
Far Voxels: A Multiresolution Framework for Interactive Rendering of Huge

Complex 3D Models on Commodity Graphics Platforms

Enrico Gobbetti and Fabio Marton

CRS4 – Visual Computing Group ∗

(a) St. Matthew (372M triangles ap-

proximated with 1.5M voxels and 345K

triangles)

(b) Richtmyer-Meshkov isosurface

(472M triangles approximated with

4.2M voxels and 137K triangles)

(c) Boeing 777 (350M triangles ap-

proximated with 1M voxels and 3.4M

triangles)

(d) All three datasets at once (1.2G tri-

angles approximated with 4.0M voxels

and 595K triangles)

Figure 1: View-dependent rendering of extremely complex models. These multi-gigabyte datasets cover a wide range of model classes. We can render them interactively at 1pixel

tolerance on a Xeon 2.4 GHz PC with 1GB RAM and a NVIDIA GeForce 6800GT AGP8X graphics board.

Abstract

We present an efficient approach for end-to-end out-of-core con-
struction and interactive inspection of very large arbitrary surface
models. The method tightly integrates visibility culling and out-
of-core data management with a level-of-detail framework. At pre-
processing time, we generate a coarse volume hierarchy by binary
space partitioning the input triangle soup. Leaf nodes partition the
original data into chunks of a fixed maximum number of trian-
gles, while inner nodes are discretized into a fixed number of cu-
bical voxels. Each voxel contains a compact direction dependent
approximation of the appearance of the associated volumetric sub-
part of the model when viewed from a distance. The approximation
is constructed by a visibility aware algorithm that fits parametric
shaders to samples obtained by casting rays against the full resolu-
tion dataset. At rendering time, the volumetric structure, maintained
off-core, is refined and rendered in front-to-back order, exploiting
vertex programs for GPU evaluation of view-dependent voxel rep-
resentations, hardware occlusion queries for culling occluded sub-
trees, and asynchronous I/O for detecting and avoiding data access
latencies. Since the granularity of the multiresolution structure is
coarse, data management, traversal and occlusion culling cost is
amortized over many graphics primitives. The efficiency and gen-
erality of the approach is demonstrated with the interactive render-
ing of extremely complex heterogeneous surface models on current
commodity graphics platforms.

CR Categories: I.3.3 [Computer Graphics]: Picture and Im-
age Generation—; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—.

Keywords: Out-Of-Core Algorithms, Level of Detail

∗CRS4 Visual Computing Group, POLARIS Edificio 1,

09010 Pula, Italy www: http://www.crs4.it/vic/ e-

mail: {gobbetti|marton}@crs4.it

1 Introduction
Many important application domains, including 3D scanning, com-
puter aided design, and numerical simulation, require the interactive
inspection of huge geometric models. Despite the rapid improve-
ment in hardware performance, rendering today’s multi-gigabyte
datasets at interactive rates largely overloads the performance and
memory capacity of state-of-the-art hardware platforms. To over-
come this limitation, researchers have proposed a wide variety
of output-sensitive rendering algorithms, i.e., rendering techniques
whose runtime and memory footprint is proportional to the num-
ber of image pixels, not to the total model complexity. Very few
techniques exist, however, that tightly integrate visibility culling
and out-of-core rendering with level-of-detail management, limit-
ing the applicability of the different approaches to only specific
classes of objects. The lack of one of these techniques, or their
independent application within a rendering engine, poses important
problems when dealing with datasets that combine complicated ge-
ometry and appearance with a large depth complexity. Consider, for
instance, the most advanced methods for rendering large scale mod-
els with fine geometric details [Yoon et al. 2004; Guthe et al. 2004;
Cignoni et al. 2004], which are based on multiresolution point- or
vertex- hierarchies constructed off-line through a geometric simpli-
fication process. Typically, these methods, that repeatedly merge
nearby surface points or mesh vertices based on error minimiza-
tion considerations, perform best for highly tessellated surfaces that
are otherwise relatively smooth and topologically simple, since it
becomes difficult, in other cases, to derive good “average” merged
properties. Moreover, and most importantly, the off-line simplifica-
tion process that generates the multiresolution hierarchy from which
view-dependent levels of detail are extracted at rendering time is
essentially unaware of visibility. When approximating very com-
plex models, however, resolving the ordering and mutual occlusion
of even very close-by surfaces, potentially with different shading
properties, is of primary importance (see figure 2).

Main contributions. We present a new efficient approach for
end-to-end out-of-core construction and view-dependent rendering
of very large arbitrary surface models on commodity graphics plat-
forms. The method tightly integrates visibility culling and out-of-
core data management with level-of-detail construction and render-
ing. The underlying idea is to depart from current point- or triangle-
based multiresolution surface models and adopt a volumetric ap-
proach based on more complex rendering primitives. At prepro-
cessing time, we generate a coarse volume hierarchy by a binary



Figure 2: Boeing 777 engine details (left) and isosurface details (right). These kinds

of object, composed of many loosely connected interweaving detailed parts of complex

topological structure, are very hard to simplify effectively using off-line geometric sim-

plification methods that do not take into account visibility.

space partitioning process of the input dataset. Leaf nodes simply
split the original data into chunks of a fixed maximum number of
triangles, while inner nodes are discretized into a fixed number of
cubical voxels. Each voxel contains a compact direction dependent
approximation of the appearance of the associated volumetric sub-
part of the model when viewed from a distance. The approximation
is constructed by a visibility aware algorithm that fits parametric
shaders to samples obtained by casting rays against the full resolu-
tion dataset. At rendering time, the volumetric structure, maintained
off-core, is refined and rendered in front-to-back order, exploiting
vertex programs for GPU evaluation of view-dependent voxel rep-
resentations, hardware occlusion queries for culling occluded sub-
trees, and asynchronous I/O for avoiding out-of-core data access
latencies. Since the granularity of the multiresolution structure is
coarse, data management, traversal and visibility culling costs are
amortized over many graphics primitives, and disk/CPU/GPU com-
munication can be optimized to fully exploit the complex memory
hierarchy of modern graphics PCs.

