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Multi-Light Image Collections (MLICs) are stacks of photos acquired with a �xed viewpoint and varying surface illumination.
They are typically used to provide rich information to characterize imaged objects. In particular, many simple and sophisticated
Photometric Stereo solutions exist to produce detailed per-pixel normal maps that geometrically characterize the imaged
model up to the �nest details. These maps are commonly employed for per-pixel BRDF �tting to generate easy-to-use general
shape and material representations for visual exploration. However, discrepancies between the chosen BRDF space , the
complete optical behavior of complex objects, and the presence of non-local lighting e�ects in measurements may lead
to suboptimal visual outcomes even with the most accurate geometric normal recovery. This article introduces a modular
component designed to convert the geometric normals into well-behaved shading normals, under the common and general
assumption that the re�ectance under local illumination must be a monotonic function of the angle between the shading
normal and the bisector of lighting and viewing directions. Since it does not require the coupling of shape and material
estimation, the module allows seamless integration into existing reconstruction pipelines, supporting the mixing and matching
of Photometric Stereo methods, BRDF models, and BRDF �tters. We demonstrate our approach’s e�cacy as a versatile solution
for enhancing the �delity of rendered images derived from MLICs through synthetic data, laboratory experiments, and
real-world painting measurements.
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1 Introduction

In recent years, the emergence of Multi-Light Image Collections (MLICs) has signi�cantly expanded the horizons
of computer vision and computer graphics. Composed of digital images taken from a �xed viewpoint but under
diverse lighting conditions (e.g., positions, directions, wavelengths), they provide a rich source of information
essential for comprehending and modeling the visual complexities of scenes and objects. A typical con�guration
involves capturing the appearance of each scene point under �xed view and various incident light directions only.
This results in a comprehensive collection of samples (i.e., per-pixel appearance pro�les) often organized into
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image stacks. Due to these attributes, MLICs have found diverse applications across various domains, including
Cultural Heritage (CH), natural science, industry, underwater investigation, medical imaging, and beyond [39].
The journey from the raw MLIC data to a complete, measurable, repeatable, reliable, and visually realistic

representation of the object surface passes through a series of (often modular and standalone) computational
steps that aim at explicitly characterizing the pure shape geometry and the optical response of each surface
point. Besides a preliminary geometric and radiometric calibration of the MLIC data, the classical �rst step
consists of modeling the geometry of the surface in terms of pixelwise normals (e.g., by using Photometric
Stereo (PS) techniques [1]). This �eld is very active, and, through various advances in numerical solvers and
emerging learning-based techniques (see Sec. 2.2), the quality of recovered normals is improving even for objects
exhibiting very intricate geometry and complex material behaviors, o�ering a solid basis for many shape analysis
applications [42]. To support visual exploration, these normals are coupled with a model of the optical behavior of
the surface material, typically in terms of Spatially-Varying Bidirectional Re�ectance Distribution Functions (SV-
BRDFs). This is done, in most cases, by computing, per pixel, the coe�cients of an analytical BRDF [18]. Having a
normal+BRDF representation is very appealing since it can be easily distributed using low-bitrate representations,
produces a physically reasonable result, and allows for natural integration with standard high-quality and
real-time rendering solutions.

However, such a visual model may sometimes fail to match the original measurements well. This issue arises
not only when geometric normals are inaccurately recovered by the Photometric Stereo method but also in
cases of a "perfect" geometric reconstruction that is fully suitable for geometric inspection purposes. Several
practical factors contribute to this problem. In addition to the consideration that input data may include non-local
lighting e�ects that the employed BRDF �tter may not account for, there often is an inherent discrepancy between
the simpli�ed normal+BRDF model and the complex optical behaviors of many real-world objects, including
layering, where di�erent materials are stacked and interact in complex ways or subsurface scattering, where light
penetrates the surface, interacts with the material beneath, and then exits at a di�erent location. These phenomena
are challenging to model accurately with standard single normal+BRDF representations. In particular, the shape
space of the re�ectance function de�ned by the chosen BRDF model may not be capable of closely matching the
input data given the local geometric normal, especially in the common case of relighting using a local illumination
model. For this reason, several approaches try to expand the solution by jointly minimizing shape and appearance
together in a single framework (e.g., through alternating minimization techniques) [3, 16, 24]. Unfortunately,
they increase the system’s computational complexity, are less controllable than separate photometric stereo and
BRDF �tting solutions, are more di�cult to upgrade, and often do not ensure proper convergence [23].
In this paper, we propose a practical approach to the problem that does not break the modularity of classical

shape and material characterization steps, but, at the same time, introduces a sort of modeling bridge to strive to
enhance the compatibility between geometric characterization and physically-based optical surface modeling.
This is done by expanding the solution space by decoupling the normals used for shading from the geometric
normals, as done in many rendering frameworks. We consider the normal coming from Photometric Stereo a
geometric representation that can be slightly tuned to ensure a better �t of the low-degree-of-freedom BRDF
model with the measured data. In particular, we propose to include a new additional normal re�nement module
in the middle of the shape and material reconstruction pipeline that aims at improving normal (and indirectly the
BRDF) computation by imposing a monotonicity constraint based on the common and general assumption that
the recovered BRDF should be a monotonic function of the angle between the shading normal and the bisector of
lighting and viewing directions (Sec. 3).

