
Adaptive TetraPuzzles: Efficient Out-of-Core Construction and Visualization

of Gigantic Multiresolution Polygonal Models

Paolo Cignoni

ISTI - CNR ∗

Fabio Ganovelli

ISTI - CNR

Enrico Gobbetti

CRS4 †

Fabio Marton

CRS4

Federico Ponchio

ISTI - CNR

Roberto Scopigno

ISTI - CNR

(a) 1473 patches (2179K triangles) (b) 1221 patches (1855K triangles) (c) 625 patches (991K triangles)

Figure 1: View-dependent rendering of the St. Matthew dataset. The full resolution model contains 373 million triangles and is inspected at over 40 fps on a commodity PC

platform. The main images present the mesh rendered with Gouraud shading using 4x Gaussian Multisampling on a 1280x1024 window, while the small inset figures depict the

adaptive mesh structure with a different color for each patch. The rightmost image also shows the adaptive triangulation.

Abstract

We describe an efficient technique for out-of-core construction and
accurate view-dependent visualization of very large surface mod-
els. The method uses a regular conformal hierarchy of tetrahedra
to spatially partition the model. Each tetrahedral cell contains a
precomputed simplified version of the original model, represented
using cache coherent indexed strips for fast rendering. The rep-
resentation is constructed during a fine-to-coarse simplification of
the surface contained in diamonds (sets of tetrahedral cells sharing
their longest edge). The construction preprocess operates out-of-
core and parallelizes nicely. Appropriate boundary constraints are
introduced in the simplification to ensure that all conforming se-
lective subdivisions of the tetrahedron hierarchy lead to correctly
matching surface patches. For each frame at runtime, the hierarchy
is traversed coarse-to-fine to select diamonds of the appropriate res-
olution given the view parameters. The resulting system can intera-
tively render high quality views of out-of-core models of hundreds
of millions of triangles at over 40Hz (or 70M triangles/s) on current
commodity graphics platforms.

CR Categories: I.3.3 [Computer Graphics]: Picture and Im-
age Generation—; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—.

Keywords: Out-Of-Core Algorithms, Level of Detail

∗ISTI-CNR, Via Moruzzi 1, 56124 Pisa Italy

www:http://vcg.isti.cnr.it/ e-mail:first.last@isti.cnr.it
†CRS4, POLARIS Edificio 1, 09010 Pula, Italy

www:http://www.crs4.it/ e-mail:first.last@crs4.it

1 Introduction

The need for interactively inspecting very large surface meshes,
consisting of hundreds of millions of polygons, arises naturally in
many application domains, including 3D scanning, geometric mod-
eling, and numerical simulation. However, despite the rapid im-
provement in hardware performance, these meshes largely overload
the performance and memory capacity of state-of-the-art graph-
ics and computational platforms. A wide variety of simplification
methods and dynamic multiresolution models have been proposed
to face the problem, but, unfortunately, none of them is able to per-
form both scalable simplification and interactive view-dependent
visualization of very large meshes without imposing a lossy dec-
imation of the original dataset [Lindstrom 2003]. This is mainly
because current methods, heavily CPU bound, are unable to gener-
ate model updates at full GPU speed and to efficiently communicate
them to the graphics hardware through preferential data paths. This
CPU/GPU gap is doomed to widen, since CPU processing power
grows at a much slower rate than that of the GPU.

The original contribution of this paper is a solution for inter-
active and accurate visualization of very large surface models on
consumer graphics platforms. The underlying idea of the proposed
method is to depart from current point- or triangle-based multires-
olution models and adopt a patch-based data structure, from which
view-dependent conforming mesh representations can be efficiently
extracted by combining precomputed patches. Since each patch is
itself a mesh composed of a few thousand triangles, the multireso-
lution extraction cost is amortized over many graphics primitives,
and CPU/GPU communication can be optimized to fully exploit the
complex memory hierarchy of modern graphics platforms.

The method uses a conformal hierarchy of tetrahedra generated
by recursive longest edge bisection to spatially partition the model.
Each tetrahedral cell contains a precomputed simplified version of
the original model. The representation is constructed off-line dur-
ing a fine-to-coarse parallel out-of-core simplification of the sur-
face contained in diamonds (sets of tetrahedral cells sharing their
longest edge). Appropriate boundary constraints are introduced in
the simplification process to ensure that all conforming selective
subdivisions of the tetrahedron hierarchy lead to correctly matching
surface patches. At run-time, selective refinement queries based on
projected error estimation are performed on the external memory



tetrahedron hierarchy to rapidly produce view-dependent continu-
ous mesh representations by combining precomputed patches. The
resulting technique, dubbed Adaptive TetraPuzzles (ATP) since it
heavily builds on the composition properties of conformal hierar-
chies of tetrahedra, has the following properties: it is fully adaptive
and is able to retain all the original topological and geometrical de-
tail even for massive datasets; it is not limited to meshes of a partic-
ular topological genus or with a particular subdivision connectivity
and preserves geometric continuity of variable resolution represen-
tations at no run-time cost; it is strongly GPU bound and over one
order of magnitude faster than existing adaptive tessellation solu-
tions on current PC platforms, since its patch based structure suc-
cessfully exploits on-board caching, cache coherent stripification,
compressed out of core representation and speculative prefetching
for efficient rendering on commodity graphics platforms with lim-
ited main memory; high quality simplified representations can be
constructed with a distributed out of core simplification algorithm.

As highlighted in the short overview of related work (sec. 2),
while certain other algorithms share some of these properties, they
typically do not meet the capability of our method in all of the areas.
The details of the proposed data structure are presented in section 3,
while section 4 describes algorithms for view-dependent refinement
and rendering, and section 5 introduces an efficient distributed out-
of-core technique for constructing a multiresolution model using
a generic high quality simplification algorithm. The efficiency of
the approach has been successfully evaluated with a number of
large models, including a massive 373 million polygon model of
Michelangelo’s St. Matthew (section 6).

