
1. BUILDING AN INTERACTIVE 3D
ANIMATION SYSTEM

Enrico Gobbetti
Francis Balaguer
Angelo Mangili
Russell Turner

Computer Graphics Laboratory
Swiss Federal Institute of Technology

CH-1015, Lausanne, Switzerland

1.1. INTRODUCTION

The continued improvement and proliferation of graphics hardware for workstations and
personal computers has brought increasing prominence to a newer style of software
application program. This style relies on fast, high quality graphics displays coupled with
expressive input devices to achieve real-time animation and direct-manipulation interaction
metaphors. Such applications impose a rather different conceptual approach, on both the
user and the programmer, than more traditional software. The application program can be
thought of increasingly as a virtual machine, with a tangible two or three dimensional
appearance, behavior and tactile response.

Dynamic graphics techniques are now considered essential for making computers easier
to use, and interactive and graphical interfaces that allow the presentation and the direct
manipulation of information in a pictorial form is now an important part of most of modern
graphics software tools. The range of applications that benefit from this techniques is wide:
from two-dimensional user interfaces popularized by desktop computers like Apple's
Macintosh or the NeXT machine, to CAD and animation systems that allow the creation,
manipulation and animation of complex three-dimensional models for purposes of scientific
visualization or commercial animation. Future possibilities include the latest virtual
environment research that permits an even more intuitive way of working with computers by
including the user in a synthetic environment and letting him interact with autonomous
entities, thanks to the use of the latest high-speed workstations and devices.

In this chapter we will present the design and implementation of an interactive key-frame
animation system based on these dynamic graphics techniques. Key-frame animation is the
standard technique used to generate most current commercial computer animation. In its
simplest form, key-framing consists of placing the 3D objects to be animated in successive
key positions and then interpolating some form of spline to generate a smooth motion. One
major problem with building key-frame animation systems is that it is difficult to make them
easy to interact with and control. We therefore set as a primary goal of this project the
achievement of a direct manipulation system in which the user would at all times be able to
see, move around within and interact with the animation environment in real time.

1.2. KEY-FRAME ANIMATION

Computer animation is closely related to movie making. A scenario describes the story,
defines the actors, how they interact, and what emotions the film has to convey. The scenario
is subdivided into a succession of scenes and a story board is realized giving the first general
impression of the visual appearance of the film. Once these steps are accomplished, the
animator can define the animation for each of the scenes of the movie. Then the animation is
rendered and recorded frame by frame to video tape or film.

One way to define an animation is to use some kind of key-framing system, where the
animator defines the animation of each actor independently by specifying key values over
time of the parameters to animate and the system interpolates those keys to generate the in-
between values of the parameters. This technique is inspired from the way traditional
commercial animations are done and is therefore fairly close to the way animators are used to
working. A large spectrum of other techniques for creating computer-animated movies
exists: from scripting, where the animation is defined by a program in a specialized high-
level language, to simulation, where animation results from the evolution of a world's model
according to some predetermined laws. However, all these other techniques can be in some
way be considered as different front ends to a key framing system.

The production of good quality animation by direct use of a key framing system requires
that the animator be able to control all the finer details of the scene and the motion in a very
interactive way, so it is possible for him to refine his work as many times as needed. The
first step of the animator's work is the scene composition. Components of a scene are the
animation camera, a set of lights of various types, and a set of geometric shapes. The
animator must be able to specify the position, orientation and scaling of each component of
the scene, to specify any other parameter of any type of object (such as the angle of view of
the camera and the color of the lights) and to organize these components into a hierarchy.

Once a scene is assembled, the animator can start to work on the definition of the motion.
The animator describes the animation on an object by object basis. For each object, a
sequence of key values of its parameters is specified and the system generates the in-between
values using some interpolation technique. Each animation parameter must be stored in a
separate track to perform various kinds of interpolation. The animator must be able to choose
the kind of interpolation he desires depending on whether he wants continuity of speed and
acceleration or not. The interpolation of key values over time is, however, a rather ill-defined
problem. The animator has to choose one type of curve among many, and the first choice is
not generally the right one to generate the kinds of paths or timing desired by the animator.

Therefore an interactive key-frame animations system must provide real-time playback
for the animator to be able to evaluate the animation from various points of view. The first
animation is generally a first draft and the animator must be given very interactive tools to
edit and refine through many iterations the curves which define the animation and the timing.

1.3. DESIGN APPROACH

The design and implementation of dynamic graphics applications such as the interactive
key-frame system described here are complex tasks: these systems have to manage an
operational model of the virtual world, and simulate its evolution in response to events that
can occur in an order which is determined only at run time. In particular, this kind of

application must be able to handle the multi-threaded style of man-machine dialogue that is
essential for direct manipulation interfaces, and makes extensive use of many asynchronous
input devices (from the ubiquitous keyboard and mouse to more sophisticated devices such
as the SpaceBall or DataGlove).

The relevance of object-oriented concepts for solving this kind of problems has already
been noted by several authors (see [Gobbetti et al, 1991] and [DeMay, 1991] for a discussion
of this). From a software-engineering point of view, dynamic graphics applications have
many aspects that can benefit from object-oriented techniques: for example, data abstraction
can be used to support different internal data representations, several graphics drivers can be
encapsulated in specific objects, different subclasses can offer the same interface for the
manipulation of graphical objects, and information distribution can help to manage the
inherent parallelism of dynamic graphics programs. From the point of view of a user, the
direct manipulation metaphor of modern dynamic graphics programs is consistent with the
fact that object-oriented applications are designed so to manipulate objects related in type
hierarchies. All these considerations led us to the choice of an object-oriented technology for
the design and implementation of our key-frame animation system.

Prior to this project, we already had another experience building object oriented software.
This was a user interface toolkit developed on Silicon Graphics workstations using a custom-
made object-oriented extension to C based on the concepts of Objective C [Cox, 1986]. This
experience was successful but also showed us the limitations of using a hybrid language for
the implementation of an object-oriented design. Because the language was hybrid, it was
difficult to completely enforce the object-oriented paradigm, and programmers sometimes
mixed procedural and object-oriented styles, obtaining in this way components that were
hard to reuse. Furthermore, the language provided no multiple inheritance, no static typing
and no genericity, limiting in this ways its expressiveness and sometimes influencing our
design decisions. For example, code duplication was necessary in cases where multiple
inheritance should have been used and many errors showed up only at run-time on the form
of features being applied to objects that were not supposed to implement them. Another big
problem with this system was its lack of garbage collection, which required us to spend
inordinate amounts of time chasing memory bugs (dangling pointers, memory never being
deallocated, etc.) and devising complex algorithms to destroy object structures.

All of this convinced us of the importance of using a pure object-oriented language for
our work, and Eiffel [Meyer, 1988] was chosen for this new project because of its
characteristics (multiple inheritance, static typing, dynamic binding, and garbage collection)
that corresponded to our needs. Our previous experiences convinced us of the
appropriateness of object-oriented technology for building libraries of reusable components.
What was interesting for us when starting to work on the project of building the animation
system was to know if it is possible to use this approach for creating applications and if
reusable components can be created as a side-effect of using object-oriented techniques
during the development of a program. Furthermore, we wanted to test if it was possible to
use a pure object oriented language like Eiffel for the creation of an application with such
large constraints on performance as an interactive animation system.

1.4. SYSTEM DESIGN

1.4.1 Identification of principal class clusters

To promote code-reuse and to allow several people to work on the project simultaneously,
class libraries had to be designed so to provide efficient, reusable and extensible components
for composing applications. At the beginning of the design process, a large amount of time
was spent up front in group discussions about the design of the system. The problem was
split into several principal clusters to be developed in parallel by different people, with each
cluster carried through the design process to implementation.