Advantages. The resulting technique, dubbed Far Voxels, has
the following properties: it is applicable to a wide range of model
classes, that include very detailed colored objects composed of
many loosely connected interweaving detailed parts of complex
topological structure; it is fully adaptive and is able to retain all
the original topological and geometrical detail even for massive
datasets; it is strongly GPU bound, since its coarse grained struc-
ture successfully exploits the batched rendering model of current
commodity graphics platforms; multiresolution representations can
be constructed in parallel with a out of core algorithm.

Limitations. As for all current large scale model rendering ap-
proaches, our method has also limitations: it has been designed for
static models, editing is not supported; the sampling and fitting pro-
cess is general and supports many model kinds, but at the expense
of high preprocessing costs or aliasing problems if not enough rays
are shot; the particular rendering primitives employed in this paper
are phenomenological and appropriate mostly for diffuse materi-
als – generalizing them is an important avenue of future work; the
splatting method used for rendering does not correctly handle trans-
parency; our current renderer implementation strives to maintain
interactivity rather than ensuring strict guarantees on image quality;
we have currently not implemented out-of-core compression and
speculative prefetching – these are orthogonal to our method, but
important to reduce perceived refinement latency.

Despite these limitations, the current method and prototype sys-
tem is of immediate practical use and provides unprecedented per-
formance in rendering very large complex models. As highlighted
in section 2, while certain other methods share some of Far Voxel’s
advantages, they typically do not meet its capability in all of the ar-
eas. A general overview of our approach is presented in section 3,
while section 4 introduces a general out-of-core technique for con-
structing the multiresolution model, and section 5 describes view-
dependent refinement and rendering algorithms. The efficiency and
generality of the approach has been successfully evaluated with ex-
tremely complex CAD, isosurface, and scanned models (section 6).

2 Related Work

Rapidly rendering adaptive representations of large models is a very
active research area. In the following, we will discuss the ap-
proaches that are most closely related with our work. Readers may
refer to recent surveys (e.g., [Chiang et al. 2003; Cohen-Or et al.
2003]) for further details.

Out-of-core view-dependent simplification. The vast major-
ity of view-dependent simplification methods for general meshes
are based on constructing a graph of possible refinement/coarsening
operations at the point, vertex, or triangle level. Up until recently,
most techniques required an incore preprocessing step, even though
rendering was performed out-of-core. QSplat [Rusinkiewicz and
Levoy 2000], based on a out-of-core hierarchy of bounding spheres
traversed at run-time to generate point splats, was the first fully
out-of-core point-based method, while Lindstrom’s [2003] scheme
based on vertex clustering on a rectilinear octree was the first fully
out-of-core mesh-based technique. As for all classic adaptive ren-
dering techniques, these methods spends a great deal of rendering
time to compute the view-dependent representation and do not scale
well to gigantic meshes. A number of authors have thus proposed
various ways to push the rendering performance limits in particular
situations. The randomized z-buffer [Wand et al. 2001] uses a hier-
archical traversal of a structure where the leaf nodes contain arrays
of random point samples. They focus on scenes with many instances
of simple objects. Stamminger and Drettakis [2001] dynamically
adjusts the point sampling rate for rendering complex procedural
geometry at high frame rates, but they require a parameterization
of the model, while we focus on arbitrarily complex environments.
A number of authors have recently proposed techniques reducing
the per-primitive workload by using coarse multiresolution struc-
tures that compose at run-time pre-assembled optimized primitive
groups [Erikson et al. 2001; Levenberg 2002; Cignoni et al. 2003;
Yoon et al. 2004; Guthe et al. 2004; Cignoni et al. 2004; Gobbetti
and Marton 2004]. We also follow this approach. All the mentioned
methods employ, however, error metrics defined on the boundary
surface of the objects, and are thus optimized for small numbers of
high-complexity, densely-tessellated objects, rather than for many
objects forming a topologically rich assembly. A number of au-
thors have proposed topology reducing techniques using intermedi-
ate volumetric representations (e.g, [Andujar et al. 2002]). These
methods, however, are view independent, and have been applied
mostly to off-line mesh simplification.

Visibility culling. Visibility culling approaches are broadly clas-
sified into from-point and from-region visibility algorithms [Cohen-
Or et al. 2003]. From-region algorithms compute a potentially vis-
ible set (PVS) for cells of a fixed subdivision of the scene and are
applied offline in a preprocessing phase. From-point algorithms are
applied online for each particular viewpoint. For general environ-
ments, accurate PVSs are hard to compute [Bittner et al. 2004].
Image-based occlusion representations are thus widely used, and
the most recent algorithms exploit graphics hardware to perform on-
line visibility culling [Bittner et al. 2004; Yoon et al. 2004; Zhang
et al. 1997; Klosowski and Silva 2001]. Our method combines an
off-line phase, integrated with level-of-detail generation, that re-
moves voxels practically always occluded, with an on-line phase
that exploits hardware occlusion queries to perform coarse hier-
archical visibility culling. Spatiotemporal coherence is exploited
as in [Bittner et al. 2004] to optimize the scheduling of queries.
Few approaches exist that integrate LODs with occlusion culling
both in the construction and rendering phases. Notable exceptions
are hardly visible sets [Andujar et al. 2000], and visibility guided
simplification [Zhang and Turk 2002], which, however, are non-
conservative techniques that favor model simplification in areas that
are likely to be occluded.