2 Related Work

Rapidly rendering adaptive representations of large models is a very
active research area. In the following, we will discuss the ap-
proaches that are most closely related with our work. Readers may
refer to recent surveys (e.g., [Chiang et al. 2003]) for further details.

Out-of-core mesh simplification. Various techniques have
been presented to face the problem of huge mesh simplification.
With the exception of memoryless clustering approaches [Lind-
strom 2000; Lindstrom 2003] and stream-based methods [Wu and
Kobbelt 2003; Isenburg et al. 2003], most of these techniques,
such as Hoppe’s hierarchical method for digital terrain manage-
ment [1998] and the octree based structure OEMM [Cignoni et al.
2003a], are based on some kind of mesh partitioning and subse-
quent independent simplification. Hoppe hierarchically divides the
mesh in blocks, simplifies each block while freezing borders and
then traverses the block hierarchy bottom-up by merging sibling
cells and again simplifying. In this approach some of the borders
remain unchanged until the very last simplification step. OEMM
avoids this kind of problem, but it does not build a multiresolution
structure. On the other hand, BDAM [Cignoni et al. 2003c] allows
both the independent processing of small sub-portions of the whole
mesh and the construction of a multiresolution structure, but is lim-
ited to height fields. Our work generalizes this approach to arbitrary
surfaces, and parallelizes the simplification process in order to effi-
ciently build a multiresolution structure for very large meshes.

View-dependent triangulations. The vast majority of view-
dependent simplification methods for general meshes are based
on constructing a graph of possible refinement/coarsening oper-
ations at the vertex or triangle level. Early methods used edge
collapse [Xia and Varshney 1996; Hoppe 1997] or vertex cluster-
ing [El-Sana and Varshney 1999; Luebke and Erikson 1997] as
primitive operations, and assumed in-core hierarchy construction,
limiting their applicability. Few techniques have been presented for
both construction and rendering from external memory. Hoppe’s

hierarchical terrain management method [1998] was an early ex-
ample, later extended to arbitrary meshes [Prince 2000]. More re-
cently, El-Sana and Chiang [2000] proposed a technique for seg-
menting the surface and ordering edge collapses to handle block
boundaries without explicitly imposed constraints. Both methods
have only been tested on models of a few million polygons, and
their scalability is unclear. Lindstrom [2003] recently proposed a
scheme for out-of-core construction and visualization of multires-
olution surfaces based on vertex clustering on a rectilinear octree.
While it significantly improves over earlier approaches, it is still
unable to retain the fidelity of the original mesh and is heavily CPU
bound at rendering time, with a peak performance of 2M triangles/s
and asynchronous hierarchy updates at no more than 1 frame/s.

Efficient host-to-graphics communication. All adaptive
mesh generation techniques spend a great deal of rendering time to
compute the view-dependent triangulation. For this reason, many
authors have proposed techniques to alleviate popping effects due to
small triangle counts [Cohen-Or and Levanoni 1996; Hoppe 1998]
or to amortize construction costs over multiple frames [Duchaineau
et al. 1997; Hoppe 1997; Lindstrom 2003]. Our technique re-
duces instead the per-triangle workload by composing at run-time
pre-assembled optimized surface patches. The idea of group-
ing together sets of triangles in order to alleviate the CPU/GPU
bottleneck was presented also in the RUSTIC [Pomeranz 2000],
CABTT [Levenberg 2002], and BDAM [Cignoni et al. 2003c] data
structures for terrains, and HLOD [Erikson et al. 2001] for general
environments. RUSTIC and CABTT are extensions of the ROAM
algorithm in which subtrees of the ROAM bintree are cached and
reused during rendering. BDAM constructs instead a forest of hier-
archies of right triangles, in which each node is a general triangu-
lation of a small surface region. These methods produce adaptive
conforming surfaces but are hard to generalize to surfaces with ar-
bitrary topology. HLOD improves instead the classic LOD scene
graph by providing multiple precomputed levels of details not only
for each model but also for entire subtrees. While related to our
method, HLOD focuses on the run-time handling of a large number
of small unconnected objects, typical of large CAD assemblies.

Point rendering approaches. An alternative to mesh re-
finement is to use multi-resolution hierarchies of point prim-
itives to render highly complex scenes in output-sensitive
time [Rusinkiewicz and Levoy 2000]. Since current rendering hard-
ware is optimized for triangle rendering, high quality filtered point
splatting requires considerable effort, and high visual quality has
often to be sacrificed for rendering speed. The latest approaches try
to solve this problem by exploiting the programmability features of
modern GPUs, leading to impressive peak performances that range
from 50M points/second for low quality rendering with unfiltered
splats [Dachsbacher et al. 2003] to 10M points/second for high-
quality filtering [Botsch and Kobbelt 2003] for in-core models of a
few million polygons. By using cache coherent triangle strip prim-
itives, we are able to exceed such rates even for out of core models
that are two orders of magnitude larger.

Hierarchies of tetrahedra. In the scientific visualization and
finite element literature, much research has been devoted to
nested tetrahedral meshes generated by recursive subdivision
(see [Cignoni et al. 2003b] for a recent survey). Our data struc-
ture is constructed from a recursive partitioning of the input dataset
guided by the same regular tetrahedron bisection rule that is of-
ten used for modeling and viewing regular 3D grids. We are inter-
ested, however, in the space partitioning induced by the multi-level
tetrahedralization, rather than in extracting values at mesh vertices
as in numerical methods [Maubach 1995] or scientific visualiza-
tion [Gregorski et al. 2002].