The identification of these clusters was based on an analysis of the problem statement and
on our previous experience designing other graphical systems. The practice of starting with
the creation of the basic libraries instead of starting to directly analyze the functionalities
required is typical of the bottom-up approach that object-oriented design favors [Meyer,
1987]. The clusters we selected for further design by this preliminary analysis were:

• a mathematical cluster, to contain useful basic mathematical abstract data types;

• a spline cluster, to provide means to animate these basic data types;

• a modeling cluster, to represent the various components of graphical scenes;

• a rendering cluster, to provide several rendering facilities;

• a dynamic cluster, to provide ways to encode interactive and animated behavior;

• a user-interface cluster, to provide standard interaction widgets and devices.

We find it very useful to describe the structure of our class clusters in term of object-
relation diagrams, as in [Rumbaugh, 1991]. The definition of the static structure of our
software is always the first step of our design process, and these diagrams allow us to give a
schematic presentation of this structure that combines within the same diagram instance
relations and inheritance relations. These diagrams have thus become for us a standard way
for exchanging our ideas during the design meetings about the creation of our class clusters.

A B

A B

A B

A B

Class A inherits from class B

Every instance of A is related to zero to one instances of B

Every instance of A is related to exactly one instance of B

Every instance of A is related to zero to many instances of B

Figure 1. Object-Relation Diagrams

Object-relation diagrams are the only formal technique we use for describing our design
process: no other types of diagrams or special notations were used during the design of the
key-frame animation system. We find these diagrams useful but we do not insist too much
in using other formalized schemes (data flow diagrams, for example) for representing other
important aspects of our software. These other techniques could be of some use (especially if
used in conjunction with some tool for keeping all these other representations up-to-date with
respect to the code), and we will perhaps consider them in the future. Eiffel, with assertions
and invariants, offers a way to represent the programming contracts between the different
components of the system and their required behavior. Fragments of Eiffel code are

therefore sometimes used by us quite early in the design in place of pseudo-codes or data-
flow diagrams to define the functional model of some components.

In the next section we will give, for each of the clusters composing the animation system
an overview of the reasoning that guided its design, analyze its structure and discuss the
results obtained in terms of performance and reusability. The class libraries as presented here
are the result of multiple iterations of our design process.

1.5. OVERVIEW OF THE PRINCIPAL CLUSTERS

1.5.1 Mathematical Cluster

1.5.1.1 Analysis

The mathematical foundation of the animation system, as for most non-trivial graphics
applications, comes from linear algebra. The first step in the design was to provide an
encapsulation of the basic concepts of this branch of mathematics.

Matrices and vectors are two of the most important abstractions found in graphics
programming. Three-dimensional vectors, are needed to store and manipulate information
such as the vertices of a faceted object or its normals, and four-dimensional matrices are the
most common technique for representing the projective transformation defined by a virtual
camera and the linear transformations used for positioning, orienting and scaling graphical
objects. So, a MATRIX and a VECTOR are usually standard classes in any object-oriented
graphics system, but most graphical libraries do not offer more than these two algebraic data
types.

Four-dimensional matrices can be used to represent affine transformations (linear
combinations of scaling, translation and rotation operations). However, not all instances of a
four-dimensional matrix are affine transformations. Furthermore, this representation is not
the only possible one and its exclusive use can make it difficult to perform some important
operations like interpolating between transformations, a feature that is definitely needed for
an animation system! What an animator usually wants to do when interpolating between two
affine transformations is to separately interpolate their components (the rigid body
transformations, translation and rotation, and the scale factors of the three axes). It is
therefore important to be able, at any moment, to extract these parameters from a
transformation.

For these reasons, we decided to include in our system a class of transformation objects
able to consistently maintain and manipulate their four-dimensional matrix representation and
their translation, orientation, and scale components through a well defined interface, thus
ensuring, through a proper set of assertions, the affine nature of the transformation. Two of
the transformation's components, translation and scaling, can be easily represented as three-
dimensional vectors, and no new class needs to be added to the system. There are, however,
several different possible solutions for representing rotations, the more frequently used being
quaternions and Euler angles. Quaternions are, in fact, four-component homogeneous
coordinates for orientation, and they are now becoming increasingly prevalent in animation
systems because of their well-behaved mathematical properties ([Shoemake, 1985] discusses
several issues related to this topic). A class for representing quaternions was therefore
included in our design for a mathematical cluster.

The other type of basic mathematical entity that is usually found in graphical software is
color, and a COLOR class is included in our system. Although colors are often represented
as Red-Green-Blue triplets, there exist other representations and the color class has the ability
to convert between these.

By making all these types of mathematical objects available to the designers and
implementors of the key frame animation system, we aimed at providing a solid set of
abstractions to be used together with the other basic Eiffel classes [ISE 1989] in order to
simplify the task of writing large dynamic graphics applications.

1.5.1.2 Object Model

The following diagram shows the most important classes of our mathematical cluster and
their relations (classes in parentheses are deferred):

(NUMERIC_OBJ)

MATRIX

VECTOR

VECTOR_3D

MATRIX_4D

QUATERNION COLOR

TRANSFORM_3D

position scaling orientation

transformation

Figure 2: Mathematical cluster

The NUMERIC_OBJ deferred class defines objects on which the usual arithmetic
operations such as "+", "-", "*", "/" are defined and provides a common interface for all
these features. Most other classes of this cluster inherit from it, covariantly redefining
features to ensure correct typing. A finer distinction between different types of numerical
objects with respect to the behavior of the operations applied to them could be made, and
NUMERIC_OBJ should perhaps be separated into different inheritance levels to represent
fundamental mathematical types. However, we felt that the effort for designing this kind of
more formal set of abstract classes was too great.

Instances of the MATRIX class can represent arbitrary rectangular matrices, and vectors
of arbitrary dimension can be represented by instances of the MATRIX's heir VECTOR.
Features for performing all sorts of computations, from basic arithmetic operations to
solutions of arbitrary linear systems, are exported from these classes. In this design vectors
are rectangular matrices with one of the two dimensions equal to one, consistently with the
mathematical definition of the concepts they represent, and a proper class invariant of
VECTOR ensures that this basic property is always verified. In this way, most of the

operations on vectors are just inherited from matrices, and the system is able to distinguish
between row vectors and column vectors.

Since four-dimensional matrices and three-dimensional vectors are widely used in
graphical programming, the two classes MATRIX_4D and VECTOR_3D are provided with
additional operations and more specific and faster implementations of ancestor's features.
The concept of color, linear transformation, and quaternion, mentioned in the analysis, are
represented by the COLOR, TRANSFORM_3D, and QUATERNION classes respectively.

1.5.1.3 Object Design

The object design of such basic classes as the ones present in this cluster is very
important. These kinds of objects have to be used as basic building blocks for the rest of the
system and it is therefore very important to have them both simple to use and highly efficient
to improve the performance of the applications.

In order to provide regular interfaces, and therefore improve the usability of our classes,
we follow some conventions for naming features. Some of these conventions are:

• features that return an alternate representation of an object always begin with as, as for
as_quaternion: QUATERNION which can be applied to instances of MATRIX_4D;

• features that modify the value of Current as a result of some computations based on
the parameters always begin with to, as in to_sub(left, right: like Current), which can
be applied to instances of NUMERIC_OBJ;

• features that store the results of their computations in one of their parameters always
contain the indication _in, for example row_in(i: INTEGER; v: VECTOR) which can
be applied to instances of MATRIX.

As a result of these conventions, the class features use as often as possible the style of
modifying Current or one of the parameters instead of returning a new object as a result. In
this way, it is the client's responsibility to allocate all the objects needed, therefore reducing
the overhead due to allocation and collection of unnecessary temporary objects.

All the routines and the classes of our libraries are enriched with a set of preconditions,
postconditions and invariants that specify their programming interface contract. We put some
effort into defining these assertions, because we believe that they are a key element for
promoting reusability. Assertions formally define the behavior of our components (and
therefore we use them during the design phase), provide a certain form of documentation and
help during debugging. Another interesting fact we noted about assertions is that their use
helps to produce efficient software: by clearly defining the responsibilities of each
component, we can avoid using defensive programming techniques, and therefore obtain
more readable and at the same time more efficient code.