Hybrid rendering approaches. Many hybrid algorithms have
been proposed that combine multiple techniques to render mas-
sive models. A representative example is the MMR/Gigawalk sys-
tem [Aliaga et al. 1999; Govindaraju et al. 2003], which combines
static LODs, HLODs [Erikson et al. 2001] and image based im-
postors with occlusion culling and out-of-core computation and
is applicable to large CAD models that can be naturally parti-
tioned into rectangular cells. El-Sana et al. [2001] and the iWalk
system [Corrêa et al. 2003] combined view-dependent rendering
with approximate occlusion culling for highly occluded scenes.
Chen and Nguyen [Chen and Nguyen 2001], Cohen et al. [2001]
and Guthe et al. [2004] presented methods for combining multi-
resolution polygon and point rendering applicable densely sampled
surfaces. These systems are optimized for particular model classes,
and are hardly applicable to extremely detailed models with vari-
able degrees of occlusion. A few systems based on volumetric rep-
resentations have been proposed. Wimmer et al [2001] followed an
approach similar to ours for data resampling, but focused on encod-
ing the appearance of pre-shaded models as seen from a view cell.
Livnat and Tricoche [2004] presented an isosurface extraction tech-
nique that, similarly to our work, approximates internal nodes of a
LOD BSP tree with a point when a node projects to less than a pixel.
Decaudin and Neyret [2004] also used a volumetric approach, but
their system is specialized to procedural forest scenes obtained by
repeated instancing of volumetric texture tiles.

Interactive ray-tracing approaches. An alternative to rasteri-
zation is to use ray tracing techniques. Thanks to spatial indexing,
ray queries can be answered in logarithmic time, and only those
parts of the scene that are visible need to be accessed. A num-
ber of authors have thus designed raytracing systems for massive
model visualization. Pharr et al. [1997] proposed a caching scheme
that reorders the rays in a way that minimizes disk I/O. DeMarle et
al. [2004] presented parallel techniques for efficiently distributing
models and tasks on a large distributed cluster. Wald et al. [2004]
presented a heavily optimized system that exploits SIMD instruc-
tions for rendering large polygonal models on a dual Opteron PC
with 6GB RAM. A small number of in-core volumetric proxies is
exploited for representing not-yet-loaded geometry in order to hide
disk I/O latencies. While the results obtained with this method are
impressive, achieving 3-7 fps at video resolution for the Boeing 777
dataset, the lack of multiresolution data forces the algorithm to ac-
cess large parts of the dataset for producing a single frame (e.g.,
over 2GB for a 640x480 1 ray/pixel overview of the Boeing 777
dataset). Moreover, the method does not employ GPU acceleration.
By fully exploiting current GPUs, we demonstrate that it is possi-
ble to achieve nearly one order of magnitude higher frame rates on
lower end 32 bit machines. Given current CPU/GPU performance
trends, this gap is likely doomed to widen.

3 Multiresolution model overview

Our approach, that exploits the programmability and batched ren-
dering performance of current GPUs, is based on the idea of mov-
ing the grain of the multiresolution surface model up from points or
triangles to small volumetric clusters, which represent spatially lo-
calized dataset regions using groups of (procedural) graphics prim-
itives. The clusters provide the capability of performing coarse-
grained view-dependent refinement of the model and are also used
for on-line visibility culling and out-of-core rendering.

Figure 3 provides an overview of the approach. To generate the
clusters, the model is hierarchically partitioned with a axis-aligned
BSP tree. Leaf nodes partition full resolution data into fixed triangle
count chunks, while inner nodes are discretized into a fixed number
of cubical voxels arranged in a regular grid.

Finding a suitable voxel representation is challenging, since a
voxel region can contain arbitrarily complex geometry. To simplify

Figure 3: Multiresolution structure overview. The model is hierarchically parti-

tioned with a axis-aligned BSP tree. Leaf nodes are rendered using the original tri-

angles, while inner nodes are approximated using view-dependent voxels.

the problem, we assume that each inner node is always viewed from
the outside, and at a distance sufficient to project each voxel to a
very small screen area (say, below one image pixel). This constraint
can be met with a suitable view-dependent refinement method, that
refines the structure until a leaf is encountered or the image of each
voxel is small enough (see section 5). Under this condition, a voxel
always subtends a very small viewing angle, and a purely direction
dependent representation of shading information is thus sufficient
to produce accurate visual approximations of its projection. This
approximation is similar in spirit to the lumispheres [Wood et al.
2000] employed for surface light field rendering, except that we do
not associate shaded illumination samples to every ray originating
from a surface, but rather prefiltered voxel shading information.

To construct a view-dependent voxel representation, we employ
a visibility aware sampling and reconstruction technique detailed in
section 4. We first acquire a set of shading information samples by
ray casting the original model from a large number of appropriately
chosen viewing positions. Each sample associates a reflectance and
a normal to a particular voxel observation direction. We then com-
press these samples to an analytical form that can be compactly en-
coded and rapidly evaluated at run-time on the GPU to compute
voxel shading given a view direction and light parameters.

4 Construction

The off-line component of our method constructs a space partitioned
multiresolution structure starting from the full resolution model,
that we assume, without loss of generality, represented as a triangle
soup, i.e., a flat list of triangles with direct vertex information.

4.1 Mesh partitioning and deep BSP construction

The first preprocessing phase consists in spatially partitioning the
scene according to an axis aligned BSP tree, whose root coincides
with the mesh bounding box and whose leaves contain less than
a small predefined number of mesh triangles. The BSP tree con-
structed in this phase will be exploited to accelerate the ray casting
process and serves as a basis for constructing the multiresolution
volumetric structure. The BSP is constructed out-of-core according
to the surface-area heuristic [MacDonald and Booth 1990], which
produces subdivisions that closely encompass the model, and stored
in memory coherent order [Havran 1999]. Each BSP leaf points to
the list of triangles that pass trough it, in a format optimized for ray-
triangle intersection [Arenberg 1988]. The final structure, stored on
disk in binary form, can be used for out-of-core sampling of the
scene, by mapping it to the user address space and letting the OS
manage demand loading on a per-page basis.