For each pixel, the input of our newmodule is the computed geometric normal and the corresponding measured
re�ectance sampled across a bi-variate slice (we use the parameterization proposed by Rusinkiewicz [49]). This
information is easily obtainable by knowing the pixel appearance pro�le and the corresponding tuples of normal,
view, and light directions. By introducing and utilizing a newmetric and optimization framework, we can estimate
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the monotonicity level of the sampled re�ectance for a candidate set of normals in the neighborhood of the
geometric normals, and select the one that performs best according to a speci�c cost function. Starting with the
given geometric normal (from the previous geometric step) as an initial guess, we launch a global optimization
process for maximizing the monotonicity metric by �nding the optimal pixel shading normal. After that, we use
this re�ned shading normal to �t the dense analytic pixel BRDF. Unlike methods that require coupled shape and
material solvers, this approach integrates seamlessly into existing reconstruction pipelines, allowing �exible
combinations of Photometric Stereo methods, BRDF models, and BRDF �tters. Users can choose to utilize our
corrected normals as improved geometric normals, particularly when using simple normal recovery techniques,
or, in the most general case, to use separate normal maps for geometric analysis and visualization. The novel
contributions of our work can be summarized as follows:

• A normal re�nement module that e�ectively separates geometric normals from shading normals and is
straightforward to integrate into general shape and appearance characterization frameworks. This module
operates on a pixelwise basis, taking as input the pixel PS normal and its sampled BRDF. It utilizes a
BRDF monotonicity constraint and employs a global optimization framework with BRDF-based domain
adaptation. Additionally, it introduces a novel regularization term to prevent normal estimation divergence.;
• A novel BRDF monotonicity metric computed within the domain of the 2D BRDF slice as de�ned by
the Rusinkiewicz [49] parameterization. This metric evaluates BRDF monotonicity with respect to the
cosine of the bisector between the view and light directions. It incorporates the duality of di�use and
non-di�use BRDF signal composition and uses an asymmetric normalization weighted by the gradient
magnitude. The metric is designed to be robust against tiny variations and oscillations in the BRDF value
caused by measurement noise.

The method’s e�ectiveness is validated through extensive tests on synthetic and real-world controlled datasets,
as well as on use cases involving Cultural Heritage assets (Sec. 4).

2 Related work

Acquiring and processing Multi-Light Image Collections involves tasks such as modeling relightable images,
computing shape (e.g., in terms of normal maps by Photometric Stereo approaches), and optical surface char-
acterization through Spatially-Varying Bidirectional Re�ectance Distribution Functions (SV-BRDF). Providing
exhaustive coverage of these topics is beyond the scope of this work, and we direct interested readers to es-
tablished surveys for a comprehensive overview [18, 28, 39]. In the following, we will discuss the positioning
of our methodology within the current literature, motivating its rationale, analyzing current state-of-the-art
solutions closely related to our technical contribution, and describing how our practical approach can enhance
them directly or from a system-based point of view.

2.1 Relightable images

Relightable images are compact representations that directly map, perpixel, the lighting parameters to the
rendered color, eliminating the need for explicitly determining a separation between shape, material, and
lighting interaction [42]. When only visual exploration and virtual relighting are required, they often are the
prevalent representation. A classical approach in this domain is Polynomial Texture Mapping (PTM) [32], which
stores pixel-wise coe�cients of a bi-quadratic polynomial representing color variations based on incident light
direction. Building on this foundation, subsequent approaches aimed to enhance visual performance through the
introduction of di�erent �tting functions [65] or by improving the numerical robustness of the solver [11, 40].
Given that lighting direction and other radiometric properties are often better approximated with functions
de�ned on spherical surfaces, some methods advocate for speci�c basis functions like Hemi-Spherical Harmonics
(HSH) [6, 12]. Other authors, instead, building on the multi-scale nature of the re�ectance �eld, proposed Discrete
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Modal Decomposition (DMD), achieving comparable results [43]. Recent approaches leverage neural networks
and deep learning to directly learn relightable images from the original Multi-Light Image Collection (MLIC) [44–
46, 64]. While learning approaches o�er advantages such as the ability to model complex optical behaviors like
shadows and interre�ections, they come with drawbacks. These include a strong dependence on training data, a
high likelihood of producing hallucinations and artifacts, and an inference cost that is generally higher than the
cost of evaluating classic analytical formulations.
The compactness and low complexity of relightable images make them highly suitable for fast interactive

relighting in both local and remote visualization. For this reason, PTM and HSH are, nowadays, de-facto standard
formats in relighting tools from MLIC data, highlighting their widespread adoption mostly in Cultural Heritage
application scenarios. Despite their advancements, relightable images are primarily suitable only for qualitative
visualizations, with limitations both in high-frequency representation [11] and measurability of object properties.
In particular, they are mostly tuned to replicate illumination settings that closely match the measurement
conditions. For this reason, they do not provide a physics-based characterization of the surface independent
from the measurement illumination. Moreover, the lack of separation between shape and material components
makes integrating such representations into common rendering pipelines di�cult, for example to insert them
into scenes or simulate shape-dependent e�ects such as shadows (not to mention global illumination). For these
reasons, practical solutions to capture separate surface geometry and optical response are the focus of much
research [39]. Photometric Stereo and BRDF �tting are standard approaches to address those issues.

2.2 Photometric Stereo

Photometric Stereo estimates surface normals fromMLICs. The seminal work was introduced in the 1980’s [54, 60].
Conventional Photometric Stereo[1, 53] is based on Lambert’s re�ectance model, which assumes image intensity
proportional to the cosine between the surface normal and the light direction. Unfortunately, all those methods
cannot cope well with non-di�use phenomena such as gloss, highlights, specularity, or shadows. Three main
kinds of approaches have been adopted toTo address a non-Lambertian optical response. The �rst class of methods
keeps the Lambertian model and considers non-Lambertian re�ectance values as outliers [26, 34, 35, 61, 62]. The
second class tries to �t normals with more complex re�ectance models that analytically include non-Lambertian
observations [15, 21, 48, 52, 57]. The third and last group consists of completely data-driven techniques, and include
both example-based approaches [19, 24] and methods that rely on deep neural network architectures [7, 50].
Those techniques can achieve reliable normal map reconstructions in terms of low mean angular errors [27], and
they are extremely powerful if the �nal scope is to exclusively model surface geometry. However, if the normal is
used as a preliminary step to compute the optical response of the surface (e.g., BRDF) under local illumination, it
must also meet physical constraints to make it compatible with the re�ectance model. In particular, many methods
try to minimize normal map errors also under some types of re�ectance monotonicity constraints [37, 51, 53].
Higo et al. [20] rely on the monotonicity with respect to the cosine of surface normal and light direction to model
many non-Lambertian di�use re�ectances. Many other works instead focus on specular lobes characterization,
which is best addressed by considering monotonicity with respect to the cosine of the bisector between the view
and light directions, and the surface normal [3, 20, 37, 51]. In these works the monotonicity metrics are computed
simply by using the signum-based method [17, 33], which locally checks the sign of the derivatives, and computes
its normalized sum. Values equal to ±1 mean pure monotonicity, while a completely non-monotonic function has
a value of zero. We also employ a monotonicity constraints but in the context of a re�nement step that improves
SV-BRDF �tting starting from geometric normals rather than as a means to compute normals from measurements.
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2.3 SV-BRDF fi�ing