In order to implement the mathematical operations defined in the various classes of this
cluster, and especially the MATRIX and VECTOR classes, we decided to use two standard
Fortran libraries that are well known in the scientific programming community: BLAS
[Lawson et al., 1979] and LAPACK [Anderson et al., 1990].

BLAS, or Basic Linear Algebra Subprograms, is a set of public domain routines able to
perform basic numerical computations on one and two-dimensional arrays interpreted as
vectors and matrices. This set of routines operates at a very low level and represents a general
purpose kernel library. Highly optimized versions exists on specific machines (for example,
they're now included in the Cray SCILIB).

LAPACK, or Linear Algebra Package, is designed as a portable and efficient linear
algebra package implemented on top of BLAS. It provides routines for solving systems of
simultaneous linear equations, finding least-squares solutions of overdetermined systems of
equations, and solving various eigenvalue problems.

These two libraries offer high-quality implementations of numerical algorithms but are
rather difficult to use in application programs because of the flat structure of these packages
and the fact that the client of these routines has to take care of maintaining all the state
information in auxiliary data structures between different calls (for this reason, some of the
routines have tens of parameters!). These drawbacks are typical of libraries developed using
standard procedural languages.

These two libraries are encapsulated as Eiffel classes whose routines are simple interfaces
to the Fortran ones. All these routines have preconditions and postconditions that define their
contract, ensuring that these external operations are properly used. For example, the Eiffel
interface to BLAS routine samax is

samax(n: INTEGER; sx: ARRAY[REAL]; lowx: INTEGER; incx: INTEGER): REAL is
-- REAL FUNCTION SAMAX(N,SX,INCX)
-- returns the maximum absolute value of all entries in SX.
-- N Input, INTEGER N, number of elements in SX.
-- SX Input, REAL SX(N), vector to be searched.
-- INCX Input, INTEGER INCX, increment between elements of SX.
-- For contiguous elements, INCX = 1.
-- SAMAX Output, REAL SAMAX, the maximum abs. value of all
-- entries in SX.
require

n_non_negative: n>=0;
sx_exists : not sx.Void;
sx_low_valid : in_int_range(sx.lower+lowx, sx.lower,

sx.upper);
sx_high_valid : in_int_range(sx.lower+lowx+incx*(n-1),

sx.lower, sx.upper);
external

C_samax: REAL name "samax_" language "C";
do

Result:= C_samax(@n, sx.to_c+Word_size*lowx, @incx);
ensure

-- Result is the maximum absolute value in the specified range of ofsx
end; -- samax

These encapsulated routines are then used in the various classes of the mathematical
cluster as internal implementations of various higher-level operations, Eiffel being used as a
packaging tool that offers all the benefits of a pure object-oriented language. State

information required by these routines is handled inside mathematical classes and these
details are hidden to the client of the mathematical cluster.

We believe that this ability to reuse components written in other languages is a key feature
of Eiffel. After all, isn't one of our main goals reusability? Many years of programming
efforts have been spent in developing and testing large software libraries in various
languages, and some of these libraries, like BLAS and LAPACK, provide a set of
functionalities that is really worth reusing. Languages such as C++ and Objective-C try to
encourage this reuse by allowing the programmer to continue developing their software in
hybrid languages. However, we feel that this approach does not enforce a clean separation
between the object-oriented and non-object-oriented portions of the software and therefore
perpetuates the software engineering problems of the traditional languages.

The Eiffel approach, on the other hand, is to define clean and localized interfaces with
external components, without making any compromise with the object-oriented paradigm the
language is based on, obtaining in this way the best of these different worlds. In our case, the
ability to reuse LAPACK and BLAS was an important aspect in our development. A lot of
functionality was added in a relatively small amount of time and high performance was
immediately obtained thanks to the use of these routines, without being forced to change the
object-oriented nature of our mathematical components. Our mathematical library is just a
starting point, and we hope that in the future, more work will be done for providing these
kinds of tools to Eiffel developers.

1.5.2 Representing Animation

1.5.2.1 Analysis

Animation can be defined as the description of the evolution of some parameters over
time. We decided to build an interactive key framing system where this evolution is
described by specifying key points at certain times, and an interpolator computes the in
between values. Having described how to represent the basic mathematical entities needed by
the system using our mathematical cluster of classes, the next problem that we need to attack
is the definition of their variation over time using interpolation techniques.

The simplest interpolation technique is linear interpolation. However, this presents the
major disadvantage of discontinuities of speed and acceleration at the key points. Another
technique is spline interpolation. Splines are curves described as a succession of polynomial
segments defined over some parameter. These polynomials can be of any degree, but
generally in animation, polynomials of degree three are used. We speak, in that case of cubic
splines.

Various families of spline curves exist. The most commonly used in the field of
computer animation are Cardinal Splines and the Kochanek-Bartels superset . They both
interpolate through the control points defining the segments. The major interest of the
Kochanek-Bartels splines is that segments are defined by starting and ending points and
starting and ending tangents. This allows easy definition of the curve, and permits the
creation of local discontinuities by specifying different ending and starting tangents.
Kochanek-Bartels and Cardinal splines are only C1 continuous, meaning they don't offer
continuity of acceleration, which limits the control you have on the timing.

Another important family of splines are Basis splines, commonly called B-splines. B-
splines offer global parameterization on the whole curve and their cubic form offers C2
continuity, i.e. continuity of speed and acceleration (more generally a B-spline of order k is a
curve defined by polynomial segments of degree (k-1) and that presents C(k-2) continuity).
Hence we can defined very smooth paths but also create discontinuities at a point. Their
major drawback is that B-splines do not interpolate through the control points and therefor an
interpolation layer has to be built on top of them.

A B-spline combined with an interpolation layer is a very versatile tool. Its mathematical
formulation is very general, allowing us to use genericity to build parametric curves of
anything as a function of time or of any other parameter. These curves can be of any degree
offering from linear interpolation to high continuity interpolation. The interpolation layer and
the capability to go back and forth between the approximation and interpolation
representation provide a very flexible tool for the programmer and designer.

In the case of computer animation, the spline curve represents the history of one
parameter. As the timing is generally different for each parameter (translational parameters of
a camera won't generally evolve over time in the same way as the field of view, for example)
it is necessary to provide history for each parameter independently. We use in this case the
term track.

For these reasons, we decided to create the B_SPLINE class and a subclass which offers
the interpolation interface to the curve for the programmer. As pointed out earlier, the
animation system has to deal with the evolution over time of several types of objects (affine
transformations, colors, etc.) In order to be able to represent this fact, we decided to design
subclasses of our mathematical objects which are able to store a history of their value. We
call these objects animated variables. An animated variable is defined as being a variable of
some type having some history information storage mechanism, which we decided to build
on top of B-splines curves. Animated variables can be of any type as long as interpolation
has some meaning on this type.

1.5.2.2 Object Model

The animation cluster is composed of a set of classes that are used to represent the
animated variables and the history storage information.

(ANIMATABLE) (HISTORY[T]) B_SPLINE[T]
T->VECTOR

(HAS_TRACK[T])
T->VECTOR

INTERPOL_B_SPLINE[T]
T->VECTOR

TRACK[T]
T->VECTOR

ANIM_V3D

T=VECTOR_3D
VECTOR_3D

Figure 3: Basic animation classes

Three basic sorts of class can be identified:

• B-splines (subclasses of B_SPLINE) represent parametric B-splines of any dimension
and any order defined over a knot vector giving the distribution of the parameter along
the curve and a control polygon. This is an approximation curve. An important subclass
is the INTERPOL_B_SPLINE class which offers the interpolation interface to the
approximation curve. The basic mechanisms to go back and forth from approximation
and interpolation representations are implemented here.

• histories (subclasses of HISTORY) represent the history storage mechanism. A
history is defined as a time ordered list of key values which is traversable over time. An
important subclass is the TRACK class where B-spline curves are used to interpolate
between the key values.