Figure 2: Multiresolution structure. Hierarchy of tetrahedra with associated patch hierarchy

3 Multiresolution model

A multiresolution surface model supporting view-dependent ren-
dering must encode the steps performed by a mesh refinement or
coarsening process in a compact data structure from which a virtu-
ally continuous set of variable-resolution meshes can be efficiently
extracted. Our approach is based on the idea of moving the grain
of the multiresolution surface model up from points or triangles to
small contiguous portions of mesh. The benefits of this approach
are that the workload required for a unit refinement/coarsening step
is amortized on a large number of triangle primitives, and that the
small patches can be optimized off-line for best performance.

To avoid making assumptions on a particular topological genus
or subdivision connectivity of the input mesh, we exploit the parti-
tioning induced by a recursive volumetric subdivision of the mesh
bounding volume in a hierarchy of tetrahedra (see figure 3). The
partitioning consists of a binary forest of tetrahedra, whose roots
correspond to six tetrahedra around a major box diagonal and
whose other nodes are generated by tetrahedron bisection. This
operation consists in replacing a tetrahedron σ with the two tetra-
hedra obtained by splitting σ at the midpoint of its longest edge by
the plane passing through such point and the opposite edge in σ . To
guarantee that a conforming tetrahedral mesh is always generated
after a bisection, all the tetrahedra sharing their longest edge with
σ are split at the same time. Such a cluster of tetrahedra is called
diamond.

(a) Initial

partition

(b) Longest edge bisection

(c) Diamond types

Figure 3: Hierarchy of tetrahedra for space partitioning. The longest edge is high-

lighted in red, while next level edges are light-dashed.

The hierarchy of tetrahedra structure has the important property
that, by selectively refining or coarsening it on a diamond by dia-
mond basis, it is possible to extract conforming variable resolution
volumetric mesh representations.We exploit this property to con-
struct a level-of-detail structure for the surface of the input model.
The basic idea (see figure 2) is to generate from the tetrahedral
structure a hierarchy of surface representations. We first partition
the input model triangles among the leaf tetrahedra. We then recur-
sively associate to each non-leaf tetrahedron a simplification, up to
a given triangle count, of the portion of the mesh contained in its
two children, along with all the information required for evaluating
view dependent errors.

(a) level i (b) level i−1

Figure 4: Generating conforming triangulations. The four patches at the left of

figure 4(a) are part of the same diamond, and are simplified into the two patches at

the left of figure 4(b) when coarsening the mesh. The generation of a conforming

triangulation is ensured by locking the vertices shared with the neighboring diamond

(highlighted in red), and by consistently simplifying the vertices shared by different

patches in the diamond (highlighted in yellow).

The above diamond-by-diamond property is sufficient for guar-
anteeing conforming tetrahedral meshes, but, when switching from
tetrahedra to the small patches associated to them, the correct con-
nectivity along borders of patches at different simplification lev-
els must be guaranteed by imposing appropriate constraints during
simplification. This is efficiently done by carrying out bottom-up
construction on a diamond by diamond basis. When building a
simplified representation for all tetrahedra in a given diamond, the
borders of a patch contained in a tetrahedron are of three possible
kinds: (a) diamond-internal borders, i.e., borders connecting it with
other triangles contained in tetrahedra of the same diamond; (b)
diamond-external borders, i.e., borders connecting it with triangles
contained in tetrahedra of other diamonds; (c) original borders, i.e.,
borders of the original mesh. Since all tetrahedra in a diamond are,
by definition, always split/merged at the same time, handling bor-
ders of kind (a) just requires that the mesh contained in a diamond is
simplified as a single unit, while borders of kind (b) need to be kept
fixed to ensure connectivity with all possible neighbors, and borders
of type (c) do not need any special handling. The main idea behind
these rules is to associate a merge operation of the internal edges of
a diamond with the overall simplification of the patch strictly inside
the diamond. Thus, when we coarsen our tetrahedral mesh by merg-
ing the split-edges inside a diamond, we can safely substitute the
patches inside the involved tetrahedra with the ones of the merged
diamond: by construction they share the same border and therefore
correctly match with the rest of the surface. In this way, we ensure
that each mesh composed by a collection of small patches arranged
as a correct hierarchy of tetrahedra generates a globally correct sur-
face triangulation (see figure 4). It is worth mentioning that, unlike
other hierarchical simplification approaches [Hoppe 1998; Prince
2000], these constraints have little effect on overall simplification
quality, since constrained vertices alternate from diamond-internal
to diamond-external throughout the hierarchy, and are locked only
when in diamond-external state. Moreover, the fact that each dia-
mond is simplified independently can be exploited, see section 5, to
design a parallel out-of-core high quality simplification algorithm.



4 View-dependent rendering

The adaptive rendering algorithm is based on a top-down refine-
ment of the tetrahedra hierarchy, designed to fully exploit the ren-
dering capabilities of modern graphics accelerators through batched
primitive rendering. Its main components can be considered a gen-
eralization of the BDAM approach [Cignoni et al. 2003c] to arbi-
trary surfaces.