4.2 Level-of-detail hierarchy construction

Once the deep BSP tree is available, we exploit it for constructing
the level-of-detail structure for the scene. We first generate the final



multiresolution structure layout by constructing a coarse hierarchi-
cal structure on top of the deep BSP hierarchy. In this layout, empty
nodes are removed, while leaf nodes are associated with subtrees of
the deep BSP that approximately contain a number of triangles cor-
responding to the specified cluster size. We then traverse the coarse
hierarchy and generate for each node the final representation, which
is immediately stored on disk. Nodes are visited level by level, and,
at each level, in order of geometric proximity. To obtain that, the
nodes at a given level are sorted by increasing Morton code of their
center point. This traversal order optimizes memory coherence at
construction time, and even more importantly, at rendering time. To
further increase memory coherence, the hierarchical data structure
is split on disk into two files: an index tree and a data repository. The
index tree has a small footprint, since it contains, for each node, just
the data required for traversal (bounding box, voxel size, and in-
dex of the two children), and refers to the associated rendering data
through a 64 bit offset into the repository and a 32 bit size. The
repository contains all the data required for rendering the node.

Generating rendering data is the main construction task. In our
approach, each leaf node is encoded as a generalized triangle strip
covering the geometry contained in it, thus retaining all the original
topological and geometrical detail. To generate the strip, triangles
are extracted from the deep BSP subtree associated to the generated
node and clipped to the node’s bounding box. Connectivity is re-
constructed from independent triangles by vertex position hashing.
Non-leaf nodes contain instead a volumetric simplification, gener-
ated from a discretization of the bounding box into a fixed number
of (approximately) cubical voxels arranged in a regular grid.

Sampling process. To construct a view-dependent voxel repre-
sentation, shading information samples are acquired by casting rays
against the deep BSP of the original model from a large number of
possible viewing position. To generate the samples, we exploit the
fact that a given node will be always viewed from a distance suf-
ficient to have each voxel subtend a very small viewing angle. We
provide the preprocessor with a worst case value θmax for this angle,
which will correspond to the coarsest possible accuracy for view-
dependent rendering (see section 5). Given the voxel radius rvox, we
derive the minimum viewing distance dmin = rvox/tan(θmax/2), and
cast against the deep BSP a large number of random rays originating
on the surface S at distance dmin from the node’s bounding volume B
and randomly directed toward it (see figure 4). For each hit position
inside B, we compute the voxel index, and store in an associated list
a record containing the intersected surface reflectance, its normal,
and the ray direction. Hits outside B are simply discarded. At the
end of the process, each potentially visible voxel will be associated
to a list of samples covering all the unoccluded directions. An im-
portant property of the sampling strategy is that, given a sufficiently
large number of rays, visibility problems are conservatively solved
for arbitrary view positions outside S by using information from the
entire environment enclosed by S. In particular, voxels that do not
contain surface boundaries, as well as voxels that are fully occluded,
will be empty. At the same time, for each voxel, only visible sur-
faces are sampled, and only from those directions where they can be
seen. As demonstrated in section 6, this visibility aware sampling
strategy is extremely effective for complex models, as environmen-
tal occlusion leads to eliminate a large portion of the voxels (over
40% for the Boeing 777 dataset) and minimizes artifacts due to leak-
ing of occluded objects colors through nearby occluding surfaces.

This ray casting based sampling strategy is very general and sup-
ports many model kinds, but at the expense of high preprocessing
costs or aliasing problems if not enough rays are shot. For simplic-
ity of implementation, we decided to cast a fixed number of rays per
volume, even though classic raytracing sampling methods that cast
more rays in high variance regions could definitely be used to im-
prove accuracy. A promising direction to reduce processing times
while keeping aliasing problems under control would be to con-

struct the structure in a bottom-up fashion, and cast rays against the
already constructed multiresolution structure instead of sampling
the original model at each node.

Figure 4: Sampling process. Shading information samples are acquired by ray casting

the model from a large number of possible viewing positions at distance d
min

from the

volume. Environmental occlusion is taken into account to remove always occluded

voxels arnd to restrict the sampling to potentially visible surfaces. In the image, the

blue object hides the yelloow one, and only gray voxels are considered non-empty.

Parametric shader compression. The sample list for each
voxel provides all the information for computing view-dependent
shading. To generate a more compact and efficient representation,
we compress these samples by fitting them to simple parameterized
shader models, and choosing the shader that provides the best ap-
proximation. Each shader consists in a function that returns a color
attenuation given its internal parameters, a view direction v and a
light direction l, i.e., Shaderi(v, l) = BRDFi(v, l)max(n(v) · l),0),
where n(v) is the surface normal seen from v. Instead of deriving
a general purpose shader, we assume that a small number of shader
classes can be used to model common situations (see figure 5). In
our current prototype, we have implemented the following classes:

K1a A flat shader, parameterized by a plane normal, a front ma-
terial, and a back material, that implements the standard two-
sided Lambert reflection model. The normal is found by aver-
aging all sampled normals, while the colors are found as the
front and back average.

K1b The same as above, with the normal computed by principal
component analysis of the sampled hit positions.

K2 A smooth shader, parameterized by 6 reflectance and 6 nor-
mal control points associated to the main viewing directions
(±x,±y,±z), found by averaging sampled values according to
the associated ray direction. Lambert shading parameters are
found from v by summing the values at the three nearest ref-
erence directions weighted by the respective direction cosine.

The shader selected for a particular voxel is found by constructing
an instance of each shader class k using a random subset of the
samples. We then use the remaining samples to measure the differ-

ence in shading for a number of random light directions l j: ε
(k) =

∑i ∑ j

(

BRDF(sampled)
i

(vi, l j)max(ni · l j,0)−Shader(k)(vi, l j)
)2

.

The shader instance with minimum error is then selected and its
representation is stored.