• animatable variables (subclasses of ANIMATABLE) are variables having a time
dependent value. They have a current value and a current time and mechanisms to
update and retrieve information from their history. An important subclass is
HAS_TRACK which implements the history using a TRACK.

In this architecture, history mechanisms and history storage are decoupled. A B-spline
curve should not make any assumptions that the parameter used is time. On the other hand, a
history should not make assumptions about how the history is stored. Intermediary classes
such as TRACK makes the link between history mechanisms and information storage. On
the other hand, for animated variables, the type of the variable and the type of history storage
used is also decoupled. This allows us to define, for example, an animated quaternion whose
history is defined over a track of three dimensional vectors or an animated transformation
defined as an aggregate of other animated variables.

1.5.2.3 Object design

The use of interpolation to compute the in between values imposes two constraints on us.
The first is that any animated variable should be interpolable. The second constraint is that ,
as we use parametric B-spline interpolation, a multi-dimensional variable should be
interpolable on each dimension independently.

Object oriented languages such as Eiffel offer a way to express these constraints in the
classes by constraining the generic parameter. In order to perform animation, we must record
a history and then play it back. History is recorded by specifying a list of key values which
are interpolated for playback. However, some manipulation may be necessary before
yielding the desired value at a given time. Hence, animated variables behave as windows on
their history: setting the current time moves the window and changing the value of the
variable changes the content of the window.

These general mechanisms are implemented in the deferred class ANIMATABLE. A
store feature transmits the value of the window to the history, while an update feature sets
the value of the window to the value of the history at the current time. A set_time feature
makes the window move along the history.

When an update feature is applied to an animated variable, it applies the feature value_in
to its history. In the case where the history is an instance of the TRACK class, the value_in
feature is applied to instances of the B_SPLINE class, causing the evaluation of the
polynomial function defining the segment for the current time. This choice of
implementation led to the introduction of a POLYNOM class (a subclass of
NUMERIC_OBJ) which implements symbolic polynomial calculus and evaluation. The
problem of evaluating the history at a given time is then reduced to the search for the proper
segment of the curve and the evaluation of the polynomial defining the segment.

1.5.3 The Graphical Model

1.5.3.1 Analysis

Since dynamic graphics applications must be able to respond to asynchronous input
events as they happen, designers have to build their programs with little knowledge about
when and in what order the events will occur. Therefore, at any moment during the execution
of a dynamic application the entire state has to be explicitly maintained in a global data
structure.

So, one of the first steps in building a graphics system is to design this data structure
which is called the graphical model. This model consists of the set of classes used to
represent the virtual objects to be manipulated. It is worth noting that rendering is not the
only operation that needs to be done on these objects. In an interactive key-frame animation
system, for example, graphical objects need to be animated and dynamically controlled in
their shape and appearance. Thus, many different aspects have to be considered when
designing the graphics model, which is implemented in the graphical cluster.

Several class structures have been proposed in the literature for representing three-
dimensional hierarchical scenes. These designs strive to provide good encapsulations of the
concepts useful for modeling, rendering and animating the types of complex objects that are
necessary for dynamic graphics applications. Examples are proposed in [Fleischer et al,
1988], which describes an object-oriented modeling testbed, [Grant et al, 1986], which

presents a hierarchy of classes for rendering three-dimensional scenes, and [Hedelman,
1984] which proposes an object-oriented design for procedural modeling.

Key-frame animation systems are typically concerned with the animation of models
arranged in a hierarchical fashion: a transformation tree defines the position, orientation, and
scaling of a set of reference frames that transform the space in which graphical primitives are
defined. This kind of hierarchical structure is very handy for many of the operations that are
needed for modeling and animating a graphical tree (see [Boulic at al, 1991]): objects can be
easily placed one relative to another and the simulation of articulated figures, which is
essential for any type of animation work, can be done in a natural way. Figure 4 shows an
example of hierarchical scene representation.

Y

XZ

Camera

Y

XZ

Ground

Y

XZ

Ceiling

Y

XZ

Table

Y

XZ

Glass

Y

XZ

Light

Y

XZ
Root

Figure 4: A hierarchical scene

1.5.3.2 Object Model of the Hierarchical World

The basic modeling classes of our system are modeled as an object-oriented
representation of classical animation hierarchies. Its structure is presented in the following
diagram:

NODE_3DTRANSFORM_3D

(MODEL_3D)

SHAPE_3D CAMERA (LIGHT)

POS_LIGHT DIR_LIGHT SPOT_LIGHT(GEOMETRY_3D)MATERIAL

SM_GEOMETRY RMESH_GEOMETRY

WORLD_3D

Figure 5: Basic modeling classes

The WORLD_3D class represents the three-dimensional scene that the animation system
manipulates and contains all the global information: the environmental illumination
parameters (packaged in instances of AMBIENT), and the geometric hierarchy being
manipulated.

The transformation hierarchy is represented by instances of NODE_3D related in a
hierarchical fashion, and is used to specify the position, orientation, and scaling of the
reference frames to which the models are attached. This geometric information is packaged
in TRANSFORM_3D objects, and animation paths are stored by replacing plain
TRANSFORM_3D instances with instances of the subclass ANIM_TRANSFORM_3D,
which are able to store a transformation history and to play it back.

To NODE_3D instances it is possible to attach instances of MODEL_3D, which defines
the concept of three-dimensional models in the reference frame of their node. A scene can be
composed of three basic types of MODEL_3D: lights, cameras, and shapes. It is worth
noting that this design clearly separates the hierarchical structure of the scene from the
models attached to them and that models themselves are not hierarchical. This comes from
the fact that it is common practice during the creation of an animation sequence to start by
designing the hierarchical structure of the scene, and to attach to this structure some simple
models to test the animation. These simple models can easily be replaced by more elaborate
ones as work progresses. In this way, complex hierarchical structures like skeletons can be
designed and reused several times with different shapes attached to them to change their
look. The clear division in our design between nodes and models makes this work easier.

An instance of LIGHT represents a source of light, and maintains information about the
color and intensity of the emitted rays. Subclasses of LIGHT, such as DIR_LIGHT,
POS_LIGHT, and SPOT_LIGHT define various types of sources and maintain more
specific information.

An instance of CAMERA represents a camera positioned in the scene, and maintains
information about its viewing frustrum and its perspective projection.

An instance of SHAPE_3D is an encapsulation of the concept of a physical object having
a shape and a material in the Cartesian space. Geometries and materials are defined in
completely separate classes, to make them more reusable and to be able, for example, to
manipulate a purely geometric object in a program that does not have to know about its
possible material properties.

Subclasses of GEOMETRY_3D are provided to offer various ways to define the
geometric properties of a physical object. Examples are: SM_GEOMETRY, which defines a
geometric object by specifying a surface model as a set of triangular facets, and
RMESH_GEOMETRY, which represents objects as rectangular grids of three-dimensional
points.

Instances of MATERIAL are used to define the behavior of physical objects with respect
to light. They contain information such as the color and intensity of emission, diffuse, and
specular components as well as the shininess and transparency factors.

All the state information about the model being manipulated can be maintained within this
graphical hierarchy. Inheritance and polymorphism are used to handle in a simple and
efficient way the different types of graphical shapes. The addition of new types of
geometries, for example, is done by defining new subclasses of GEOMETRY_3D, and
specifying the relevant operations.

1.5.3.3 The Icon world

In a three dimensional scene, some models are not directly visible. A light, for example
just emits some light into the scene, and a camera simply defines a viewpoint and a
perspective projection. However, in a three-dimensional application based on direct
manipulation, models such as cameras, lights, and purely user-interface constructs such as
control points, may have to be made visible for the user to select and manipulate them.

These models exist only for means of user interface, hence they should not be part of the
scene hierarchy. Therefore we decided to introduce the concept of three dimensional icons,
which are used to make visible, by some recognizable representation, models which are
usually invisible when making the final rendering of the scene.