Data organization. Since the algorithm is designed to work in
a standalone PC architecture (as opposed to a distributed, network-
based solution), we assume that all data is stored locally on a
secondary storage unit visible to the rendering engine. Our ap-
proach, similarly to recent large scale terrain visualization ap-
proaches [Lindstrom and Pascucci 2002; Cignoni et al. 2003c], is
based on optimizing the data layout to improve memory coherency
and on accessing external memory geometry data through system
memory mapping functions, demanding to the operating system
the task of loading, when needed, the requested data. To maxi-
mize memory locality, we have thus chosen to represent our nested
subdivision as a forest of binary trees, and to extract conforming
meshes without requiring neighbor finding we employ a saturation
technique [Ohlberger and Rumpf 1998]. Therefore, each tree is
stored as a memory mapped linear array, and each of its nodes, cor-
responding to a particular tetrahedron, contains just the following
information: a reference to the associated patch data (vertex at-
tributes and connectivity) in a patch repository; the tight bounding
sphere and bounding cone of normals for the patch; the saturated
model space error and bounding sphere of the neighborhood; the
index of child nodes in the linear arrays, which correspond to the
two tetrahedra generated by bisection. To minimize the number of
page faults, data storage order reflects traversal order. All data in
the tree and in the corresponding patch repository is therefore sorted
by level, then by geometric proximity, by ordering the nodes in a
given level by increasing Morton code [Samet 1990] of their center
point. The external size of geometric representation is also reduced
by storing each patch in compressed form (see section 5).

(a) (b) (c)

Figure 5: Refinement and culling. The model is refined to a screen space error toler-

ance of one pixel and is culled against the red rectangle. The spheres used for culling

are in sub-figure 5(b), while the saturated spheres used for refinement are in figure 5(c)

Refinement algorithm. With this structure, variable resolution
rendering is implemented by simple stateless top-down traversals
of the binary trees, that combine view-frustum, backface, and con-
tribution culling (see figure 5). As we recurse the hierarchy, we test
if the current node is invisible or fully backfacing by checking the
tight bounding sphere and cone of normals of the associated patch
against the current view volume. If so, we simply stop, culling
away the entire branch of the tree. If the node is potentially visible,
we test whether its patch is an accurate enough representation by
measuring its saturated screen space error. If so, we can render the
associated patch, otherwise we continue the recursive refinement
with the node’s children.

Saturated screen space error is the quantity that guides refine-
ment. We obtain a consistent upper bound by measuring the appar-
ent size of a sphere with diameter equal to the saturated object space
errors and centered at the saturated bounding sphere point closest to

the viewpoint. The refinement condition, once the point closest to
the viewpoint is found, requires only one multiplication to check if
the ratio of error sphere radius to distance is larger than the screen
space threshold. The extraction of a consistent mesh is ensured by
constructing the saturated object space errors/spheres so that they
are equal for all the tetrahedra in a diamond and monotonically de-
creasing when descending the hierarchy. Since the projection to
screen space is also monotonic, the diamond composition property
ensures that we always extract a conforming volumetric mesh, and
our patch construction rules ensure that we generate a globally cor-
rect surface triangulation.

Host to graphics processing unit communication. To take
advantage of spatial and temporal coherency, it is worth spending
time to build an optimal rendering representation for each patch,
that can be efficiently reused on subsequent frames, instead of us-
ing direct rendering each time. This is the only way to harness the
power of current graphics architectures, that heavily rely on exten-
sive on board data caching. We have thus combined our refinement
method with a memory manager based on a simple LRU strategy,
that explicitly manages graphics board memory, using OpenGL’s
Vertex Buffer Objects extension. Each time we need to render a
patch, we reuse the cached version if present, otherwise we ren-
der it and cache its representation in place of the oldest one. The
transformation from compressed external memory representation
to an efficient graphics format happens only at cache faults. The
primitive geometric element is a patch composed of multiple trian-
gles, that is heavily optimized during pre-processing using cache-
coherent tri-stripping. Since we use an indexed representation, the
post-texture-and-lighting cache of current GPUs is fully exploited.

Speculative prefetching. Since the disk is by far the slowest
hardware component, we can further hide data access latency by
prefetching from compressed external memory the geometry that
will soon be accessed. The prefetching routine, that may be exe-
cuted in parallel to the rendering thread or sequentially as an idle
task, executes the same refinement algorithm as the adaptive ren-
dering code, taking as input the predicted camera position instead
of the current one. When the refinement terminates, instead of ren-
dering the patches, it simply checks whether the required graphics
objects are in pages already in core. If not, it advises the oper-
ating system kernel that the pages containing their representation
will likely be accessed in the near future and that it would be ad-
vantageous to asynchronously read them ahead. This technique is
easy to implement on Linux with the mincore/madvise system
calls. Furthermore, the main rendering needs not to be aware of the
prefetching component, and we exploit the extensive performance
optimizations of the operating system’s virtual memory manager,
such as reordering of requests to reduce seek access time and over-
lapping of computation and disk access.

5 Construction

The off-line component of our method constructs a multiresolution
structure starting from a high resolution mesh. As input, we as-
sume that the mesh is represented as a triangle soup, i.e., a flat
list of triangles with direct vertex information, and that a list of
boundary vertices is also available. This representation is com-
monly employed for out-of-core methods, and can be derived in
a I/O efficient way from the more common indexed mesh represen-
tation using standard external memory graph techniques [Chiang
et al. 1995].



5.1 Mesh Partitioning

The first phase – mesh partitioning – generates a binary forest of
tetrahedra, whose roots partition the mesh bounding box and whose
leaves contain less than a predefined number of mesh triangles.

The forest is built in a top-down fashion, through recursive inser-
tion of mesh triangles by starting from an initial subdivision of the
mesh bounding box into six tetrahedra around a major box diago-
nal. When a new triangle is inserted, we locate the leaf that contains
its center point and, if the number of triangles already contained in
it does not exceed the maximum, we simply insert the new one
into the associated triangle bucket. Otherwise, we refine the hierar-
chy by tetrahedron bisection and recursively continue the insertion
procedure. Each time a tetrahedron is split, all the triangles in the
associated bucket are reassigned to its children by a recursive ap-
plication of the insertion procedure. The end result is a tetrahedron
graph, that describes the subdivision structure using a DAG of di-
amonds [Pascucci 2002], and a set of triangle buckets associated
with leaf tetrahedra that cover the mesh. The graph, rather small
since each node typically contains a few thousand triangles, is for
efficiency reasons maintained in main memory, while triangle buck-
ets are stored in secondary memory.

