloud. In order to find the structural 
rectangles, that is, the floor, the ceilings and the walls, they encode the relations between 
rectangles in an adjacency graph. By visiting the adjacency graph, they are able to identify  
non-structural rectangles as those which are not in a path from the floor to the ceiling such 
as the surface of a table in the image. Thanks to the adjacency graph, the can then extend 
only structural planes and have a robust partition of space in cells over which to define the 
labelling problem. The number of rooms is determined with a clustering approach [Di 
Benedetto 14] applied to the scan positions (at least one scan is assumed for room).
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In a more recent effort, Ochmann and colleagues [Ochmann 19] push forward the idea of 
walls/rooms duality by considering  walls as cells themselves. In other words, the 
volumetric partition is found by using all planes, that is, both side of each wall, so that the 
resulting cells can be either   portion of rooms or portion of walls. They use ILP where the 
solution is expressed as a series of binary variables, one per couple (cell,label) and a set of 
constraints ensure that any found solution is sound, for example that the boundary of a 
room cell is a wall cell and so on .
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There are contexts where the thickness of the walls is unimportant and a paper-thin 
assumption can be adopted. In these cases the problem consists only in finding a consistent 
arrangement of neighbor rooms.
For example Pintore and colleagues propose a system where the position of the acquisition 
device, which in  this case is a panoramic camera, is tracked during acquisition. Then, after 
the geometric reconstruction of each room, the tracking is used to  estimate the position of 
doors, further refined with image segmentation techniques. Since that each door is shared 
by two adjacent rooms, their position provide information both for the  definition of  a 
room graph and for the mutual position of the rooms.
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In the work by Liu and colleagues [Liu 18], the definition of rooms borders is essentially a 
post processing step of the system. Their pipeline consists in the combined use of NNs 
which produces a rasterized data with features points, such as room corners and door 
corners) which is used as input to a final stage which perform a vectorization of the data in 
order to produce the final footprint. The vectorization problem is tackled with integer linear 
programming, by defining a set of junction types and a set of constraints on how these 
junction can be connected to for a valid footprint.
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A similar solution for the same type of input data  is proposed by Chen and colleagues 
[Chen 19].  Their idea is to reduce the problem of vectorization to  solving a series of 
shortest path problems where each path is a loop that identifies a single room.
They define a cost function over the entire sets of paths which considers the global 
consistency by penalizing sides of neighbor loops that are closest than a threshold and are 
not coincident. They express the cost function as  a summation of values over adjacent 
pixels so that the shortest path around a room is the minimum of the cost function for that 
room.
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At a global scale, they iterate the shortest path algorithm sequentially  for all rooms in the 
dataset until convergence, thus performing a gradient descent optimization.
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Turning to aspects more closely related to the navigable structure of the environment, 
portals – that is, doors and large passages in walls – are an element of fundamental 
importance, as they explicitly mark transitions between different rooms.

For this reason, their presence has often been used to address room oversegmentation, 
that is, the case of whole rooms being wrongly split into several distinct rooms. For 
example, Ochmann and colleagues detect non-existent walls between candidate rooms by 
(NEXT) considering viewpoints on the two sides of the wall (NEXT)(NEXT) and casting rays 
from them through the wall. The intersections on the walls can correspond either to 
scanned points or to empty space; a support vector machine classifier is fed with the 
features of these intersections and classifies the wall as real or virtual

10



The same rationale is behind the approach of Ambrus and colleagues, who essentially 
resort to image processing to analyze the empty regions on the vertical planes of candidate 
walls. If a sufficiently large and high empty area is detected, the wall is considered as a real 
one.
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It’s worth mentioning that holes in the sampling of the wall do not necessarily imply the 
presence of doors or windows, in that the presence of occluders, such a closet,  may lead to 
false positives. To this regard, the solution proposed by Adan and colleagues [Adan 11] uses 
a voxelization of the domain and label as occluded those voxels which are not visible by any 
of the scan positions. 
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However, portals detection can be applied in a more principled manner to detect 
transitions between rooms. In the work by Ikehata et al [Ikeata 15], portals are also 
extracted by analyzing the empty space on vertical wall planes;
In this case, however, pairs of adjacent, parallel planes are considered: if sufficiently large 
empty regions are detected on both planes, and if their shapes match, then a portal is 
inserted between the two rooms

and this information is explicitly used towards the definition of a ….
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Room graph,  a fundamental piece of information to define the navigable structure of the 
environment. This graph represents the rooms as nodes, and physically accessible 
transitions between rooms as edges.