A large class of objects can be represented by augmenting normal maps with per-pixel Spatially-Varying Bidi-
rectional Re�ectance Distribution Functions (SV-BRDF). A sub-class of methods that extract optical surface
behavior in terms of SV-BRDF [18] can accept MLIC data as input signal. This is a speci�c condition sincea MLIC
represents only a slice of the bigger multi-dimensional BRDF space. Moreover, for practical reasons, this slice is
typically sparsely sampled, which makes the problem even harder and more ill-posed. Several strategies have
been implemented to overcome those issues. Some methods increase sampling by adding more viewpoints and
by using additional instruments for normal map bootstrapping [63]. Single-viewpoint approaches add either
some particular assumptions to the BRDF nature (e.g., single non-spatially varying BRDF), or try to augment the
sampling for each surface position. For instance, Aittala et al. [2] leverages a constant normal map condition
(known �at geometry) to extract SV-BRDFs. Providing knowledge or some kinds of assumptions related to the
shape [5, 66] and/or the lighting [47] are standard ways to facilitate the system for material extraction and to make
the computation more robust. Unfortunately, those methods can not be generally applied to surfaces with complex
shapes and a heterogeneous set of di�erent materials. A strategy to both deal with sparse sampling and to bound
physically plausible material representations is to rely on a dictionary-based �tting framework [23, 24, 29, 56].
Besides speci�c implementations, the general rationale behind this sparse �tting and �nal regularization is that
the BRDF at each pixel is represented as a weighted combination of reference BRDFs (or the non-negative span
of a dictionary). Similarly, Tingdahl et al. [55] build a dictionary of base materials by directly extracting them
from a data-driven clustering step. Similarly to relightable images (Sec. 2.1) and Photometric Stereo (Sec. 2.2),
SV-BRDFs can be modeled by neural networks, and a lot of recent works exploit the representation power of
such networks to learn and characterize the surface optical behavior from dense or sparse data[8, 14, 30]. The
vast majority of those techniques compute independent per-pixel BRDFs, while other techniques try to extract
pixel material by looking at its neighborhood, hoping to increase BRDF sampling under the assumption that
nearest pixels exhibit similar (or same) optical responses but with di�erent normals [38].
In general, these methods strongly rely on the previous geometric step, i.e., the estimation of the pixel-wise

surface normal; proper knowledge of normals is extremely important mostly for materials that exhibit a highly
specular behavior. However, this is a weak assumption, since MLIC data of non-Lambertian materials often
a�ect Photometric Stereo algorithms and they produce signi�cant deviation from the correct solution in terms
of normal angular error and capability to reproduce the measured appearance using a local normal+BRDF
model; for instance, as already mentioned in Sec. 2.2, sometimes they violate the monotonicity constraint. In
those cases, a proper characterization of the material is a�ected by a quite deformed BRDF sample distribution;
sometimes a specular or metallic material might be erroneously recognized as di�use. For this reason, some
methods try to iterate an alternating estimation of normals and BRDFs [9], by using the previous normal (or
BRDF) characterization as an initial guess for the next step of BRDF (or normal) calculation. Although powerful,
the downside of alternating minimization approaches lies in their computational expense and a signi�cant
reliance on obtaining a favorable initial solution. This challenge arises due to the non-convex nature of the
underlying problem, which is fraught with local minima [23]; this is typically true when the normal error is high
and the sampling of the specular high-frequency BRDF region is scarce. Moreover, it should be noted that, in
real conditions, local illumination is strongly a�ected by non-local illumination e�ects (e.g., inter-re�ections),
making this optimization even harder. Most solutions use local minimizers, and there is no guarantee that the
starting solution is in the basin of convergence, especially when there is only very sparse sampling, as in MLIC
conditions.
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2.4 Our contribution

The preliminary considerations made in Sec. 2.1 about the main dilemma about implicit or explicit computation
of shape and material, together with the limitations of relightable images with respect to a more quantitative
application scenario and an easier and more �exible integration into standard rendering pipelines, serve as the
primary motivation behind the presented method, which focuses and relies on explicitly modeling the shape (i.e.,
normal maps) and optical features (i.e., SV-BRDF) of a surface. Our method proposes an approach to enhance the
computation and separation between these components and their proper characterization; this improvement is
achieved through a technique that includes a novel way to impose a monotonicity constraint in the estimation of
the surface normal map, similar to that class of works discussed in Sec. 2.2. Compared to the state-of-the-art
methods, which integrate the monotonicity constraint with a straightforward metric within the Photometric
Stereo computational framework, we propose here two main pieces of novelty.

First of all, we adopt a highly modular shading normal re�nement strategy, which can be easily integrated into
a general framework of shape and material characterization. We do not force our monotonicity metric and normal
optimization to be used with particular Photometric Stereo methods, SV-BRDF �tting strategies, or combined
approaches (see Sec. 2.3). Conversely, we moved toward a completely separate and standalone normal re�nement
step. As a result, any existing pipeline that produces a normal map (i.e., a normal for each MLIC pixel) and an
SV-BRDF (i.e., a set of re�ectance parameters for each MLIC pixel can easily integrate the presented approach to
improve the �nal optical and geometrical surface representation. This makes our method extremely accessible,
versatile, and �exible.