This simple partitioning scheme, that clusters triangles solely
based on the location of their center point, does not adapt to sur-
face features, and, as for all spatial clustering methods, could lead
to patches with exceedingly complex boundaries. Even though we
have not found this to be a problem in practice, we plan to im-
prove partitioning in a second pass, that adaptively reassigns trian-
gles among leaf tetrahedra after the first partitioning. This kind of
approach demonstrated its efficiency in recent out-of-core simplifi-
cation methods (e.g., [Shaffer and Garland 2001]).

5.2 Level-of-detail hierarchy construction

The second and final phase – simplification – completes the volu-
metric structure with a hierarchy of surface representations by re-
cursively associating to each non-leaf tetrahedron a fixed triangle
count simplification of the portion of the mesh contained in its two
children, along with all the information required for evaluating view
dependent errors. This is efficiently done by carrying out bottom-up
construction on a diamond by diamond basis. For leaf diamonds,
we retain all the fidelity of the original mesh and directly produce
an optimized representation for each tetrahedron from the stored tri-
angle buckets. For non-leaf diamonds, we retrieve from the repos-
itory the triangles associated to the children of all involved tetra-
hedra, merge them in a single mesh, that is then simplified so that
each involved tetrahedron contains less than a predefined number
of triangles. The repository is then updated by erasing the buckets
associated to child tetrahedra before saving parent ones.

Diamond simplification. As explained in section 3, to ensure
that the patches contained in the diamond’s tetrahedra match with
all the possible neighbors at different simplification levels, we lock
all the vertices on the diamond external boundary. These are easily
identified, without maintaining special connectivity information, as
the end points of all edges shared by only one triangle of the dia-
mond patch, which were not part of the original model boundary.
To avoid introducing new boundary points and simplify bookkeep-
ing, we also constrain original boundary vertices to be removed
only by a collapse with another original boundary vertex. Note
that any simplification technique can be adopted as long as it al-
lows the choice of the number of triangles for different regions of
the output mesh and the specification of vertex constraints. This
means for example that, if needed by a particular application, it is
possible to exactly preserve the original mesh topology and there-
fore preserve any existing parametrization. On the other hand, it
is also possible to decide to simplify more aggressively by closing

holes or clustering vertices. In our case, we have implemented a
variation of Hoppe’s method for simplifying meshes with appear-
ance attributes [Hoppe 1999], that combines a quadric error metric
with regularization penalties for improving sampling regularity and
mesh quality in regions of null quadric error. Moreover, to ensure
that each tetrahedron in the diamond is simplified to a predefined
number of triangles, the simplifier maintains a separate collapse
queue for each tetrahedron. We put a edge collapse in the queue
of each of the tetrahedrons where it removes a triangle. During iter-
ative simplification, collapses are taken in order of increasing cost
from the queues of the tetrahdera that still need to be simplified,
and all queues are maintained up-to-date after each simplification
step.

Errors and bounds. After simplification, model space errors,
bounding spheres and normal cones have to be computed and satu-
rated for each tetrahedron to complete the structure. For errors, we
have currently taken the common approach of deriving the model
space error ε directly from the quadric metric εq (see, e.g., [Lind-
strom 2003]). We employ the simple formula ε = s 3

√
εq, where s

is an empirical scale factor for converting to world units (see, e.g.,
[Lindstrom 2003]). The scale factor is determined prior to render-
ing time by finding the smallest value of s leading to no image dif-
ference in a fixed number of random views, when setting the screen
space tolerance below 1 pixel. Bounding spheres and normal cones,
are, instead, computed and saturated using optimal methods from
computational geometry for finding the minimum enclosing ball of
points (for leafs) and minimum enclosing ball of balls (for all other
nodes) [Fischer and Gärtner 2003].

Conversion into final format. Each patch is stored on disk in
a compressed representation from which a version optimized for
efficient rendering can be rapidly extracted. On current graphics
architectures, the most efficient mesh representation is the cache
coherent indexed stripification. In this representation, vertex at-
tributes are stored in vertex arrays, and triangulation topology is
specified with a generalized triangle strip ordered such that ver-
tex cache miss rate is minimized. We greedily compute this or-
dering by first decomposing the mesh into strips of length approxi-
mately equal to vertex cache size, and, then, starting with the strip
with the maximum number of border vertices, incrementally adding
the other strips, always choosing the one with the minimum cache
miss to strip length ratio. For disk storage, topology is compressed
using a mesh encoding scheme preserving stripification [Isenburg
2001], while vertex attributes are optionally quantized and entropy
encoded. For this paper, that emphasizes the ability of our method
to preserve all the original details, we chose a 3x24 bits/position
and 32 bit/normal quantization, which correspond to no loss.

Network parallel construction. The hierarchy construction
phase dominates, by far, the overall processing cost. The whole
process is however inherently parallel, because the grain of the in-
dividual diamond processing tasks is very fine and synchronization
is required only at the completion of each level. In a network par-
allel implementation, the coordinator process traverses all the di-
amonds bottom up and by geometric proximity, distributes the di-
amond processing job to a number of workers, which execute it
and send the result back to the coordinator for updating the repos-
itory and generating output file. Load balancing is ensured if the
coordinator initially seeds each worker with a single diamond and
subsequently always sends a new job request to the work that sent
back a result. The generation of the output file in the correct order
can be ensured with a small buffer for handling out-of-sync out-
put requests. In this solution, the main memory required for each
worker is that required for processing a single diamond, while the
coordinator simply needs to reserve enough memory for holding
out-of-sync requests.