This graph can be seen as a subset of the scene graphs recently proposed for top-down 
representations of indoor scenes, which focus on semantic parsing. In the work of Ikheata
and colleagues, this graph also encodes a structure grammar, with grammar rules defining 
transformations between nodes.
In particular, spatially close rooms have wall nodes that are connected by an edge; the 
outcome of a portal detection operation corresponding conceptually to that edge defines a 
precondition for one of two rules:
- A room-merge rule, which merges the room nodes into one
- A door-addition rule, which adds an explicit door node connected to each wall node of 

the rooms

Such an explicit and holistic modeling of room interconnections is however the exception 
rather than the rule: most approaches focus on modeling adjacencies rather than room 
interconnections, and aim to do this in the most accurate way possible.
For instance, in the recent work by Chen an colleagues, rooms are modeled as 2D boundary 
loops in a top-down view of the environment; adjacent rooms share portions of their 
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boundaries, and specific penalty terms are added to the optimization formulation to favor 
the perfect overlap of the shared segments
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For large indoor spaces that span multiple storys it is important to ensure that the 
transitions between storys do not affect the correct assembly of the individual room 
models. Interestingly, this aspect is widely disregarded in state-of-the-art pipelines.

The most basic approach to handle multi-story interiors is to slice the input data along the 
vertical direction, obtaining horizontal slices, each corresponding to a story level. This can 
be done in a relatively robust manner by analyzing the distribution of input samples along 
the vertical axis, for instance using a 1D mode finding algorithm to detect peaks in this 
distribution, as done by Oesau and colleagues. Two subsequent peaks separated by a 
relatively small gap denote the transition from one floor level to another.
Obviously, this sets the very restrictive assumption that the floors must not overlap along 
the vertical direction
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One way of overcoming this limitation is to simply make the reconstruction process 
oblivious of the notions of floor and ceiling. This result is obtained as a nice side-effect in 
the recent work by Ochmann and colleagues, who simply compute rooms through the 
aggregation of polyhedral regions of space, ensuring that these aggregates of polyhedra are 
well-separated using a global formulation based on integer programming. Enforcing this 
separation does not require the definition of global floor and ceiling heights, so each room 
is allowed to have its floor leveled at an arbitrary height, independent of other rooms.

In general, though, a flexible and robust handling of multi-story interiors is an under-
researched problem, and a promising solution comes from modeling rooms as individual 
entities  by input data partitioning strategies.
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In fact, this is just one of the open problems when it comes to producing globally consistent 
structured models of interiors.

Making indoor modeling room-aware is nowadays a need-to-have feature rather than 
simply a nice-to-have, but how to integrate the individual room models correctly while also 
recovering the navigable structure of the environment is not a solved problem.
Only some approaches – mainly, the work by Ikheata et al – programmatically use portals 
to determine the interconnections of rooms. 

Also when it comes to the geometric consistency of room boundaries, obtaining this result 
often requires using restrictive assumptions on the architectural shapes of the 
environment. For  instance, the work by Mura et al. recovers walls with arbitrary 
orientations in 3D space, but only favors an explicit separation between adjacent rooms; 
the integer programming formulation by Ochmann and colleagues rigidly enforces room 
separation, but uses the Atlanta World prior, requiring vertical walls and horizontal floors 
and ceilings.
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This concludes the review of room segmentation techniques
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This concludes the review of room segmentation techniques
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1



We have seen how many methods are targeted to reconstruct geometry and 
topology of the environment. However, there are many applications where also a 
realistic and immmersive visual representatation can be useful. 
We may find examples in the real estate market, in the virtual museums domain or in 
the applications about  building renovation, to mention a few.
In these and other cases we may want to be able to browse the reconstructed model 
as if we were inside it, and this needs at least 3 things:
Having color detail: no matter how much we are used look at shaded geometry of 
acquired artifacts such as a statue or a church, the great majority of indoor spaces  
are simple and repetitive and geometry alone would not be enough to make sense of 
them.
Having indoor elements is also important. What is generically defined as «clutter» in 
the context of boundary reconstruction, when it comes to visualization it is a precious 
visual aid.
Finally, we need algorithms for visualizing the models. As much as rendering itself is 
usually not an issue, we need proper metaphores and interaction modes, which also 
depend on the specific type of data used (that is images, panoramic images, textured 
geometry) and the device we want  to use.
In the next few minutes, we will look at how these problems are solved at  the 
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current state of the art.
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First of all, let us point out a few differences between how we are used to think to 
texturing in the field of 3D scanning when targeted to accurate reconstruction of 
specific objects and texturing indoor environements. In the first case we aim at 
precise and accurate 3D reconstruction, which gives us a reliable geometry which will 
match with a photograph of the same object down to pixel precision. On the other 
hand, when reconstructing  indoor environments we may easily end up with 
approximations of the order of centimeters (especially with image-based methods) 
that would often serve as a little more that a proxy geometry.