(VIEWABLE_3D)

SHAPE_3D(ICON_3D[T])
T->MODEL_3D

(MODEL_3D)

(GEOMETRY_3D)

MATERIAL

Figure 6: the icon world.

The introduction of the ICON_3D class led to the creation of VIEWABLE_3D, which
represents the capability of maintaining a geometric representation and a material. This
abstract class defines characteristics that are common to its descendants SHAPE_3D and
ICON_3D.

1.5.3.3 Object Design

The implementation of the different classes composing the modeling cluster did not pose
particular problems. Most of the responsibilities of these classes consist of handling some
kind of data structure (like an n-ary tree of transformations for NODE_3D and a bi-
dimensional array of points and normals for RMESH_GEOMETRY). Since we were able
to directly use the basic data structures classes provided by Eiffel's library: this allowed us to
concentrate most of our time on the purely mathematical side of geometric objects.

1.5.4 Rendering

1.5.4.1 Analysis

The modeling hierarchy presented in the previous section defines the way we organize
and maintain the data structures representing a graphical scene for our dynamic applications.
The next step in the object-oriented design process is to organize the types of operations
defining how the data structures should be manipulated.

For an application such as key-frame animation, two of the most important types of
operations are implementing the visual appearance and dynamic behavior of the different
graphical objects. An important design question that arises is: where should the graphical
appearance and dynamic behavior be encoded? Two possible solutions are: to encode these
features directly in the model (for example by adding a specific render feature to the various
graphical objects), or to design other sets of classes that are able to perform these operations.

In simple two-dimensional architectures, such as user-interface toolkits, these kinds of
operations are usually encoded directly in the model. For more sophisticated applications,
this kind of approach is not feasible because there is no simple and unique way for a
graphical object to perform complex operations like drawing itself, or responding to events.

If we analyze the problem of rendering a three-dimensional scene, several reasons suggest
the creation of auxiliary classes:

• many different algorithms for drawing graphical scenes may coexist in the same
system. Examples are: ray-tracing, radiosity, or z-buffering techniques. The details
about these techniques should not be known by every graphical object.

• rendering may be done using several different types of output units, such as a portion
of the frame buffer or a file, and it is not necessary for all this knowledge to be spread
out among all the graphical objects.

• several rendering representations, such as wire-frame or solid, may be selectable on a
per graphical object basis. The same object may be viewed by several different
windows at the same time, each view using a different representation.

We can see that the rendering feature needs much more information than the type of the
object to be rendered, and that the same graphical instance can be rendered in several different
ways depending on the type of renderer and the type of representation. Therefore, we decided
to design and implement new types of objects to maintain this additional information and to
implement the various rendering algorithms.

1.5.4.2 Object Model

The rendering cluster is composed of a set of classes that are used to display a scene. The
following diagram shows the basic design of this cluster:

(RENDERER) (VIEW)

WIRE_FRAME_VIEW SOLID_VIEW

(VIEWABLE_3D)

WORLD_3D

CAMERA

(LIGHTED_RENDERER) (SHADE)

FAST_SHADE SHADOW_SHADE

(LIGHT)

Figure 7: Basic rendering classes

Five basic sorts of classes can be identified:

• renderers (subclasses of the RENDERER abstract class), which represent a way to
render entire scenes. The code for actually rendering three-dimensional scenes is
implemented here. An important subclass of RENDERER is
LIGHTED_RENDERER, which describes renderers that can take into account
illumination parameters when computing a visual representation of the scene.

• cameras (subclasses of CAMERA), which are objects able to return geometric
viewing information such as perspective and viewpoint.

• worlds (subclasses of WORLD), which are objects able to return global illumination
information.

• viewable models (subclasses of VIEWABLE_3D, such as MODEL_3D and
ICON_3D in the modeling cluster) that are visible objects having position, orientation
and scale in the Cartesian space, a geometry, and a material.

• views (subclasses of VIEW), which define how a viewable object should be
represented.

In this architecture, view objects act as intermediaries between the viewable models and
the renderer, telling the renderer what technique (e.g. wireframe, solid) should be used to
display each graphical object.

1.5.4.3 Object Design

In order for a renderer object to be able to display a single graphical object, it must consult
its views and the attached viewable object to determine the necessary drawing algorithm.
This shows that the rendering feature is polymorphic on more than one type.

Object oriented languages like Eiffel, by means of its dispatching which is done on the
basis of the target type at the moment of feature application, offer a way to select between
different implementations of the same operation without using complicated conditional
statements which are difficult to maintain and extend. This is one of the major advantages of
object-oriented programming and can be used even when the dispatching has to be done on
more than one type. This is true for the rendering operation, which is implemented by
applying a feature to each polymorphic variable we want to discriminate and let the dynamic
binding make all the choices [Ingalls, 1986].

To show how this method works, let's look at the various classes that form the rendering
cluster. In order to render a scene, a render feature has to be applied to a renderer, which has
the task of displaying all the objects that are attached to its views. To do this the renderer,
after some initializations, has to set up the camera and apply a render feature to all its views
with itself as a parameter. This algorithm is completely general and can be written in the
abstract RENDERER class:

render is
-- Render the current scene
require

not is_rendering
do

if not camera.Void then
begin_rendering;
define_camera(camera);
from views.start until views.offright loop

views.item.render(Current);
views.forth;

end;
end_rendering;

end;
ensure

not is_rendering
end; -- render

When a render feature is applied to a view, its task is to know what kind of geometries
are attached to it through its viewable objects, and to communicate back to the renderer all
this specific information. This is done by storing the current renderer and applying a view
feature to all the viewable objects known by the view. The viewable objects will do the same
kind of operation to know about their geometry and respond to the view feature call from the

view with a more specific feature call indicating all the type information needed: a
view_rmesh feature will be applied by objects conformant to RMESH, a view_sm feature by
objects conformant to SM_GEOMETRY, and so on. So, every subclass of VIEW will have
to implement a new view_... feature for each of the types of geometries that need to be
distinguished. The Eiffel code of the abstract VIEW class is as follows:

deferred class VIEW export ... inherit
GAP_LIST[VIEWABLE_3D]

rename
Create as gap_Create;

feature

current_renderer: RENDERER;
-- The renderer that is currently asking information to the view

render(r: like current_renderer) is
-- Applies back to r a more specific render_... feature with all
-- the information needed for rendering each item of the list.
require

R_exists: not r.Void;
Not_rendering: current_renderer.Void;

do
current_renderer:= r;
from start until offright loop

item.view(Current);
forth;

end;
current_renderer.Forget;

ensure
Not_rendering: current_renderer.Void;

end; -- render

view_sm(m: MATERIAL; t: TRANSFORM_3D; o: SM_GEOMETRY) is
-- Send back a render_.._sm(Current, m, t, o) to current_renderer
require

Rendering : not current_renderer.Void;
Material_exists: not m.Void;
Transf_exists : not t.Void;
Item_exists : not o.Void;

deferred
end; -- render_sm

view_rmesh(m: MATERIAL;t: TRANSFORM_3D;o: RMESH_GEOMETRY) is
-- Send back a render_.._rmesh(Current, m, t, o) to current_renderer
require

Rendering : not current_renderer.Void;
Material_exists: not m.Void;
Transf_exists : not t.Void;
Item_exists : not o.Void;

deferred

end; -- render_rmesh
...

end -- class VIEW

Each of the specific view features is implemented in VIEW subclasses by applying back
to the current renderer a specific render feature with all the information needed to display the
object using the right representation, thus telling the renderer to actually display the object.
So, for example, the WIRE_FRAME_VIEW class defines the view_sm feature as follows:

view_sm(m: MATERIAL; t: TRANSFORM_3D; o: SM_GEOMETRY) is
require

Rendering : not current_renderer.Void;
Material_exists: not m.Void;
Transf_exists : not t.Void;
Item_exists : not o.Void;

do
current_renderer.render_wf_sm(Current, m, t, o);

end; -- render_sm

Figure 8 shows a typical example of feature invocation when the render feature is applied
to a renderer.