Even though the shader sampling and fitting method is very gen-
eral, the particular shaders described here are phenomenological
and appropriate mostly for diffuse materials. They have been cho-
sen mostly because of ease of implementation and efficiency of
computation. Generalizing them is an important avenue of future
work.

Output data encoding. Since our current renderer is based on
voxel splatting and vertex shaders (see 5), we only store non-empty
voxels, and encode each shader parameter in a specific vertex array,



Figure 5: Primitive distribution. The top part of the image shows the model as pre-

sented to the viewer. The bottom part illustrates the primitive class distribution using

a color code: red for K2 shaders, which tend to accumulate on complex voxels, yel-

low for K1 shaders, which tend to accumulate on almost planar surfaces, and white for

triangles, used for full resolution leafs.

much in the same way we encode triangle strip data for leaf nodes
(see figure 6). In our current implementation, we do not compress
data to a compact external format, but rather directly encode each
value in OpenGL format, using 4 bytes for colors, 6 bytes for nor-
mals, and 6 bytes for relative positions inside a box. Exploiting
compression techniques for reducing disk usage and I/O needs is a
major avenue for future work.

Figure 6: Output data encoding. All data required for rendering is encoded in vertex

array format.

Parallel out-of-core construction. The hierarchy construction
phase dominates, by far, the overall processing cost, mainly because
of the scene sampling process. The whole process is however inher-
ently massively parallel. For this paper, we have adopted the simple
solution of separating the input models into chunks of 20-30M tri-
angles each with a very coarse BSP partitioning and to distribute the
chunks to N machines that execute in parallel, and out-of-core, the
rest of the preprocessing. As a result, we obtain a forest instead of
a single tree.

5 View-dependent rendering

At rendering time, the volumetric structures, maintained off-core,
are refined and rendered in front-to-back order, exploiting vertex
programs for GPU evaluation of view-dependent voxel representa-
tions, hardware occlusion queries for culling occluded subtrees, and
asynchronous I/O requests for avoiding out-of-core data access la-
tency.

Refinement algorithm. The user selected pixel threshold is the
value that drives the refinement: this value represents the maximum
required projected voxel size on the screen. The algorithm takes as
input a forest of multiresolution hierarchies and performs a breadth-
first front-to-back traversal, making use of the following data struc-
tures: a node priority queue, for sorting visited nodes in front-to-
back order; an occlusion query queue, for storing pending occlusion
queries; a GPU cache, based on OpenGL’s Vertex Buffer Objects ex-
tension, for storing the most recently rendered nodes; a RAM cache,
for storing the most recently visited nodes; a fetch request priority
queue, for storing asynchronous I/O requests for nodes not yet avail-
able.

The traversal is initiated by inserting the roots of each tree into
the node priority queue, and, if this is the first frame, into the RAM

cache. We then iteratively remove and process the highest prior-
ity node from the node priority queue or from the occlusion query
queue until both queues are empty.

Each time a node is extracted from the node priority queue, we
mark it by default as invisible for the current frame. We then check
whether its bounding box falls totally outside the view volume. If
so, we simply stop with this node, culling away its entire subtree.
If instead the node is at least partially within the view frustum, we
test whether to stop refinement, either because the node is a leaf,
or its projected voxel size falls below the screen space threshold,
or its children are not yet present in the RAM cache. In that case,
the node is rendered, while issuing a hardware occlusion query and
storing it in the occlusion query queue. If data is missing, fetch
requests for missing children are pushed in the fetch request priority
queue. When continuing refinement, we test whether the node was
marked visible at the previous frame. If so, we avoid testing for
occlusion and immediately push its children in the node priority
queue. For previously invisible nodes, on the other hand, we issue
an occlusion query for their bounding box, which is then stored in
the query queue.

The nodes queried for occlusion are processed only as soon as
the result for their occlusion query is available or there are no other
nodes to traverse. Each time an item is extracted from the query
queue, we check the occlusion query result. If the number of visible
pixels returned by the query is zero, we simply stop with this node,
culling away its entire subtree because of occlusion. If instead some
pixels were visible, we mark the node and its ancestors as visible. If
the node was not already rendered, it is because it is an inaccurate
non-terminal node with RAM cached children. We thus continue
refinement by pushing its children in the node priority queue.

Since the structure is coarse grained and the refiner never stalls
because of I/O requests the method is GPU bound.

Node rendering. Our current implementation renders view-
dependent voxels using a splatting method that draws an antialiased
OpenGL point primitive per voxel. At renderer initialization, vertex
shader programs specific to each primitive class are compiled and
loaded on board. At node rendering time, we iterate on all possi-
ble primitive representations. If the number of voxels/vertices for
the given primitive class is non-null, we bind the associated pro-
gram, load the vertex attribute data into the appropriate program
parameters, and issue a glDrawArrays to draw all voxels at once.
Triangle strip rendering code for leaf nodes follows the same pat-
tern. To minimize bus traffic, each time a node is rendered, we
reuse the GPU cached version if present, otherwise we render it
and cache its representation in place of the oldest one. In the cur-
rent implementation, the primitives that compose a particular node
are rendered in an arbitrary order, and without taking into account
their opacity. This provides a rendering quality similar to that of
one-pass point splatting methods, which is sufficient for our target
applications, but limits our ability to correctly treat high resolution
textures and transparency. We are currently exploring ways to use a
texture-based volume rendering approach to solve this problem.

Asynchronous I/O. Similarly to Streaming QS-
plat [Rusinkiewicz and Levoy 2001], the fetch request queue
is traversed in order of priority at the end of the frame, issuing only
as many requests as those allowed by the estimated I/O bandwidth,
and ignoring the remaining ones. In our current implementation,
the priority of a fetch request is given by the node’s parent projected
voxel size. Access to the data repository is made through a data
access layer, that hides from the renderer whether data is local or
remote. This layer internally uses memory mapping primitives
for local data, and a TCP/IP protocol for remote data. It makes it
possible to asynchronously move in-core a node by fetching it from
the repository, to test whether a node is immediately available, and
to move available nodes to the RAM cache.