Second, in 3D scanning we usually perform an acquisition campaign specifically 
targeted to texturing, or even to BRDF, in a controlled lighting environments or, 
anyway, color data are acquired in the most favorable time and point of view. In 
contrast, lighting in indoor acquisition depends on windows and light sources present 
in the rooms. 
In summary, in 3D scanning texturing is a fundamental part of the reconstruction 
process while in reconstruction of indoor environmenst it is almost a by-product and 
for this reasons it needs ad-hoc tecniques.
In this context, we may reduce the problem o texturing to two sub-problems: finding 
a correct alignment between images and reconstructed geometry; assign the color to 
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each texel by appropriately considering the contribution from the aligned images.
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Concerning the image-to-geometry correspondences, Turner use Hough transform to 
find edges in the images and they try to find the correspondences with  the edges of 
the triangulation, specifically those separating walls from the floor. Then they 
rototranslate the cameras so to minimize the difference between corresponding 
edges in the projection (shown in blue and red, respectively).
The consistency of texture on the projecting surface is addressed with a second 
minimization procedure on the SIFT features of overlapping images, where only 2D 
translation are considered.
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Huang and colleagues [Hunah 17] proposed a system called «3D Lite» to reconstruct 
3D environements by using consumer  RGB-D sensors.  They use bundle fusion to 
reconstruct the geometry and than use plane priors to abstract the whole 3D asa set 
of planar primitives.  At this point, the depth associated with each image is no more 
the original depth image but the rendered depth  of the finalized geometry. 

The alignement of images is obtained by minimizing a 3 term energy function over 
the camera poses. A term accounts for the photoconsistency of all points, a term for 
the matching of   point features  and a term for correspondence of planes.
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The  most straighforward way to produce a textured geometry is a simple projection 
of the images onto the geometry. This is done by several algorithms, when producing 
a faitfhul visualization is not their main goal.  
For example, in their seminal paper on image-based reconstruction from panoramic 
images, Cabral and Furukawa [Cabral 14] output the wall boundary as a set of planar  
quads and, for each quad, choose the closest camera and project the relative image. 
The floor instead is provided as a triangulated surface and the images are chosen per 
point. A similar approach is used by Pintore et al. but only one image is used per 
room, which is assumed to be star-shaped.
This simple approach falls short in several regards: First, all the 3D objects in the 
room will be splat onto the boundary and on the floor; second, even the smallest 
error in geometry estimation will be made apparent by projective distortion, as it can 
be seen on the part of walls projected onto the floor; Third, different choices of the 
camera in nearby surfaces are immediately noticeable both for the difference in 
projection and the different exposure and lighting.  
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The goal of combining the contributions of aligned images to produce a final texture  is avoiding visible artifacts 
due to remaining misalignments, differences in exposures, blurred images and so on.
Current approaches typically use exposure correction by finding a mapping function to map the color between 
images. 
Then a labelling problem is solved to assign   image sources to point on the geometry, minimizing a two term 
energy function.
The first term  accounts for the error on choosing a source for a specific point, the second term is used for spatial 
coherency, that is, to avoid too many changes of assignment for neighbor elements which would tend to create 
visible borders.
It is typical for the first  term to incorporate the view angle, however more information can contribute to the 
term. In the work  Sinha and colleagues uses the distance from the median  color of all projecting images is used 
to avoid outliers. Also, they allow user input as strokes in the source images to favor or prevent specific regions to 
be used.
The second term typically  contains a measure of the difference between the projection of neighbors in both 
associated images plus a measure of the respective gradients. In the variation proposed by Huang, the first terms 
is instead designed to favor the texture that is locally sharper w.r.t. the projection of the point (which implicitly 
includes projection angle). Also, they introduce a final smoothing step by reintroducing a contribution from the 
simple average of all images. This is done  by including the difference between the laplacian of their projections in 
the energy function. 
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As aforementioned, the image acquisition is typically done in a uncontrolled lighting 
environment and images will have to be corrected prior their combination.
When using RGB-D cameras, many images will be available and, thanks to the 
automatic white balancing of the camera, they will be in a possibly wide range of 
exposures.
Zhang et al. Took advantage of it by assuming a purely diffuse environment and 
setting a minimazion problem over radiance and exposure  values for each vertex of 
the mesh.
I short, they created and HDR textures from a set of LDR images, which of course 
allowed them to relight the scene at different exposure.
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So far we considered only solutions that target the creation of a view independent 
textured geometry, but there are applications where this is not necessary.
For example Colburn and colleagues [Colburn 15]  implemented a system for indoor 
remodelling that uses view dependent texturing.   The advantage of VDT is that from 
the point of view of the camera the rendering is very realistic, since it’s the actual 
photograph of the scene. On the other hand, if you want to change the geometry of 
the scene the image would not correspond to the new geometry. Their idea is to 
store, for each editing view, the set of images projecting onto the geometry within 
the view frustum so, in this example, the images of the room unveiled by the new 
door.