GL_RENDERER

WIRE_FRAME_VIEW

SHAPE_3D

RMESH_GEOMETRY

render

view

portray

render_wf_rmesh

view_rmesh

portray_rmesh

Figure 8: Multiple dispatching for a render feature call

As the diagram shows, rendering a single object involves setting off a chain of feature
calls, passing through the view, the viewable model and its geometry, ultimately resolving to

the appropriate rendering feature. In this way, the composition of the instance data structure
automatically determines the rendering algorithm.

1.5.5 Dynamics and Input

1.5.5.1 Analysis

Animated and interactive behavior are among the most confusing aspects of computer
graphics design. These can actually be thought of together as the fundamental problem of
dynamic graphics: how to modify graphical output in response to real-time input? Viewed in
this way, input from the user results in interactive behavior, while input from other data
sources or real-time clocks results in animated behavior.

The first problem a sequential application (i.e. a single process with one thread of control)
has to solve is the multiplexing between different asynchronous input sources and the
handling of those various inputs in a consistent temporal order. The most common way to
do this is to have a central input-gathering algorithm responsible for selecting between
several input queues (such as the windowing system, various devices, and inter-process
communication channels) and extracting each input event in the proper time order, resulting
in a single time-ordered queue of input events which can be handled sequentially.

Assuming such a purely input-event-driven model, the basic dynamic behavior algorithm
then takes the form of an loop as follows:

Initialize the application and select input channels

from start until over loop

Go into wait state;

Wake up when input arrives;

Respond to input;

end

In such a structure, the dynamic behavior is implemented in the section Respond to input.
The most natural object-oriented way to model a workstation with multiple input devices is
for each input device (e.g. Mouse, Spaceball) to be represented as a separate instance of a
particular input device class. Given such a model, the first thing that has to be done in
responding to an input event is to interpret the type of input data received, and update
accordingly the object representing the source of this data. If, for example, when the
application receives an input indicating that the user moved the mouse, the state of the mouse
object has to be updated.

Once the input device objects are updated, the state of the application has been changed
and some action has to be performed to respond to this input event, implementing in this
way the dynamic behavior of the program. So, for example, if we want the virtual camera in
our scene to move when the user moves his SpaceBall, some mechanism must be used to
implement this dynamic behavior An obvious way to do this is to implement some feature

in the CAMERA class that could be called every time the state of the SpaceBall changes.
However, for the same reasons that led to the separation of rendering operation described in
the previous section, it is better to move the code implementing the dynamic behavior into a
separate object, called a controller. In this case, in order to change the behavior of our virtual
camera, we simply have to call the appropriate feature of its associated controller object. We
call these controller objects dynamic objects because they change their state in response to
external input.

Just as the encapsulation of an object's graphical appearance allows higher-level graphical
assemblies to be constructed from graphical components, an assembly's dynamic behavior
can be built up from the behavior of its dynamic components. To do this effectively, a
mechanism must be used to represent the changes of state of dynamic objects in response to
input and to represent the dependencies among these objects so they can be updated. We call
these changes of state events, and consider the problem of updating dependent objects to be
the problem of proper distribution of events between objects.

1.5.5.2 Object Model

The dynamic behavior of an application, as described in the previous section, requires the
creation of two sets of classes: a first cluster for maintaining and multiplexing between
multiple input channels and a second cluster for representing and distributing events.

The design of the input cluster is represented in the following diagram:

NET_NODE NET_CONNECTION

(NET_MESSAGE)

NET_CONNECTION_LIST[T]
T->NET_CONNECTION

Figure 9. Classes for Input Multiplexing and Inter-Process Communication

The design of this set of classes is adapted from the set of inter-process communication
classes developed by Matt Hillman [Hillman, 1991] and partially reuses most of its
components.

Objects of class NET_NODE can form and accept socket connections with other
processes, and multiplex between all of these when waiting for input. It is through these
connections, represented by NET_CONNECTION objects, that asynchronous inputs from
various input devices, from the window system, and from remote processes arrive to the
application. These inputs are represented by objects of type NET_MESSAGE which are able
to both read from and write to a network connection. On top of these basic classes, several
extensions are implemented by means of specialized connection objects and messages: one
of these is the user interface toolkit presented in the next section.

Events and their distribution are modeled using a cluster of classes whose principal
components are shown in the following diagram:

DYNAMIC(HANDLER) EVENT[H, D]
 H->HANDLER
 D->DYNAMIC

Figure 10. The Dynamic Cluster

Three types of objects are used in modeling the dynamic behavior of our applications:
these are events, handlers, and dynamic objects.

Dynamic objects maintain a list of possible types of events it can sent out to other objects,
that is, a list of instances of a specific subclass of EVENT for each type of event they can
transmit. An event is transmitted every time a dynamic object has to communicate a change
of state, the type of event indicating what kind of state change occurred in the dynamic object.
Each event instance maintains a list of handler objects, called subscribers, which are objects
that want to be informed whenever the event is transmitted. These subscribers then handle
the event to implement the dynamic behavior of the application.

Dynamic objects generate events by applying to the event instances they own a feature
called transmit.. This feature is implemented in each subclass of EVENT by applying to all
the subscribers a specific handling feature having the source of the event (i.e. the dynamic
object which transmitted the event) as its only parameter. For example, an event of class
BUTTON_DOWN transmits the event by the application of the feature
handle_button_down, and an event of class BUTTON_UP transmits by applying
handle_button_up. Again, as in the rendering cluster, this distinction is done completely
through the dispatching mechanism inherent to the dynamic binding and not through
conditional statements.

This representation of dynamic behavior introduces the concept of an event being a signal
between two connected objects, a source and a target, much as two IC chips communicate
via a signal on a connecting wire. The only information transmitted by the event itself,
however, is its type, indicated by the feature called, and any other data must be explicitly
queried from the source by the handler of the event. The handler can then update its internal
state and perform actions accordingly to the changes of state in the source objects and its
programmed behavior. Secondary events can be transmitted by handlers that are themselves
dynamic objects, the complex behavior of an application being in this way encoded in the
graph of connections traversed by the events.

Dynamic objects are very important concept in our system design: graphics applications
written inside our framework can in fact be thought of as big networks of dynamic objects
that transmit events and handle them in real time.

1.5.5.3 Object Design

Objects that can handle events are subclasses of the HANDLER class. Several deferred
subclasses of HANDLER exist, each one defining an general object that can handle a certain
type or collection of types of events. Specific implementations of handlers are obtained by
writing classes that inherit from the general handlers and redefine the specific features
associated with the desired events. One example is the FLIGHT_C controller, which is used
to move three-dimensional objects using a flying vehicle metaphor:

class FLIGHT_C export
set_target, repeat H_VALUE

inherit

H_VALUE
redefine

handle_new_transform;

feature

target: NODE_3D;

set_target(other: like target) is
do

target:= other;
end;

handle_new_transform(source: T_TRANSFORM) is
-- Handles the event by moving `target' using a flying vehicle metaphor
-- No action if no target.
require

not source.Void; not target.Void;
do

if not target.Void then
target.set_global_transf(

source.value * source.delta_local * source.value.inverse *
arget.global_transf);

end;
end; -- handle_new_transform

end; -- class FLIGHT_C

This class inherits from H_VALUE which is a subclass of HANDLER capable of
handling events that indicate changes in some values, and redefines the feature
handle_new_transform to perform the required actions when an event is transmitted
indicating that a new transformation object is available.

1.5.6 User Interface

The goal of the user interface cluster is to provide the typical interactive capabilities
associated with modern graphics workstations, namely a mouse, a windowing system, and
standard types of interaction widgets, like text input, sliders, and buttons. We also wanted to
encapsulate in an object-oriented way some of the newer 3D input devices such as the
SpaceBall or the DataGlove.