(a) St. Matthew 0.25mm (372M triangles)

(b) Richtmyer-Meshkov Isosurface (472M triangles)

(c) Boeing 777 (350M triangles)

(d) All models at once (1.2G triangles)

Figure 7: Inspection sequences: selected frames. All images were recorded live on a Xeon 2.4 GHz PC with 1GB RAM and a NVIDIA GeForce 6800GT AGP8X graphics board

using a 1 pixel tolerance.

6 Results

An experimental software library and a rendering application sup-
porting the technique have been implemented on Linux using C++
with OpenGL. We have extensively tested our system with a num-
ber of large surface models. The quantitative and qualitative re-
sults discussed here are restricted to the three models of figure 7,
that possibly represent the most complex benchmark test cases in
their respective domains: the St. Matthew 0.25mm dataset (372M
triangles) is a very dense high resolution laser scanning model;
the Richtmyer-Meshkov Isosurface dataset (472M triangles) is a
very convoluted mesh with holes, a huge depth complexity, and a
high genus generated from a very high resolution 3D simulation
of Richtmyer-Meshkov instability and turbulence mixing; the Boe-
ing 777 dataset (350M triangles) is an exceptionally complex CAD
model, composed of many loosely connected interweaving detailed
parts of complex topological structure represented as meshes of col-
ored triangles with widely varying aspect ratios.

Preprocessing. Table 1 lists numerical results for our out-of-core
preprocessing method for all the test datasets. The tests were exe-
cuted on a moderately loaded network of 16 PCs running Linux 2.4.

Each PC has two CPU Athlon 2200+ CPUs, 1GB DDR memory, a
70GB ATA 133 hard disk, and a Ethernet 100 Mb/s network connec-
tion. We constructed all multiresolution structures with a prescribed
maximum leaf size of 8K triangles/node, a prescribed non-leaf dis-
cretization size of 16K voxels/node, 256K rays/node for sampling,
and a maximum voxel viewing angle θmax = 0.5 degrees.

Far VoxelsDeep BSPInput file
Models M Tri Size GB Time sec Size GB Time sec Size GB Avg.Tri/Leaf Avg.Vox/Node

St. Matthew 372 14.5 4706 18.6 14592 10.6 4876 1953

Boeing 777 350 13.7 8201 14.9 16461 14.9 5328 2401

Isosurface 472 18.4 5648 26.1 23751 16.1 5822 3425

Table 1: Numerical results for out-of-core construction. Tests performed on a net-

work of 16 PCs.

Overall processing times range from about 1K input triangles/s
for 1 CPU to 20K input triangles/s for 16 CPU. By contrast, pro-
cessing times for competing multiresolution approaches based on
geometric simplification range from 3K triangles/s [Yoon et al.
2004; Cignoni et al. 2004] for 1 CPU to 30K triangles/s on 16
CPUs [Cignoni et al. 2004]. The Far Voxels method is thus slower,
even though it seems to scale better with the number of CPUs.

Our implementation requires on average 70MB per million



vertices. This is comparable to QVDR (88MB) [Yoon et al.
2004], but sensibly higher than the TetraPuzzles representation
(32MB) [Cignoni et al. 2004]. Out-of-core model compression is
a main avenue of future work.

To test the effectiveness of the strategy employed to cull occluded
voxels at preprocessing time, we have also reconstructed the mod-
els without taking into account environment occlusion, i.e., by sam-
pling each node separately without considering θmin. The strategy
proved very successful, since it removes over 25% of voxels for the
isosurface dataset and 43% for the Boeing 777. The scanning model
is essentially unaffected due to the low depth complexity.

Adaptive rendering. We evaluated the rendering performance
of the technique on a number of inspection sequences on all test
datasets, using a Linux PC with a Intel Xeon 2.4 GHz, 1GB RAM,
two 70 GB ULTRA SCSI 320 hard drives, AGP 8x and NVIDIA
GeForce 6800 GT graphics. The qualitative performance of our
adaptive renderer is illustrated in an accompanying video.

The sessions were designed to be representative of typical in-
spection tasks and to heavily stress the system, and include rota-
tions, rapid changes from overall views to extreme close-ups, and
forced visibility discontinuities. To further illustrate the scalability
of the method, we have included a test case showing the inspection
of a scene containing all three models, for a total of over 1.2GB tri-
angles and 41GB of out-of-core data distributed among the two PC
disks. Table 2 lists numerical results for all the sessions.

Max Resident
Set Size MB

Frames/sPixel tolerance
Window

size

Input Mprim/s

Models M tri Size GB Target Avg Max Min Avg Avg

St. Matthew 372 10.6 640x480 1 0.8 2.4 9 45 51 102

Boeing 777 350 14.9 640x480 1 0.9 8.1 8 44 42 151

Isosurface 472 16.1 640x480 1 1.0 6.6 7 34 41 229

All 1194 41.6 640x480 1 0.9 12.2 6 20 42 172

All 1194 41.6 2x1024x768 1 1.1 18.0 3 20 40 218

Table 2: Numerical results for out-of-core rendering. Tests performed on a Linux

PC with a Intel Xeon 2.4 GHz, 1GB RAM, two 70 GB ULTRA SCSI 320 hard drives,

AGP 8x and NVIDIA GeForce 6800 GT graphics.