9



There are also many cases where the  actual color appearance of the environment is 
not important and all we need is just a plausible colorization.
In these cases a viable alternative is to synthetize the color. For example  Chen and 
colleagues [Chen 15] propose a method that takes as input an annotated 3D scene 
and porpose a number of alternative colorizations.
They use annotated databases of images (Opensurface) and infer local materials 
rules, that is, rules that bound the color of the table and then chair, or the sofa and 
the arm chair and on, and added global ahestetic rules, then set up a minimization 
problem over the material type.
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As for color appearance, there as many applications where the actual layout of the 
furniture itself is unimportant and a plausible one can be syntetized.  User input can 
be taken for creating room layout. For example Merrel and colleagues proposed a 
system where the user edits the 3D scene and the elements of the scene are re-
arranged following visual and functional criteria. Xu et al instead take user input in 
the form of a sketch and infer placement rules from a database of over 700 well 
costructed scenes taken from google warehouse
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Kermani et al instead use the SUN RGB-D database, which contains 10000 depth 
images from real world scenes  for learning co-occurrences, spatial  arrangments and 
higher order relations.
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Finally, there are  approaches such as done proposed by Fisher et al and by Fu et al 
that create layouts based on the functionality of spaces. Here the idea is to infer 
activity maps from partial scans using a pretrained classifier,  and then to synthetize 
the scene accordingly to the activity map.
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When it comes to visualizing indoor environments, the rendering itself is not more 
difficult than in the general case. If anything, the room structure allows to take full 
advantage of visibility culling techniques.
What is more interesting is the way the environment can be browsed,  the 
methaphores used to control the browsing activity and the type of data that are used.
We all have experience with first person shooter games and keyboard-mouse 
combination to control point and direction of view, respectively.
However, very often freely browsing every hidden corner of every room is not what 
the application needs  and the keyboard and mouse interation are not suitable for 
touch screen devices that simply  don’t have them. 
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Sankar, in its seminal paper on indoor acquisition with a smarphone, shows the 
environment as a collection of panoramic images, one per room. In their system, a 
clickable arrow  is overlayed to move to the next room.
The transition is implemented by showing  the video that was acquired during the 

acquisition process, while moving from a room the the next.
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In the TumViewer (developed at the University of Munich and then a commercial 
product) each image is overlayed an icon (a small sphere) to indicate the location of 
the other images. Upon clicking a sphere, the view is moved to the corresponding 
panorama. During the transition, the current panoramic images is zoomed in to 
convey the sense of movement towards the next image and then faded into the new 
one.
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Di Benedetto et al also use a set of panoramas. In their approach, a panoramic video 
is precomputed for each transition in a visiting graph, which is computed in a 
preprocessing phase. Since the video is panoramic, the viewing direction can be 
changed while moving from a point of view to the next.
Pintore uses the same technique by projecting the panoramic image onto the 
geometry, that is also what the Matterport showcase viewer does.
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Translating a reconstructed indoor environment into a production-ready 3D model is 
still challenging.
The featureless nature of interior walls and, more importantly, the goal of providing 
an abstracted description of the boundary as a set of planes generate an 
approximation that clashes with the need to align the images to project.
Furthermore, the  removal or poor sampling, or abstraction of interiors also breaks 
the consistency between images and reconstructed geometry.
In summary, the images show the real scene while the final geometry shows onnly an 
approximation of it. In this sense, 
an interesting under researched avenue concerns developing new algoritmhs that 
allow to project, on, more in general, to adapt real images to approximated 
geometry.
On the visualization side, we can say that panoramic images offer the great advantage 
of having perfect rendering, even if from a finite number of locations and, provided 
that the transitions are well handled, are currently a preferred choice. Again, the 
quality of the final models is still a  challenge for photorealistic visualization and 
unconstrained browsing.
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Hello, here is Enrico Gobbetti again, continuing to enjoy lockdown in the same indoor 

environment…  
 

All good things come to an end (hopefully also bad ones), and it’s time to wrap-up.  