This was, in fact, the goal of an earlier development effort by our group to create a user-
interface toolkit, called the Fifth Dimension Toolkit, for use in our laboratory [Turner et al.,
1990]. When that project started, we had no access to an object-oriented language, so we

developed a technique for doing object-oriented programming in C, mentioned earlier. In
designing this toolkit, which was inspired to a large extent by the NextStep AppKit
[Thompson, 1989], we consciously tried to make as purely object-oriented a design as
possible.

The modeling of events, in particular, is rather innovative. NextStep's Target/Action
paradigm, in which two objects communicate via an action message, with the message's
source as a parameter, was extended to model all events. The concept of a centralized event
queue was abandoned, replaced by a decentralized collection of event-generating objects such
as a mouse object, keyboard object or window object. Therefore there is no conceptual or
syntactic difference between a mouse object sending an event when it is moved, and a button
widget sending an event when it is pressed.

One particularly powerful feature of the toolkit is an interface builder application, which
allows panels of widgets to be arranged and their attributes edited interactively. The resulting
user-interface panels can then be stored in a human-readable (and editable) ASCII file and
loaded in by an application program at run-time.

Given this functionality required by the animation system, and given the fact that
numerous other application programs had already been developed using the 5D Toolkit, we
were reluctant to start over from scratch in Eiffel. We therefore considered encapsulating the
toolkit in a Eiffel class. This presented some problems, however, since encapsulating an
object-oriented software library is considerably more difficult that a non-object-oriented one.
Unlike the BLAS and LAPACK routines, which do not maintain their own data structures or
state, an object-oriented software library allocates memory and sets up a network of
interrelated data structures. The encapsulating Eiffel code, therefore, must either duplicate all
of an objects internal data structures itself, with its attendant problems of consistency, or it
must separately encapsulate each of the objects maintained by the encapsulated object. The
problem was further complicated for us by the event distribution mechanism, in which any
dynamic object can send an event to any other object. Since we wanted our Eiffel objects to
receive events from the 5D Toolkit objects, an event translating mechanism had to be build.

Our solution was to associate a parallel Eiffel instance of single class, UI, for every
instance of every type of toolkit object. Since the 5D toolkit objects are dynamically typed,
the single UI class encapsulating all the toolkit functionality is appropriate. Most of the toolkit
objects are lower level, however, and do not need to be directly accessed by Eiffel. Therefore
a mechanism was devised so that the parallel Eiffel UI object for each toolkit object is created
only on demand when it is needed in the Eiffel application. Later when it is no longer used
on the Eiffel side, it is garbage-collected by Eiffel even though the toolkit object still remains.
An interface was also build so that toolkit events are translated into Eiffel events as they
occur. Because the Eiffel types of events were inspired by the toolkit, this was not too
difficult, but the problem of mapping one system of user-interface event types onto another
is in general not trivial. Finally, we integrated the toolkit Display class, which is the main
source of toolkit events, into the Eiffel inter-process communication classes so that toolkit
events could be interleaved in with events from other processes.

1.6. BUILDING THE APPLICATION

Our key framing application is implemented by constructing a root class which assembles
the classes making up the different clusters described in the previous section.

The first part of the application is devoted to the initialization of its data structures, and all
the panels of user interface objects are loaded from files created by the user-interface builder.
Windows are created to contain these panels and to display three-dimensional scenes. The
visibility state of the different windows is then set according to the initial state of the
program. A top-level handler class implements the commands which, in response to user
input, instantiate the various graphical and dynamic objects that make up the animated scene.

To the user, the animation system appears as a collection of windows displaying either a
three-dimensional scene or a control panel. Any desired combination of windows may be
made visible at any given time. The principal windows are as follows:

• The two three-dimensional viewing windows display images of the scene as perceived
by virtual cameras. A first window shows the view from a working camera, and is used
for interaction: in this window, the animator builds his scene by creating a hierarchy of
nodes and attaching them together. Nodes can be selected directly by clicking on them
with the mouse. The second window is viewed from the animation camera: it is used for
real time play-back and for defining camera motion.

• The transit window is the three-dimensional equivalent of the Macintosh clipboard and
is used when loading models from files and for cut and paste operations like moving
sub-hierarchy in the tree.

• The node window permits control of various parameters of the currently selected node
like the rendering type, the visibility of the node, etc.

• The spline window controls various properties of the animation path of the currently
selected node. The animator may change the start time of a spline, or edit the spline
through the use of a control panel to add, insert, delete or replace key values.

• The playback window is used for controlling the real-time playback of animations. It
is resembles a control panel very similar to that of a VCR, offering operations such as
moving frame by frame, controlling the animation speed and so on.

Once the interface objects have been created, controllers are then attached to the different
widgets and devices using the subscription mechanism presented earlier in the chapter.
Specific widgets are identified inside the panels created by the interface builder by using their
names.

The interactive behavior of the application is encoded inside the controllers that respond to
events generated by input devices, by interaction widgets or by other controllers. Some of the
controllers that were written are general purpose and reusable in other applications (an
example being the flying vehicle controller previously presented). Some others, like
controllers that change the event subscription bindings between widgets and other controllers
in order to change the behavior of the application, are quite application specific and hard to
reuse. We are currently working on refining our model for dynamic behavior by adding
more general event routing classes in order to further simplify the programming of such
controllers.

Once the static structure and the initial binding of controllers to widgets and devices is set,
the event loop is started. Events generated by the various input devices propagate through the
bindings and controllers perform the required actions.

The input devices currently used by the application are a SpaceBall, a mouse and a dial
box. The mouse is used to select nodes and to specify position and orientation in the 3D
space using a trackball metaphor, the SpaceBall is used to manipulate cameras, lights and
nodes using various metaphors, while the dial box is used to control some continuous
parameters such as scaling, color, etc..

When the animator selects a graphical object, appropriate controllers are bound to it and
the various interaction panels display the relevant information concerning the current selected
node.

For the dial box, the action of selecting an object may also change the controller tied to the
device as the parameter controlled by each dial depends on the type of selected object. If a
shape is selected the dial box acts on the scaling parameters of its node, while in the case of a
camera the dials control the field of view and the clipping planes.

By default the SpaceBall controls the camera of the window, while the mouse through its
trackball controller object controls the currently selected node. Using a menu, the animator
can modify these default bindings and change the control metaphor for the selected node or
the current camera.

An animation is defined by specifying key points. To define an animation, the user has to
attach a spline to the selected node. Then he moves the node with the SpaceBall or the
trackball and presses on the SpaceBall button (or on the new key button of the spline
window), to record the current state of the selected node as the position of the new key.

1.7. DISCUSSION

In undertaking the project of building a key-frame animation system, we were interested
in answering several important questions about the use of object-oriented technology:

• is it possible to use an object-oriented approach to build an application, or does this
methodology only lead to building tools for building tools for building tools?

• is it possible to develop reusable components as a side effect of using an object-oriented
methodology when building applications?

• is a pure object-oriented approach usable for such an high-performance system as an
interactive animation application?

These questions aim at knowing if object-oriented techniques are really adequate to face
with the problems of building real world applications.

1.7.1 Building object-oriented applications

The experience we had with the key-frame animation project showed us the feasibility of
building large applications using a complete object-oriented methodology for all of its
components, at least in the field of dynamic graphics.

Our approach for building the application was to start by defining the problem we wanted
to solve, in this case the creation of a key framing application, and to analyze this informal
problem statement in order to identify its principal components. Before starting to build this
application, we already had some experience in the field of computer graphics and object-
oriented design, and this clearly guided us in the identification of the relevant class clusters
that would make compose the application.

These components were later analyzed, and clusters of classes were created by defining at
first their static structure (inheritance and instance relations) and later their functional
behavior. This process was reiterated several times until a satisfactory solution was found.
Once the cluster of classes was completed, the application was built by assembling in a
proper way its components. This phase also led to several passes of refinement on the design
process and to the modification of the basic clusters design.

Even if the approach of decomposing a software project around the objects it manipulates
is more "natural", software design still remains a difficult task and lots of time has to be
spent in discussing the conception of applications.