Figure 6: Test models. The main images show the models as presented to the user during interactive inspection session, while the inset images illustrate the mesh structure. Left:

Bonsai isosurface (6.4M triangles); Middle: David 2mm (8.3M triangles) and 1mm (56M triangles); Right: St. Matthew 0.25mm (373M triangles).

6 Results

An experimental software library and a rendering application sup-
porting the technique have been implemented on Linux using C++
with OpenGL and the MPICH MPI implementation. We have ex-
tensively tested our system with a number of large surface models.
The quantitative and qualitative results discussed here are restricted
to the freely available models of figure 6.

Disk usage (MB)
Total timePartitionCPUTrianglesModel

Bottom-up construction

I/O Process Total in tmp out

768082896,317,116Bonsai 

1+1 45 42 1,654 1,696 1,741

1+4 40 63 435 498 538

1+8 41 44 239 283 324

1+14 42 63 114 177 219

1581,0593798,277,479
David
2mm

1+1 59 93 3,583 3,676 3,735

1+4 60 94 836 930 990

1+8 62 144 366 510 572

1+14 62 148 216 364 426

9676,8502,57456,230,343
David
1mm

1+1 477 2,335 21,687 24,022 24,499

1+4 501 2,299 3,981 6,280 6,781

1+8 583 2,086 1,758 3,844 4,427

1+14 477 2,238 879 3,117 3,594

5,88741,28917,063372,767,445
St.
Matthew

1+1 3,234 15,722 73,299 89,021 92,255

1+4 3,400 16,639 19,917 36,556 39,956

1+8 3,201 15,876 11,020 26,896 30,097

1+14 3,215 16,863 7,712 24,575 27,790

Table 1: Numerical results for out-of-core construction. Tests performed on a net-

work of PCs. All times are in seconds.

Preprocessing. Table 1 lists numerical results for our out-of-
core preprocessing method for a number of runs on all the test
datasets. The tests were executed on a moderately loaded network
of PCs running Linux 2.4. Each PC has two CPU Athlon 2200+
CPUs, 1GB DDR memory, a 70GB ATA 133 hard disk, and a Eth-
ernet 100 Mb/s network connection. We constructed all multireso-
lution structures with a prescribed maximum leaf size of 4000 trian-
gles/tetrahedron for the partitioning phase and an average non-leaf
size of 2000 triangles/tetrahedron for the bottom-up construction
phase. To test parallel performance, all tests were repeated with 1,
4, 8, and 14 workers. Overall processing times range from about
3K-4K triangles/s for 1 CPU to 15K-30K triangles/s for 14 CPU.
As a point of reference, current state-of-the-art high quality out-of-
core simplification methods achieve simplification rates up to 70K
triangles/s [Chiang et al. 2003]. Our speed is currently slower. This
is mainly because we generate a full multiresolution structure, as
opposed to a single small model, and simplification is only a sin-
gle step of diamond processing, that also includes cache-coherent
stripification, mesh compression, and optimal bound computation,
each costing as much as simplification. As the number of CPUs in-
creases, construction time, initially dominated by diamond process-
ing, starts to be dominated by raw I/O. The almost linear reduction
in processing time shows the efficiency of the distributed approach.
The large I/O overhead is due to the repeated access to the tempo-
rary triangle repository during bottom-up construction, stored on a
slow IDE disk. Similarly to competing methods [Lindstrom 2003],

temporary storage size is a constant multiple (roughly a factor of 3)
of input size, since we need to store at most the partitioning of the
input in the leaves of the tetrahedra hierarchy. Our current version
uses a pessimistic fixed-size bucket per leaf, and stores triangles in
raw uncompressed form. We anticipate that reducing the size of the
repository with compressed dynamically sized buckets would radi-
cally decrease I/O cost. Not included in the table is the maximum
resident memory usage of the method, which is low and constant
for workers (26 MB each) and variable for the master process, due
to the in-core graph layout data structure and to disk buffer caches
used by the operating system (for a maximum of 280 MB on all
runs).

Adaptive rendering. We evaluated the rendering performance
of the technique on a number of inspection sequences on all test
datasets, using a Linux PC with a Intel Xeon 2.4 GHz, 2GB RAM,
a Seagate ST373453LW 70 GB ULTRA SCSI 320 hard drives, AGP
8x and NVIDIA GeForce FX 5800 Ultra graphics. The quantitative
results presented here in details were collected during a 45 seconds
inspection of the largest model (the 373M triangles reconstruction
of Michelangelo’s St. Matthew). The session, performed using a
window size of 800x600 pixels, hardware full scene antialiasing
(4x Gaussian Multisampling), and a screen tolerance of ±2 pix-
els (i.e., a refinement epsilon of 4), was designed to be representa-
tive of typical mesh inspection tasks and to heavily stress the sys-
tem, and includes rotations and rapid changes from overall views
to extreme close-ups. To further emphasize the quality of the view-
dependent simplification, we used glossy material properties and a
single off-center positional light placed slightly above and to the
right of the camera. The qualitative performance of our adaptive
renderer is also illustrated in an accompanying video, that shows
live recordings of the analyzed flythrough sequence, and of similar
sequences with the other datasets. In all cases, during live sessions
there were practically no visible artifacts due to adaptive render-
ing, since the error measure, even though empirically derived, is
very conservative. To fully test our out-of-core data management
components, the benchmarks were started with all data off core and
disk buffers flushed. During the entire walkthrough, the resident set
size of the application is maintained at roughly 144 MB, i.e. less
than 3% of out-of-core data size, demostrating the effectiveness of
out-of-core data management. Figure 7(a) illustrates the rendering
performance of the application, both with and without speculative
prefetching. The speculative prefetching version executed an addi-
tional refinement step per frame to prefetch pages that are likely to
be accessed in the near future, using a linear prediction of camera
position with a half a second look-ahead. The prefetching version is
smoother, due to the success of prefetching in hiding the latency due
to page faults. The only noticeable jitters with the prefetching ver-
sion (visible in the graph near the end of the sequence) correspond
to rapid accelerations of the path while zooming. In the prefetch-