Moreover, concerning the speci�c technique, while current Photometric Stereo methods exploiting monotonic-
ity typically exploit the signum-based metric rationale, we instead incorporate an asymmetric normalization
process, which is weighted by the gradient magnitude of the BRDF. While assessing the BRDF monotonicity in
relation to the cosine of the angle bisector between the viewing and lighting directions, our metric leverages the
dual nature of di�use and non-di�use BRDF signal components, and is designed to be robust, e�ectively handling
minor variations and oscillations in BRDF values that might arise from measurement noise. In addition, we design
and introduce a novel regularization term that aims at minimizing the deviation between the initial Photometric
Stereo normal and the �nal shading normal, thereby preventing excessive divergence in the re�nement process
in low-error areas.

Our main purpose is to address and overcome problems due to the presence of two critical coexisting conditions,
i.e., the need for robust Photometric Stereo methods to manage outliers, and the extremely sparse sampling of
the specular lobe of the BRDF caused by the natively MLIC setting. Small amounts of sparse specular samples
placed in the wrong region within the BRDF space (this is due to an error in the former normal computation)
are typically overlooked or considered as outliers in more complex, robust multi-variate optimizations (e.g.,
normal/BRDF alternating minimization). In those cases, the specular behavior is lost and the algorithm converges
to a wrong di�use surface model. Our approach is capable of dealing with such extreme and challenging cases.

3 Method

Fig. 1 illustrates the modular framework upon which our proposed contribution relies. Red boxes are processing
modules, while other colored boxes are input or derived data. General standard or state-of-the-art techniques
are depicted as background grey boxes and they are not the subjects of our study, while the contribution of this
paper resides in the Normal Re�nement module (background yellow box). The pipeline begins with the input
of a Multi-Light Image Collection (MLIC) of an object, accompanied by geometric and radiometric calibration
metadata, along with a single mask delineating the region of computation. Initially, the pipeline includes a
pre-processing module for computing the surface normal map. This module employs a PS approach to generate
initial surface normal estimates from the input MLIC. All input and computed data contribute to the estimation of
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Fig. 1. Overview of the MLIC-based framework on which our proposed method is based. Red boxes are processing modules,

while other colored boxes are input or derived data.

re�ned shading normals, which are then utilized to �t an SV-BRDF model. Our framework lets the Photometric
Stereo and SV-BRDF �tting modules be as general as possible, and any traditional or advanced method can be
employed. Further details on implementation choices made for these modules in our speci�c case are elucidated
in Sec. 3.2.

3.1 Normal refinement

The proposed normal re�nement strategy is based on three main pillars, i.e., the choice of a proper generic
BRDF representation (Sec. 3.1.2), the de�nition of a monotonicity metric (Sec. 3.1.3), and an optimization routine
(Sec. 3.1.4). These three elements are chosen to take into account the sparse nature of the BRDF sampling, the
geometric constraints of the capture setup (e.g., �xed camera condition and light directions across a hemisphere),
and a common surface radiometric behavior (in our case we consider isotropic materials). Before an in-depth
evaluation of our method using synthetic and real-world datasets, and solely to enhance clarity and facilitate
visual understanding, we exclusively utilize a straightforward synthetic dataset throughout this section (Sec. 3.1.1).

3.1.1 Synthetic Dataset. We generated one simple synthetic dataset by �rst establishing a material model as our
foundation. Speci�cally, we adopted a dichromatic isotropic Ward model [58], characterized by three primary
attributes: di�use color, specular color, andmonochromatic glossiness value. To construct the dataset, we produced
the maps corresponding to the surface normals and the attributes. As illustrated in Fig. 2, the dataset consists in a
Hemisphere positioned on a di�use Lambertian yellow plane perpendicular to the view direction. The Hemisphere

exhibits a gray di�use component. Its left portion demonstrates considerable specularity (featuring a white
specular color and a glossiness of 0.5), while the right section represents a perfect Lambertian material (with
zero specular and glossiness signal). For the U parameter of the standard isotropic Ward model, we de�ne the
glossiness as:

6 = 6 =

1 − U
1

4 − 6<8=

6<0G − 6<8=

(1)
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. To aid in comprehending the proposed normal refinement algorithm, we present a simple synthetic dataset. This

dataset comprises several cra�ed maps, including the (a) normal, (b) di�use, (c) specular, and (d) gloss maps. The three

images on the right (e), (f), (g) o�er glimpses into the simulated Multi-Light Image Collection (MLIC). The simulation employs

collinear lighting.

where maximum and minimum gloss respectively are 6<8= = 1 − U
1

4

<0G and 6<0G = 1 − U
1

4

<8= . The minimum and
maximum value of U are {0.05, 0.6}, de�ned by following the considerations about material behavior from the book
of Dorsey et al. [10]. For the sake of representation, we found that 4 = 4 is a good practical choice. Progressing
from left to right in Fig. 2, we display all corresponding maps, namely the normal, di�use, specular, and gloss
maps. In the last three columns, we showcase images generated from the simulated MLIC. Our illumination
model employs collinear lighting, and we simulate MLIC images by evenly distributing 49 light directions across
the hemisphere surrounding the object.

(a) (b)

Fig. 3. The simplified Rusinkiewicz’s parameterization. (a) 2D BRDF domain (yellow rectangle) is spanned between the

horizontal \ℎ and vertical \3 axes. (b) \ℎ and \3 are obtained by the triplet (#,+ , !8 ) defined for each pixel 8 .