As illustrated in this table and in the accompanying video, our
system is able to maintain interactivity in all test cases, while pro-
ducing detailed images. As explained in section 5, our current ren-
derer favors interactivity rather then ensuring strict bounds on ac-
curacy, since we stop refinement and issue anynchronous I/O re-
quests when data has to be fetched from disk. However, even though
the maximum projected size has peaks caused by the rendering of
coarser nodes when data is not immediately available, the average
projected voxel size is, as expected, close (or below) the target toler-
ance (1 pixel), since due to temporal coherence only few nodes per
frame cause RAM/GPU cache misses. The highest maximum val-
ues are for the larger models, which have longer load times due to
increased disk footprint. The popping artifacts caused by rendering
inaccurate nodes could be reduced by incorporating compression,
speculative prefetching, or using disk RAIDs to serve the data.

During the entire inspection sequences, the resident set size of
the application never exceeded 1.5% of the out-of-core data size,
demonstrating the effectiveness of out-of-core data management.

We can sustain an average rendering rate of around 45M primi-
tives/s independently of the model, counting as one primitive a sin-
gle voxel or triangle. Throughput comparisons with classic tessel-
lation techniques are difficult, since we employ heavier primitives
than pure Gouraud shaded triangle strips. In our current unopti-
mized implementation, shading requires 19–28 vertex program in-
structions depending on primitive type. For simple models, such as
the laser scanning test-case, it is likely that methods such as Tetra-
Puzzles, which was able to sustain 70M tri/s on a GeForce Ultra FX
5800 GPU thanks to cache-coherent triangle strips [Cignoni et al.
2004], would provide better performance. Multiresolution mesh
techniques would however be hardly applicable to the other exam-
ples demonstrated here. Even in the current implementation, the
primitive rate is high enough to render over 4.5M primitives/frame

at interactive rates. It is thus possible to use very small pixel thresh-
olds, virtually eliminating popping artifacts without the need to re-
sort to costly geomorphing techniques. The raw performance of
the system is particularly useful for large scale display situations,
where interactive raytracing solutions have problems meeting real-
time constraints because of the large number of pixels to be covered.
Figure 8 shows the largest scene examined on a large scale stereo-
scopic display assembled from off-the-shelf components, i.e., two
1024x768 DLP projectors connected to two outputs of the graphics
card, polarizing filters with matching glasses, and a backprojection
screen that preserves polarization. In this setting, a single PC is able
to render two 1024x768 images per frame at an average of 20 Hz
with a 1 pixel rendering tolerance, with a worst case of 3 Hz. Low-
ering the tolerance to 2 pixels increases the minimum frame rate to
9 Hz with little visual impact.

Figure 8: Large scale stereoscopic display. The largest test case (1.2G triangles)

interactively inspected on a large scale stereoscopic display driven by single PC, which

renders two 1024x768 images per frame with a 1 pixel tolerance.

Network streaming. Some network tests have been performed
on all test models, on a local area network at 100Mb/s using the
TCP/IP protocol to access the data. As illustrated in the video, ren-
dering rate remains the same as that of the local file version, but
updates asynchronously arrive with increased latency. The effect is
illustrated in figure 9, which shows the progressive refinement of the
Boeing 777 dataset on a machine connected to a moderately loaded
Linux box serving the models. Even though our current uncom-
pressed model encoding is far from being optimal for the task, the
application remains usable even for very large models on standard
network connections.

7 Conclusions

We have presented an efficient technique for end-to-end out-of-core
construction and view-dependent rendering of very large heteroge-
neous surface models on commodity graphics platforms. The main
benefit of the method lies in its performance and applicability to a
wide variety of model classes. As a result, we obtain an unprece-
dented spatiotemporal quality in the interactive inspection of mas-
sive models that exhibit complicated geometry and topology, het-
erogeneous material attributes, as well as large variations in depth
complexity.

Besides improving the proof-of-concept implementation, we
plan to extend the presented approach in a number of ways. In
particular, we are currently working on the following aspects: com-
pression of the output data representation to reduce disk usage and
I/O latency; exploration of alternate view-dependent voxel repre-
sentations; implementation of multi-resolution sampling methods;
exploration of higher quality texture-based volume rendering meth-
ods in place of the current point splatter; prefetching and prediction
of occlusion/visibility events to reduce artifacts due to the display
of coarser than needed newly visible objects.



Figure 9: Streaming. Progressive refinement of the Boeing 777 dataset (350M triangles) on a 100Mb/s connection.

Acknowledgments. The source 3D datasets are provided by and used

with permission of the Boeing Company, the Digital Michelangelo project,

and the Lawrence Livermore National Laborarories. The authors would also

like to thank Fabio Bettio (CRS4), Paolo Cignoni (ISTI-CNR), Francesca

Frexia (CRS4), David Kasik (Boeing), Gianni Pintore (CRS4), and Alan

Scheinine (CRS4).

References
ALIAGA, D., COHEN, J., WILSON, A., BAKER, E., ZHANG, H., ERIKSON, C.,

HOFF, K., HUDSON, T., STÜRZLINGER, W., BASTOS, R., WHITTON, M.,

BROOKS, F., AND MANOCHA, D. 1999. MMR: An interactive massive model

rendering system using geometric and image-based acceleration. In 1999 Sympo-

sium on Interactive 3D Graphics, 199–206.

ANDUJAR, C., SAONA, C., NAVAZO, I., AND BRUNET, P. 2000. Integrating occlusion

culling and levels of detail through hardly-visible sets. Computer Graphics Forum

19, 3, 499–506.

ANDUJAR, C., BRUNET, P., AND AYALA, D. 2002. Topology-reducing surface sim-

plification using a discrete solid representation. ACM Trans. Graph. 21, 2, 88–105.

ARENBERG, J., 1988. Re: Ray/triangle intersection with barycentric coordinates. Ray

Tracing News, 1.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATHOFER, W. 2004. Co-

herent hierarchical culling: Hardware occlusion queries made useful. Computer

Graphics Forum 23, 3, 615–624.

CHEN, B., AND NGUYEN, M. X. 2001. Pop: a hybrid point and polygon system for

large data. In Proc. IEEE Visualization, 45–52.