 

Our presentation has quickly covered, in tutorial form, the state-of-the-art in 

structured indoor reconstruction.  

 

Again, we refer you to our recently published survey article for much more 

information and a detailed bibliography.  
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To summarize, our survey has highlighted that structured indoor reconstruction is a 

well-defined area of research in itself, that requires specialized solutions to produce 

the desired structured models from captured samples. 

 

The overall problem is very challenging, but we have shown that research has 

witnessed substantial progress in the past decade, growing from methods handling 

small-scale single-room simple environments, to techniques that handle substantial 

artifacts and produce high-level structured models of large-scale complex multi-room 

buildings.  

 

However, several areas remain for future work. 

 

I’ll conclude my talk, and the overall tutorial, with just a quick overview of the main 
identified ones. 

3 



The first important point is that, in order to offer robust solutions to the ill-posed 

reconstruction problems, very strong priors are typically imposed.  

 

For instance, very few methods target complex ceilings or curved surfaces.  

 

Relaxing such constraints is a main avenue of future work.  

 

Besides better solvers, an emerging aspect is that improved multi-modal acquisition 

devices (for instance RGB-D cameras) might be very helpful in this area.  

 

This is because by providing denser visual and depth coverage they reduce 

reconstruction ambiguities.  

 

Usage of RGB-D data, as opposed to purely visual or purely geometric input is thus 

becoming a constant for most solvers tackling complex models. 
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An second important take-home message is that research approaches are 

increasingly evolving from simple rule-based methods to assemble local 

reconstruction to more general optimizers that strive to globally minimize some 

fitting function.  

 

However, most optimization solutions still tend to target relatively small-scale multi-

room environments with simple priors, using, for instance, planar surfaces and fully 

in-core processing.  

 

The global reconstruction of massive models with complex architectural shapes is still 

a challenge.  

 

This requires progress both on global solution methods and on their efficient parallel 

multi-scale implementation on large environments.   
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As already mentioned, moreover, the recent years have seen the consolidation of 

multi-modal capture systems, which provide lots of information to work with.  

 

Very few solutions, however, jointly exploit color and 3D data, which are typically 

handled in different stages of the pipelines.  

 

Performing data fusion to combine visual and depth cues into multi-modal feature 

descriptors is therefore a very important avenue of future work, since joint analysis 

promises to better cope with heavily cluttered and partial acquisitions 
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At the opposite, purely visual input is extremely ambiguous and makes reconstruction 

very hard.   

 

Regular and panoramic cameras are therefore not the best capture device to use for 

inferring the shape of an indoor environment. 

 

On the other hand, indoor reconstruction from camera capture is extremely 

interesting for a number of applications and is possibly the only way to provide tools 

usable for the masses.  

 

Therefore, many many solutions are emerging in this area, and given the strong 

ambiguities they need to strongly exploit prior knowledge or additional capture 

information.  

 

Two recent trends in this area are to exploit knowledge learned from large databases, 

as well as putting the user in the loop to improve capture & reconstruction.  

 

In particular, it is not uncommon to exploit data from additional sensors such as 

inertial units, for instance by tracking paths.  
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Finally, the trend of moving from hard-coded priors to priors learned from data is a 

general one, and not limited to purely visual input.  

 

This is not surprising, since learning-based solutions are a becoming a general 

approach for many problems in computer vision and computer graphics.  

 

In our context, they are also especially well adapted, since man-made indoors exhibit 

strong regularities that can be learned from examples and are transferable across 

model kinds.  

 

For the same reasons, a combination of geometric reasoning with purely data-driven 

solutions is particularly promising because of the mix of geometrically regular 

architectural elements and freely dispersed indoor clutter.  

 

In this context, the rapid emergence of annotated real and synthetic models 

databases is very important for both training and evaluation purposes.  

 

Our survey includes a detailed list of the currently available ones. 
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And with this final remark, and yet another referral to our article, we have come to an 

end.  

 

That’s it for today! 
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Due to the exceptional period we are living in, this tutorial could not be given live, 

and it’s not possible to have the standard Q&A Session.  
 

However, the virtual conference format should also provide some way to interact, 

which is however still not clear at the moment of preparation of these notes and of 

recording of our talk. 

 

In addition all authors may be contacted by e-mail, and some of them will even 

sometimes answer… 

 

Thanks for your attention! 
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