3.1.2 BRDF representation. The representation of a measured (analytically unknown) BRDF for a particular
surface point can be obtained from a series of input data, a speci�c choice of a N -dimensional spatial domain, and
a radiometric transformation which normalizes all the BRDF values observed under di�erent lighting conditions.
In our case, the input data consists of the MLIC re�ectance measurements (the point/pixel appearance pro�le), the
corresponding series of light directions !8 and intensities �8 , the point normal # , and a single viewing direction
+ . For a MLIC acquisition, the camera has a �xed position and viewing direction, so, for a general camera
matrix, each pixel has its own viewing vector which remains �xed within its entire appearance pro�le. We
choose Rusinkiewicz’s representation [49] to de�ne a 2D domain to organize the BRDF values spatially. Based
on the triplet (#,+ , !8 ) those values are projected on a domain parameterized along two orthogonal axes. The
horizontal axis represents the values of the angle \ℎ between the surface normal and the half vector � =

++!
∥++!∥

,
while the vertical axis is the angle \3 between the half vector � and the viewing + (or the light !) vector (see
Fig. 3). Please note that in Fig. 3a, we consider only a limited segment of the BRDF domain. In standard practical
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Fig. 4. Sparse sampled BRDFs for three selected points in the Hemisphere datasets.

scenarios, during a conventional Multi-Light Image Collection (MLIC) acquisition, the observer views the object
from a �xed position while the light source moves across the hemisphere surrounding the object, where the
viewer is positioned. Consequently, the angle between the viewing direction + and the light direction ! remains
consistently below c/2. This implies a range for \3 between zero and c/4, and a range for \ℎ equal to

{

0, c
2

}

.
It is important to emphasize this issue because not only we are dealing with a sparse acquisition, but standard
MLICs impose further restrictions on the potential two-dimensional BRDF domain due to the capture practices in
Cultural Heritage daily work�ows.

Given a general BRDF model 5 (#,+ , !, . . . ) and a measured re�ectance ', we choose the standard cosine-based
formulation for the BRDF value normalization, where ' = 5 (#,+ , !, . . . ) (# · !)� . Each BRDF value associated
with a measured re�ectance '8 in the appearance pro�le will be d8 =

'8
�8 cos(\8 )

, where \8 being the angle between
the light direction !8 and the normal # . For a standard (and practical) MLIC, the BRDF representation results in a
sparse image as in Fig. 4. In the image, we chose three pixels and reported the corresponding BRDF representations.
The �rst pixel is a completely di�use one, which results in a series of constant re�ectance BRDF samples. For the
other two pixels, the di�erence between a di�use appearance/region for high \ℎ values, and a more specular
behavior for smaller \ℎ angles is clear. To enhance the visualization of the BRDF sample distribution, we apply
the common square root deformation of the horizontal axis (Fig. 3a), which stretches the distribution of the
sample along the \ℎ dimension.
Note that both the spatial organization of the sparse samples and their radiometric values will change with

a variation of the surface point normal # ; here we consider the view vector + and all light directions !� and
intensities �8 as �xed, given as a set of metadata by a MLIC pre-calibration step. Fig. 5 shows several BRDF
representations of the same appearance pro�le of a speci�c pixel under di�erent surface normal vectors. We
show the sampled BRDF obtained given the correct normal (left-most column), and also, as an example, several
other sampled BRDFs obtained by using di�erent normals that all lie on a cone that has the correct normal as
axis and an angle Δ\ = 30

◦ as the aperture (this angle also represents the normal angular error); this is useful to
see and understand how the BRDF value distribution can vary a lot with the normal, and changes even if the
normal angular error remains the same. Considering this aspect, our task here is to �nd a way to judge how good
the given surface normal # might be by analyzing how it in�uences the spatial and radiometric distribution of
measured BRDF samples. We do this by employing a speci�c metric, which measures how that representation
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complies with some chosen physically-based properties exhibited by the BRDF. In our case, we focus on the
BRDF monotonicity property. Observe the preservation of monotonicity in Fig. 4 and in the �rst image of Fig. 5,
while it is strongly violated in the remaining BRDF images of Fig. 5. We need to �nd a way to measure it to assign
a score and to choose the proper surface normal.

(a) Δ\,q = {0, 0}, ` = 1.0 (b) Δ\,q =

{

c
6
, 0
}

, ` = 2e-4 (c) Δ\,q =

{

c
6
, 2c

3

}

, ` = 7e-3 (d) Δ\,q =

{

c
6
, 4c

3

}

, ` = 6e-5

Fig. 5. Sampled BRDF dependency on normal estimation. We show four possible BRDF images of a point selected from the

Hemisphere (second row) dataset obtained by considering four di�erent surface normal candidates. The le�most column

shows an image obtained with the correct normal, while the other columns are obtained with normals that all lie on a cone

that has the correct normal as axis and an angle Δ\ = 30
◦ as the aperture. The first row shows the dependency of d̃ to \ℎ ,

which highlights how the monotonicity is strongly violated with a wrong normal.

(a) Ground Truth (b) Robust Trimmed PS (c) Random error Δ\ =

{

0, c
4

}

(d) Fixed error Δ\ =
c
4

Fig. 6. Per-pixel Monotonicity Maps for the Hemisphere dataset obtained with: (a) the ground truth surface normals; (b)

surface normals from Robust Trimmed Lambertian Photometric Stereo; (c) ground truth normals deformed by a random

angle drawn in the interval Δ\ =

{

0, c
4

}

; (d) ground truth normals all deformed by an angular error Δ\ =
c
4
.

3.1.3 BRDF monotonicity metric. We devised an operator to compute the proposed monotonicity-based metric,
focusing on the relationship between the angle \ℎ and the normalized BRDF value. Initially, it eliminates the
dependency on \3 by projecting all BRDF samples onto the horizontal axis. Then, it further projects the multi-
spectral BRDF value onto the hyper-diagonal of the multi-spectral hyper-cube by computing d̃ = |d̄ (\ℎ) |,
where d̄ represents the projected BRDF value and d̃ denotes its amplitude. The functions are plotted above the
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corresponding BRDF images in Fig. 5.The monotonicity of these functions is evaluated using a metric inspired
by the standard Signum Formula, yet with several re�nements: (1) consideration of the duality of di�use and
non-di�use signal composition of the BRDF; (2) asymmetric normalization weighted by the gradient magnitude;
(3) incorporation of a quick estimation of the albedo value to enhance the metric’s robustness to tiny variations
and oscillations in the BRDF value due to measurement noise; (4) de�nition within the interval {0, 1}, where 1
indicates decreasing monotonicity (typical BRDF behavior), 0.5 represents a constant function (e.g., perfectly
Lambertian di�use case), and 0 signi�es perfectly increasing monotonicity.