CHIANG, Y.-J., EL-SANA, J., LINDSTROM, P., PAJAROLA, R., AND SILVA, C. T.

2003. Out-of-core algorithms for scientific visualization and computer graphics.

IEEE Visualization 2003, Tutorial 4 Course Notes.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. 2003. BDAM – batched dynamic adaptive meshes for high perfor-

mance terrain visualization. Computer Graphics Forum 22, 3, 505–514.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. 2004. Adaptive TetraPuzzles – efficient out-of-core construction

and visualization of gigantic polygonal models. ACM Transactions on Graphics

23, 3 (August), 796–803. Proc. SIGGRAPH 2004.

COHEN, J. D., ALIAGA, D. G., AND ZHANG, W. 2001. Hybrid simplification:

combining multi-resolution polygon and point rendering. In VIS ’01: Proceedings

of the conference on Visualization ’01, IEEE Computer Society, 37–44.

COHEN-OR, D., CHRYSANTHOU, Y. L., AND SILVA, C. T. 2003. A survey of

visibility for walkthrough applications. IEEE Transactions on Visualization and

Computer Graphics 9, 3, 412–431.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2003. Visibility-based

prefetching for interactive out-of-core rendering. In IEEE Symposium on Paral-

lel and Large-Data Visualization and Graphics, 1–8.

DECAUDIN, P., AND NEYRET, F. 2004. Rendering forest scenes in real time. In Proc.

Rendering Techniques, 93–102.

DEMARLE, D. E., GRIBBLE, C., AND PARKER, S. 2004. Memory-savvy distributed

interactive ray tracing. In Proc. Eurographics Symposium on Parallel Graphics and

Visualization, 93–100.

EL-SANA, J., SOKOLOVSKY, N., AND SILVA, C. T. 2001. Integrating occlusion

culling with view-dependent rendering. In VIS ’01: Proceedings of the conference

on Visualization ’01, IEEE Computer Society, 371–378.

ERIKSON, C., MANOCHA, D., AND BAXTER, W. 2001. HLODs for faster display

of large static and dynamic environments. In Proc. ACM Symposium on Interactive

3D Graphics, 111–120.

GOBBETTI, E., AND MARTON, F. 2004. Layered point clouds – a simple and effi-

cient multiresolution structure for distributing and rendering gigantic point-sampled

models. Computers & Graphics 28, 6 (December).

GOVINDARAJU, N. K., SUD, A., YOON, S.-E., AND MANOCHA, D. 2003. Interac-

tive visibility culling in complex environments using occlusion-switches. In SI3D

’03: Proceedings of the 2003 symposium on Interactive 3D graphics, 103–112.

GUTHE, M., BORODIN, P., BALÁZS, A., AND KLEIN, R. 2004. Real-time appearance

preserving out-of-core rendering with shadows. In Proc. Eurographics Symposium

on Rendering. June, 69–79 + 409.

HAVRAN, V. 1999. Analysis of cache sensitive representations for binary space parti-

tioning trees. Informatica 29, 3, 203–210.

KLOSOWSKI, J. T., AND SILVA, C. T. 2001. Efficient conservative visibility culling

using the prioritized-layered projection algorithm. IEEE Transactions on Visualiza-

tion and Computer Graphics 7, 4, 365–379.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail rendering using cached

geometry. In Proceedings IEEE Visualization ’02, IEEE, 259–266.

LINDSTROM, P. 2003. Out-of-core construction and visualization of multiresolution

surfaces. In ACM 2003 Symposium on Interactive 3D Graphics, 93–102,239.

LIVNAT, Y., AND TRICOCHE, X. 2004. Interactive point based isosurface extraction.

In Proc. IEEE Visualization, 457–464.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for ray tracing using space

subdivision. The Visual Computer 6, 6, 153–165.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P. 1997. Rendering

complex scenes with memory coherent ray tracing. In Proc. SIGGRAPH, 101–108.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A multiresolution point rendering

system for large meshes. In Comp. Graph. Proc., Annual Conf. Series (SIGGRAPH

00), ACM Press, 343–352.

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Streaming QSplat: A viewer for net-

worked visualization of large, dense models. In Symposium for Interactive 3D

Graphics Proceedings, 63–68.

STAMMINGER, M., AND DRETTAKIS, G. 2001. Interactive sampling and rendering

for complex and procedural geometry. In Proceedings of the 12th Eurographics

Workshop on Rendering Techniques, Springer-Verlag, 151–162.

WALD, I., DIETRICH, A., AND SLUSALLEK, P. 2004. An interactive out-of-core

rendering framework for visualizing massively complex models. In Proc. Euro-

graphics Symposium on Rendering, 81–92.

WAND, M., FISCHER, M., PETER, I., AUF DER HEIDE, F. M., AND STRASSER, W.

2001. The randomized z-buffer algorithm: Interactive rendering of highly complex

scenes. In SIGGRAPH 2001 Proceedings, 361–370.

WIMMER, M., WONKA, P., AND SILLION, F. 2001. Point-based impostors for real-

time visualization. In Proc. Rendering Techniques, 163–176.

WOOD, D. N., AZUMA, D. I., ALDINGER, K., CURLESS, B., DUCHAMP, T.,

SALESIN, D. H., AND STUETZLINGER, W. 2000. Surface light fields for 3d

photography. In Proc. SIGGRAPH, 287–296.

YOON, S.-E., SALOMON, B., GAYLE, R., AND MANOCHA, D. 2004. Quick-vdr:

Interactive view-dependent rendering of massive models. In VIS ’04: Proceedings

of the IEEE Visualization 2004 (VIS’04), IEEE Computer Society, 131–138.

ZHANG, E., AND TURK, G. 2002. Visibility-guided simplification. In Proc. IEEE

Visualization, 267–274.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF III, K. 1997. Visibility culling

using hierarchical occlusion maps. In Proc. SIGGRAPH, 77–88.