We feel that most of the problem in using object-oriented techniques is to conceptually
shift the design from the functional decomposition approach, in which the basic unit of
modularization is the algorithm, to a data decomposition approach, in which the basic unit of
modularization is the data structure. This shift usually requires some effort in people trained
to use traditional methods.

From our point of view object-oriented techniques are often incompatible with more
traditional ones. It is most of the time confusing to mix object-oriented and traditional
functional decomposition techniques, and we therefore prefer to use a pure language like
Eiffel instead of mixed paradigm languages such as C++ or Objective-C. However, the
ability to call traditional languages from Eiffel was extremely useful for reusing existing
libraries.

 1.7.2 Building reusable components

The bottom-up approach that object-oriented design favors for building applications leads
to the creation of software systems that are large assemblies of basic components. The
question is: are the components designed during the creation of an application reusable?

From our experience, we can give a quite affirmative answer. Most of the components
created for the key framing application are currently being reused in such different
applications as a neural network simulator, a distributed virtual reality system, and a system
for simulating the physical behavior of elastically deformable surfaces.

However, we have to admit that components are not usually reusable from the beginning,
and some effort is always needed to make them general enough to be able to exploit them in
different applications.

The first step for making a component reusable is to have it usable. To test this fact, client
applications need to be written and feedback obtained so as to ameliorate the design. For this
reason, we have the impression that the approach of building test applications in order to
obtain a first draft of class libraries is necessary, and for most non-trivial class libraries
preferable to directly building components from first principles.

Another advantage of object-oriented techniques is that it is possible to exploit the
similarity of structure of all application in a field by creating frameworks that define and
implement the object-oriented design of an entire system such that its major components are
modeled by abstract classes. High level classes of these frameworks define the general
protocol and handle the default behavior, which is usually appropriate for most of the cases.
Only application-specific differences have to be implemented by the designer through the use
of subclassing and redefinition to customize the application. The reuse of abstract design
which is offered by this solution is even more important than the obvious reuse of code.

Several well known application frameworks exist, especially in the field of user interfaces.
Examples are: Smalltalk's MVC ([Krasner et al. 1988]), Apple Computer's MacApp
([Schmucker 1986]), and the University of Zurich's ET++ ([Weinand et al., 1989]).

Our dynamic, modeling, and rendering clusters are a first step towards building a
framework for our interactive three-dimensional graphics applications, but much work still
remain to be done to make this framework general enough for the creation of future
applications.

1.7.3 About performance

Performance is an important issue in building dynamic graphics program. Optimization
reasons are often used as an excuse for not using pure object- oriented techniques for the
development of such applications, and choosing languages that offer the possibility of freely
mixing the procedural and the object-oriented paradigm such as C++ ([Stroustrup 1986]) or
Objective-C ([Cox 1986]).

The development of the key-frame system showed us that high performance applications
can be obtained using a pure object-oriented language such as Eiffel without compromising
the design. Our animation system is able to render fully shaded scenes containing several
thousands of polygons at interactive speed (more than ten refreshes per second) on a Silicon
Graphics Iris, and allows the user to edit and animate three-dimensional shapes using a
complete direct manipulation metaphor.

The fact that the language is purely object-oriented and statically typed allows the compiler
to perform important optimizations (such as inlining, unneeded code removal, and
simplification of routine calls), so to obtain a high-performance code without having to
compromise with the purity of the design. Optimization of several important aspects of our
software system was often obtained by creating specialized subclasses that handle special
cases.

The availability of a garbage collector for Eiffel allowed us to simplify algorithms and
data structures obtaining therefore a more compact and efficient code. The collector is
incremental and was therefore possible to be used in our interactive programs without
disturbing the user. By carefully designing our components so as to minimize the creation of

temporary objects, we are able to contain the cost of object allocation and deallocation in our
software system to under 10%. Our previous experience with the development of a user
interface toolkit using an object-oriented extension of C showed us the importance of these
memory issues: in this previous system a great deal of design effort was spent in defining
and maintaining appropriate data structures and storage schemes in order to properly destroy
unreferenced objects.

A key factor for the success of our project was the ability to interface our Eiffel classes
with pre-existing libraries written in other languages. This was done by defining a clear
interface between these external libraries and the Eiffel world and did not disturb the object-
oriented nature of the system.

1.8 CONCLUSIONS

The challenge of building dynamic graphics applications that realize the full potential of
modern computer graphics hardware remains immense. Object-oriented design techniques,
however, provide a significant advance toward the creation of reusable and extensible
software components and assemblies for dynamic graphics construction.

Our experience with using a pure object-oriented approach and implementation language
for building a key-frame animation system was very satisfying and showed us that these
techniques are well suited for creating high-performance applications made of assemblies of
reusable components in the field of dynamic graphics.

Most of the components that were created during this project are still being reused and
extended for our current work, making it possible for us to concentrate our efforts in solving
the specific problems of new application domains.

We are therefore continuing to use Eiffel and object-oriented techniques for our current
research work, which focuses on the fields of neural networks, cooperative work for
animation, and physically-based simulation of deformable models.

1.9 BIBLIOGRAPHY

Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, DuCroz J, Greenbaum A,
Hammarling S, McKenney A, Sorensen D (1990): Lapack Working Note 20: A Portable
Linear Algebra Library for High-Performance Computers, Computer Science Dept.,
University of Tennessee, Knoxville.

Boulic R, Renault O (1991): 3D Hierarchies for Animation, in New Trends in Animation
and Visualization, John Wiley.

Cox BJ (1986): Object Oriented Programming: An Evolutionary Approach, Addison-
Wesley, Reading, Massachusetts.

DeMay V (1991): Flexible Graphic Design System, Object Composition, Université de
Genève, 1991: 145-155.

Fleischer K, Witkin A (1988) A Modeling Testbed, Proc. Graphics Interface '88: 127-137.

Gobbetti E, Turner R (1991): Object-Oriented Design of Dynamic Graphics Applications, in
New Trends in Animation and Visualization, John Wiley.

Grant E, Amburn P, Whitted T (1986) Exploiting classes in Modeling and Display
Software, IEEE Computer Graphics and Applications 6(11).

Hedelman H (1984) A Data Flow Approach to Procedural Modeling, IEEE Computer
Graphics and Applications 4(1).

Hillman MF (1990) A Network programming package in Eiffel, Proc. TOOLS 2, Paris:
541-551.

Ingalls DHH (1986) A Simple Technique for Handling Multiple Polymorphism, Proc.
ACM Object Oriented Programming Systems and Applications ‘86.

ISE (1989) Eiffel: The Libraries. Interactive Software Engineering, TR-EI-7/LI.

Lawson, Hanson, Kincaid, Krogh (1979): Basic Linear Algebra Subprograms for
FORTRAN usage, ACM Transactions on Mathematical Software, Volume 5, pp. 308-
323.

Meyer B (1987): Reusability: The Case for Object-Oriented Design, IEEE Software, Vol. 4,
No. 2, March 1987, pp. 50-64.

Meyer B (1988): Object-Oriented Software Construction, Prentice-Hall, Englewood Cliffs,
New Jersey.

Schmucker K (1986): Object-Oriented Programming for the Macintosh. Hayden.

Shoemake K (1985): Animating Rotation with Quaternion Curves, Computer Graphics
19(3): 245-254.

Stroustrup B (1986): An Overview of C++, SIGPLAN Notices 21(10): 7-18.

Thompson T (1989): The Next Step, Byte 14(3): 365-369.

Turner R, Gobbetti E, Balaguer F, Mangili A, Thalmann D, Magnenat-Thalmann N (1990)
An Object Oriented Methodology Using Dynamic Variables for Animation and Scientific
Visualization Proceedings Computer Graphics International 90 Springer-Verlag: 317-328.

Weinand A, Gamma E, Marty R (1989): Design and Implementation of ET++, a Seamless
Object-Oriented Application Framework, Structured Programming 10(2): 63-87.