0 10 20 30 40
0

20

40

60

80

p
er

fo
rm

an
ce

s 
[u

n
it

/s
]

Fps prefetch

M triangles / sec prefetch

0 10 20 30 40
rendering time [seconds]

0

20

40

60

80

p
er

fo
rm

an
ce

s 
[u

n
it

/s
]

Fps no prefetch

M triangles / sec no prefetch

(a) Rendering rates per frame

0 500 1000 1500
0

500

1000

1500

2000

re
n
d
er

ed
 c

o
m

p
le

x
it

y
 [

u
n
it

/f
ra

m
e]

K Trianngles / frame

Patches / frame

0 500 1000 1500
rendered frame number

0

25

50

75

cr
ea

te
d
 p

at
ch

es
 [

u
n
it

/f
ra

m
e]

Created patches

(b) Rendered complexity per frame

0 500 1000 1500
rendered frame number

0

50

100

al
g

o
ri

th
m

 o
v

er
h

ea
d

 [
%

]

(c) Refinement overhead per frame

Figure 7: Rendering Performance Evaluation. To fully test our out-of-core data management components, benchmarks were started with all data off core and disk buffers flushed.

ing version, we were able to sustain an average rendering rate of
over 70 millions of triangles per second, with peaks exceeding 78
millions. By comparison, on similar machines, Lindstrom’s [2003]
multiresolution vertex clustering method’s peak performance was
measured at roughly 3 millions of triangles per second, with a
representation update latency of up to 1s, even though the model
was radically downsampled during preprocessing to only 3M poly-
gons. The increased performance of our approach is due to the
larger granularity of the structure, that amortizes structure traver-
sal costs over many graphics primitives, reduces AGP data trans-
fers through on-board memory management and fully exploits the
post-transform-and-lighting cache with optimized indexed triangle
strips. This favorably compares also with the latest point rendering
approaches, that render in-core models of a few million polygons
at 10M-50M points/second depending on filtering quality [Dachs-
bacher et al. 2003; Botsch and Kobbelt 2003]. The overhead of
the prefetching and rendering code, measured by repeating the test
without executing OpenGL calls, is only about 30% of total frame
time (Fig. 7(c)), and is mostly due to external data access (mainly
I/O wait and patch decompression). This demonstrates that we are
GPU bound even when handling extremely large out-of-core data
sets. Rendered scene granularity is illustrated in figure 7(b): even
though the peak complexity of the rendered scenes exceeds 1.8M
triangles per frame, the number of rendered graphics primitives per
frame remains relatively small, never exceeding 1240 patches per
frame, which are maintained on graphics memory. Since we are
able to render such complex scenes at high frame rates, it is possi-
ble to use very small pixel thresholds, virtually eliminating popping
artifacts, without the need to resort to costly geomorphing features.
Figure 8 is an example of the extremely detailed representation that
can be inspected in real-time using our technique.

7 Conclusions

We have presented an efficient technique for end-to-end out-of-core
construction and view-dependent visualization of very large surface
models on commodity graphics platforms. The proposed solution
consists in an innovative combination of volumetric subdivision,
mesh compression and simplification, out-of-core data manage-
ment, and batched rendering techniques, resulting in an unprece-
dented spatiotemporal quality in the interactive rendering of mas-
sive models.

Besides improving the proof-of-concept implementation, we
plan to extend the presented approach in a number of ways. In
particular, we plan to explore more aggressive and lossy compres-
sion techniques and to investigate error metrics taking into account
the effect of simplification on the shading of the surface. We are
also currently incorporating occlusion culling techniques, useful
for datasets with a high depth complexity, and we plan to intro-
duce more sophisticated shading/shadowing techniques. Given the

Figure 8: David 1mm hand close-up. Model rendered at ±1 pixel screen tolerance

with 841 patches and 1172K triangles at 50 fps on a 1280x1024 window with 4x Gaus-

sian Multisampling, one positional light and glossy material. Note the very fine geo-

metric and illumination details.

performance of the method, we are confident that multi-pass or ver-
tex/fragment program techniques will become readily applicable to
gigantic datasets.

The proposed approach, as well as recently introduced tech-
niques such as BDAM [Cignoni et al. 2003c], can be seen as a
step in a larger effort of adapting the classic general multiresolution
models to modern GPUs, by moving the granularity of the atomic
operations of multiresolution models from triangles/points to small
surface portions. In our opinion, this is the most promising way
to harness the power of current graphics architectures, that heavily
rely on extensive on board caching of indexed primitives. More-
over, our results demonstrate that this approach blends also well
with other important large model optimizations, such as compres-
sion and prefetching techniques. We envision an entire breed of
multiresolution mesh rendering algorithms adapted to this kind of
mesh representation, and we are currently defining a general frame-
work for experimenting with them.

Acknowledgments. This research is partially supported by the V-

PLANET project (EU RTD contract IST-2000-28095). We are grateful

to the anonymous reviewers for their thorough work and to the Stanford

Graphics Group, the Digital Michelangelo project, and the University of

Stuttgart for making benchmark datasets available.



References

BOTSCH, M., AND KOBBELT, L. 2003. High-quality point-based
rendering on modern GPUs. In Proc. Pacific Graphics, 335–343.

CHIANG, Y.-J., GOODRICH, M. T., GROVE, E. F., TAMASSIA,
R., VENGROFF, D. E., AND VITTER, J. S. 1995. External-
memory graph algorithms. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, 139–149.