For each pixel, we begin by setting the initial value of the monotonicity to ` = 1. Then, we analyze the curve
de�ned by a series of data points, speci�cally the values of d̃ , by examining each pair of adjacent data points
along the curve. When comparing each pair, we calculate the di�erence between the d̃ value of the current point
8 and that of the next point 8 + 1, referred to as X . If X is bigger than a tolerance value, indicating an upward trend
between the two points and thus a violation of the expected BRDF’s decreasing monotonicity, we update the
monotonicity ` by reducing it according to the magnitude of X . This update is computed as `=4F = `>;3/(1 + X).
Upon examining all data points in the curve, the last updated (current) value of ` becomes the �nal monotonicity
metric. The tolerance n takes into account both the minimum absolute numerical error n01B in the BRDF values,
and a relative tolerance [ with respect to the di�use signal albedo. We �nd that setting [ = 0.1 and n01B = 1e-4
are su�cient to mitigate the e�ects of noise. The algorithmic schematic in Algorithm 1 outlines the computation
process for the monotonicity metric. Here, P̃ represents the set of values of d̃ corresponding to the chosen pixel.

Algorithm 1Monotonicity Metric Computation

1: function MonotonicityMetric(P̃, albedo, [)
2: ` ← 1.0

3: n01B ← 1e-4
4: nA4; ← (1 + [) × albedo
5: n ←<0G (n01B , nA4; )

6: # ← size of P̃
7: for 8 ← 0 to # − 1 do

8: X ← d̃ [8 + 1] − d̃ [8]

9: if X > n then

10: ` ← ` × 1.0
(1.0+X )

11: end if

12: end for

13: return `

14: end function

Fig. 5 reports also the value of ` for each BRDF; correct shading normals produce high ` values, while
inconsistent shading normals exhibit extremely low monotonicity values (` closer to zero). In addition, for, Fig. 6
shows four monotonicity maps of the Hemisphere dataset. One map is computed with ground truth normals.
Another has been obtained by considering a normal map estimated with a robust trimmed PS approach. In the
third case, we apply a random angular error to the ground truth normals in the range Δ\ =

{

0, c
4

}

, while in the
last four image we globally apply an angular error equal to Δ\ =

c
4
.

3.1.4 Shading normal computation. For each pixel in the MLIC, we initialize the shading normal with the normal
# computed by the Photometric Stereo approach. Then we build the BRDF representation as explained in Sec. 3.1.2.
The shading normal #̃ is then obtained by launching an optimization procedure that maximizes the monotonicity
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Fig. 7. Shading Normal Computation. A pixel is chosen from the Hemisphere dataset. Initially, the coarse normal yields a

significantly non-monotonic BRDF signal (second column, ` = 8e-5, angle error n = 15
◦). The minimum of the cost function

(third column) determines the correction (orange arrow) we need to apply to the coarse normal in order to obtain the refined

normal. This refinement results in a monotonic behavior of the sparsely sampled BRDF (fourth column, ` = 0.99, angle error

n = 1.23◦).

(a) Robust Trimmed PS (b) Ours

Fig. 8. Monotonic maps (first row) and the corresponding normal angular errors (second row) computed between the ground

truth normal maps and those obtained by (a) the Robust Trimmed PS method and (b) the proposed refinement approach.

as

#̃ = 0A6<8=# [1 − (` (# ) + R (# ))] (2)

ACM J. Comput. Cult. Herit., Vol. 18, No. 0, Article Just Accepted. Publication date: 2025.



Monotonicity-based Shading Normals from MLICs • Just Accepted:13

where R (# ) denotes a regularization term aiming to minimize the deviation between the initial normal and the
�nal one, thereby preferring the original photometric normal when the error is low. Aswe initiate theminimization
within a canonical search space where the normal initial guess aligns with the z-axis, the regularization term
simpli�es to R (# ) = _#I . We found that a small value of _ = 1e-4 works well in all our tests.
Given the high sparsity of the measurements, the fact that only a small number of those BRDF samples are

in the numerically signi�cant region (most of them lie in the constant di�use zone), and the response of the
monotonicity �eld to changes in the normal orientation, we observed that traditional non-linear gradient-based
optimization (e.g., the Levenberg-Marquardt algorithm [22, 31]) performs poorly and frequently becomes trapped
in local minima. Revisit the signal of the cost function in Fig. 7 or Fig. 9. The presence of numerous local minima,
encircled by regions of maximum values in the cost function, is strikingly evident. For this reason, we adopted a
bounded, global, brute-force search. In practice, we calculate all monotonicity values (or cost function values)
for a dense set of candidate normals within a range of angles equal to or less than a threshold compared to the
coarse normal. We choose here a threshold of c/6.

Fig. 7 depicts the re�nement procedure applied to a pixel in the Hemisphere dataset. For that particular pixel, we
took the ground truth normal and applied a deformation equal to Δ\,q = {15◦, 135◦}. to apply this deformation,
imagine that we anchor a canonical frame to the normal, where the z-axis is collinear to the normal; Δ\ is an
angle with that z-axis while Δq is a rotational angle around that z-axis. We consider that deformed normal as the
initial surface normal computed by the Photometric Stereo step, and we want to re�ne it to obtain the ground
truth normal. The second column of Fig. 7 shows the corresponding BRDF image and the plot of the function
d̃ (\ℎ). We can see how the normal deformation deteriorates the monotonicity of the function, with a computed
value of ` = 8e-5. The third column shows the cost function, which represents a 2D search space domain for the
re�ned shading normal. In particular, the initial normal is located at the center of the domain and the circular
regions correspond to cones around it; more speci�cally, red, green, and blue circles are the cones of angle 10,
20, and 30 degrees. We display only a segment of the normal search space to enhance visual clarity. We could
of course extend the search to angles greater than 30 degrees. The minimum of the cost function, indicated by
the orange arrow, corresponds with the correction we need to apply to the Photometric Stereo normal to obtain
the optimized shading normal; note how this is the opposite of the deformation we had applied. In the example
of Fig. 7 the re�ned normal has an angular error of about one degree with the ground truth normal. The last
column shows how the resulting BRDF image and the plot of the function d̃ (\ℎ) are more compliant with the
monotonicity constraint. The monotonicity value now becomes ` = 0.99. Finally Fig. 8 shows the angular error of
the entire normal �eld for the Hemisphere dataset with respect to the ground truth normal map. We compare the
normals obtained with the Robust Trimmed PS and those re�ned with the proposed approach. We also present
the corresponding monotonic maps. The color bar depicts the angular error between 0