CHIANG, Y.-J., EL-SANA, J., LINDSTROM, P., PAJAROLA, R.,
AND SILVA, C. T. 2003. Out-of-core algorithms for scientific
visualization and computer graphics. IEEE Visualization 2003,
Tutorial 4 Course Notes.

CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNO,
R. 2003. External memory management and simplification of
huge meshes. IEEE Transactions on Visualization and Computer
Graphics 9, 525–337.

CIGNONI, P., DE FLORIANI, L., PASCUCCI, V., ROSSIGNAC, J.,
AND SILVA, C. T. 2003. Multiresolution modeling, visualiza-
tion, and compression of volumetric data. IEEE Visualization
2003, Tutorial 3 Course Notes.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2003. BDAM – batched
dynamic adaptive meshes for high performance terrain visual-
ization. Computer Graphics Forum 22, 3, 505–514.

COHEN-OR, D., AND LEVANONI, Y. 1996. Temporal continu-
ity of levels of detail in delaunay triangulated terrain. In IEEE
Visualization ’96, IEEE.

DACHSBACHER, C., VOGELSGANG, C., AND STAMMINGER, M.
2003. Sequential point trees. In Proc. SIGGRAPH, 657–662.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D., MILLER, M.,
ALDRICH, C., AND MINEEV-WEINSTEIN, M. 1997. ROAMing
terrain: Real-time optimally adapting meshes. In Proceedings
IEEE Visualization ’97, IEEE, 81–88.

EL-SANA, J., AND CHIANG, Y.-J. 2000. External memory
view-dependent simplification. Computer Graphics Forum 19,
3 (Aug.), 139–150.

EL-SANA, J., AND VARSHNEY, A. 1999. Generalized view-
dependent simplification. Computer Graphics Forum 18, 3, 83–
94.

ERIKSON, C., MANOCHA, D., AND BAXTER, W. 2001. HLODs
for faster display of large static and dynamic environments. In
Proc. ACM Symposium on Interactive 3D Graphics, 111–120.

FISCHER, K., AND GÄRTNER, B. 2003. The smallest enclosing
ball of balls: combinatorial structure and algorithms. In Proceed-
ings of the nineteenth conference on Computational geometry,
ACM Press, 292–301.

GREGORSKI, B., DUCHAINEAU, M., LINDSTROM, P., PAS-
CUCCI, V., AND JOY, K. I. 2002. Interactive view-dependent
rendering of large IsoSurfaces. In Proc. IEEE Visualization,
475–484.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. In SIGGRAPH 97 Conference Proceedings, Addison
Wesley, T. Whitted, Ed., Annual Conference Series, ACM SIG-
GRAPH, 189–198. ISBN 0-89791-896-7.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control
and its aplications to terrain rendering. In IEEE Visualization ’98
Conf., 35–42.

HOPPE, H. 1999. New quadric metric for simplifying meshes with
appearance attributes. In Proceedings of the 10th Annual IEEE
Conference on Visualization (VIS-99), ACM Press, New York,
pages 59–66.

ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND

J.SNOEYINK. 2003. Large mesh simplification using processing
sequences. In Proc. IEEE Visualization.

ISENBURG, M. 2001. Triangle strip compression. Computer
Graphics Forum 20, 2, 91–101.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail render-
ing using cached geometry. In Proceedings IEEE Visualization
’02, IEEE, 259–266.

LINDSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE Transaction on Visualization and Computer
Graphics 8, 3, 239–254.

LINDSTROM, P. 2000. Out-of-core simplification of large polygo-
nal models. In Comp. Graph. Proc., Annual Conf. Series (SIG-
GRAPH 2000), ACM Press, Addison Wesley, 259–262.

LINDSTROM, P. 2003. Out-of-core construction and visualization
of multiresolution surfaces. In ACM 2003 Symposium on Inter-
active 3D Graphics, 93–102,239.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent sim-
plification of arbitrary polygonal environments. In ACM Com-
puter Graphics Proc., Annual Conference Series, (SIGGRAPH
97), 199–208.

MAUBACH, J. 1995. Local bisection refinement for n-simplicial
grids generated by bisection. SIAM Journal of Scientific Com-
puting 16, 210–227.

OHLBERGER, M., AND RUMPF, M. 1998. Adaptive projection
operators in multiresolution scientific visualization. IEEE Trans-
actions on Visualization and Computer Graphics 4, 4, 344–364.

PASCUCCI, V. 2002. Slow growing subdivision (SGS) in any di-
mension: Towards removing the curse of dimensionality. Com-
puter Graphics Forum 21, 3, 451–460.

POMERANZ, A. A. 2000. ROAM Using Surface Triangle Clusters
(RUSTiC). Master’s thesis, University of California at Davis.

PRINCE, C. 2000. Progressive Meshes for Large Models of Arbi-
trary Topology. Master’s thesis, Department of Computer Sci-
ence and Engineering, University of Washington, Seattle.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A multireso-
lution point rendering system for large meshes. In Comp. Graph.
Proc., Annual Conf. Series (SIGGRAPH 00), ACM Press, 343–
352.

SAMET, H. 1990. Applications of Spatial Data Structures. Addison
Wesley, Reading, MA.

SHAFFER, E., AND GARLAND, M. 2001. Efficient adaptive sim-
plification of massive meshes. In Proc. IEEE Visualization 2001,
IEEE Press, 127–134.

WU, J., AND KOBBELT, L. 2003. A stream algorithm for the dec-
imation of massive meshes. In Proc. Graphics Interface, 185–
192.

XIA, J., AND VARSHNEY, A. 1996. Dynamic view-dependent
simplification for polygonal models. In IEEE Visualization ‘96
Proc., R. Yagel and G. Nielson, Eds., 327–334.