◦ and 15
◦. Our approach

increases the quality of the reconstructed normal, which globally has less angular error and exhibits a higher
monotonicity behavior.

3.2 Implementation

The proposed method is independent of the speci�c approaches used for photometric normal estimation and
BRDF �tting. To implement the entire surface characterization pipeline for presenting results in this article
(see Fig. 1), in addition to the proposed normal re�nement method, and without loss of generality, we had to
choose two default approaches for normal estimation and SV-BRDF computation. By following the survey and
the reported statistics of several methods from the work of Shi et al. [53], Wang et al. [59], and for the sake
of practicality and the general applicability of our modular framework, we selected, as already mentioned in
the Sec. 3.1.4 and Fig. 8, the Robust Trimmed PS to compute the surface normals. To characterize the surface
optical response in terms of SV-BRDF, we adopted the formulation and �tting framework proposed by Pintus
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Fig. 9. Comparison of a dense cost function sampling with a sparse one achieved through sparse-to-dense multi-level

optimization, which progressively focuses on the most promising region until determining the optimal normal.

et al. [38]. Sec. 4.1 illustrates results where we mix and match di�erent normal computation components and
BRDF representations.

Photometric Stereo angular errors and problems due to normals that do not respect the monotonicity constraint
typically concern surface points that are not purely di�use. To speed up the computation, besides exploiting the
embarrassingly parallel nature of the pixel-wise computation, we also use conservative heuristics to avoid the
optimization of perfectly Lambertian BRDFs. This is done by performing the optimization only for the pixels whose
BRDF representations signi�cantly deviates from the constant albedo value BRDF representations that deviate too
much with respect to their albedo value. In practice, we consider a pixel as di�use if<0G (d̃) −:3 > :3 −<8= (d̃),
where :3 is the pixel albedo value computed by the previous SV-BRDF �tting step, and<0G (d̃) and<8= (d̃) are
the highest and lowest projected BRDF values. For di�use pixels we keep the normal computed by the Photometric
Stereo approach.

Furthermore, while bounded, a pure brute force computation may result in numerous unnecessary calculations
depending on the number of candidate normals. To address this, we employ an iterative sparse-to-dense multi-
level approach for globally searching the optimal normal. We begin by de�ning an angular step that is su�ciently
dense to explore the bounded normal space yet coarse enough to reduce the computational cost for each search
space span. In each iteration, we progressively decrease the angular step , centering the search region around
the current best normal. Fig. 9 presents a comparison between the dense cost function (the same as in Fig. 7),
computed for all possible monotonicity values across candidate normals, and the sparse cost function obtained
through the iterative procedure. The iterative process begins by calculating monotonicity values for a sparse,
uniformly distributed set of candidate normals. It then gradually hones in on the most promising region until the
optimal normal is determined.

4 Results

The newly proposed normal map re�nement module has been implemented in C++ and seamlessly integrated
into our pipeline, as detailed earlier in Sec. 3.2. In this section, we validate the re�nement module by conducting a
comparative analysis of the pipeline’s performance with and without the addition of the normal map re�nement.
Our primary objective is to demonstrate the enhancement in the �nal relighting in terms of both numerical
accuracy, i.e., Peak Signal-to-Noise Ratio (PSNR), and perceptual quality, i.e., Structural Similarity Index Measure
(SSIM) and FLIP metrics. We evaluate our algorithm’s e�cacy in improving the �nal reconstruction and relighting
quality, particularly for challenging �at objects and visually/geometrically intricate subjects. Before conducting
an extensive analysis of our method on multiple synthetic and real-world cases, we �rst evaluate the normal
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(a) Paint-Texture-00 (b) Paint-Texture-01 (c) Paint-Texture-02

Fig. 10. One image is presented from each of the three rendered synthetic datasets.

re�nement technique by integrating it into two distinct pipeline instantiations, employing di�erent Photometric
Stereo and SV-BRDF �tting models, and running those pipelines on a real dataset (refer to Sec. 4.1). This initial
test aims to demonstrate that, due to the modular design of our approach, our method is agnostic to the other
techniques integrated into the various modules of the surface characterization pipeline. Then, to investigate and
evaluate the enhancements in normal map reconstruction and relighting accuracy, we conduct comprehensive
quantitative analyses using synthetic data with ground truth information and painting mockups captured under
controlled conditions (see Sec. 4.2). Finally, we present practical results obtained from the free-form acquisition
of a pair of cultural heritage items, speci�cally paintings (refer to Sec. 4.3).
Throughout our tests, we consistently employ a small set of metrics. For comparing normal maps, we utilize

a straightforward angular error measurement. Summarizing the quality of relighting involves plotting graphs
depicting the relative percentage improvement in both PSNR and SSIM. Denoting<0 as the metric value (PSNR
or SSIM) representing the error between the original and the relighted image obtained with the non-re�ned
normal, and<1 as the metric computed with the re�ned normal, the percentage relative improvement is de�ned
as follows:

Γ = 100
|<1 −<0 |

<0

% (3)

The PSNR and the more perceptually-oriented SSIM results are complemented by incorporating the FLIP metric [4].
This metric serves as a di�erence evaluator, e�ectively approximating the distinctions perceived by humans
between a rendered image and its corresponding ground truth image. The central concept behind FLIP is to
present the perceptual di�erences observed by humans under the speci�c condition of alternating between
two perfectly superimposed images without any blank intervals. The metric is therefore designed to �lter out
overall image disparities that, regardless of their numerical magnitude, cannot be discerned by humans, while
emphasizing di�erences in very localized image regions with point-like shapes or edges, rather than changes in
color intensity and chromaticity. Given the extensive array of tests conducted, we showcase the FLIP maps and
associated statistics for selected challenging images from the original and relighted MLICs.

4.1 Modularity test

Although the following sections present results using a pipeline that employs Robust Trimmed PS as the Photomet-
ric Stereo method and theWard optical model as the BRDF �tting formulation, here we would like to demonstrate
the �exibility of our approach by showcasing a di�erent test case with two alternative con�gurations. We want
to show that we achieve similar and consistent performance by replacing either the Photometric Stereo method
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Fig. 11. Angular deviation in the Paint-Texture-01 dataset between the ground truth normal maps and those computed using

both the CNN-PS and our approach.

Synthetic Dataset Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Paint-Texture-01

CNN-PS + Ward 0.11 0.15 0.09 0.28
Ours 0.05 0.09 0.05 0.16

CNN-PS + Blinn-Phong 0.15 0.19 0.13 0.31
Ours 0.11 0.16 0.10 0.21

Table 1. FLIP statistics for one image of the Paint-Texture-01 dataset as the result of two pipelines that utilize CNN-PS as the

Photometric Stereo method, and either Ward or Blinn-Phong formulation for the BRDF fi�ing step.

or both the Photometric Stereo and the BRDF model within our pipeline. This choice illustrates the modularity
of our re�nement strategy, which is designed to be agnostic to the other modules in the surface reconstruction
framework. For the Photometric Stereo method, we select the approach from Ikehata’s paper [25], known as
CNN-PS, i.e., Convolutional Neural Network-based Photometric Stereo. This method leverages the power of deep
learning to improve the robustness and accuracy of surface normal estimation and has demonstrated strong
performance on the standard DiLiGenT benchmark [53]. As an alternative BRDF model, we employ the stretched
Blinn-Phong model [36]/REVISIONADD, a simple, physically plausible, but not physically based re�ectance
model for di�use and specular materials. Fig. 11 shows the improvement in angular error compared to the
normal map computed by CNN-PS. This enhancement is also re�ected in the relighting statistics, where all
relative improvements in PSNR and SSIM are positive (see Fig. 12). Additionally, Fig. 13 and Tab. 1 report the
improvements in FLIP statistics for a relighted image in the Paint-Texture-01 dataset. This test provides insight into
how our method can improve relighting quality when seamlessly integrated into general shape and appearance
characterization frameworks.
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(a) CNN-PS +Ward (b) CNN-PS + Blinn-Phong

Fig. 12. The performance of all relit images for the Paint-Texture-01 dataset is assessed. We present the percentage relative

improvement for both the PSNR (Peak Signal-to-Noise Ratio) in the first row and the SSIM (Structural Similarity Index) in

the second row. We present the results for two pipelines that utilize CNN-PS as the Photometric Stereo method, and either

Ward or Blinn-Phong formulation for the BRDF fi�ing step.

4.2 In-depth quantitative evaluation

Our quantitative evaluation is �rst performed on synthetic tests, where ground truth is available (Sec. 4.2.1) and
then on laboratory measurements of painting mockups (Sec. 4.2.2, where acquisition is performed under very
controlled conditions.

4.2.1 Synthetic tests. Synthetic tests conducted on rendered models from manually de�ned maps support the
evaluation of the methods in a fully controlled environment where ground truth is available for both normals,
BRDFs, and acquisition parameters. We selected a synthetic model from the EveryTexture database [13], as it
closely resembles the detailed shape and appearance of the real-world objects we are interested in. Utilizing the
provided Di�use, Bump, and Normal maps, we retained the Di�use map as is, generated the Gloss component by
converting the Bump map to monochrome and rescaling it, and assigned a constant highlight color. These maps
were then cropped into several regions to create three synthetic MLICs using a �xed camera and 52 directional
lights. Fig. 10 displays one of the 52 rendered images for each synthetic dataset. With access to ground truth
normal maps for these datasets, our initial test compares the normals computed by a chosen standard method (i.e.,
Robust Trimmed PS) with those obtained using our re�nement strategy. Fig. 14 illustrates how, in this controlled
case, our approach improves the normal �eld by signi�cantly reducing the angular error with respect to ground
truth normals. In the problematic areas, we observe a gain in normal accuracy of up to 5 degrees. Additionally,
we provide error statistics for the virtual relightings obtained with and without our re�nement step (see Fig. 15).
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Fig. 13. We juxtapose selected original images of the Paint-Texture-01 dataset with their digitally relit versions generated

from the SV-BRDF calculated using a normal map from a neural network based method CNN-PS and our refined normal

map. We present the results for two pipelines that utilize CNN-PS as the Photometric Stereo method, and eitherWard or

Blinn-Phong formulation for the BRDF fi�ing step. The final two rows showcase the respective FLIP maps and associated

statistics. The le�most plot in the third row of each group of images overlays the two sets of statistics to highlight the

improvement more e�ectively.

Using our two percentage relative improvement metrics, we plot the improvement for all 52 images in the
MLIC. Practically for all images, the improvement is positive in terms of both PSNR and SSIM. Tab. 2 and Tab. 3
summarize the statistics, related to the synthetic tests, of PSNR and SSIM, respectively. These tables include the
minimum, �rst quartile, average, median, third quartile, and maximum values, with the best results highlighted
in bold. Finally, Fig. 16 presents the corresponding FLIP maps and statistics of selected original images from the
three synthetic datasets. In the bottom row, the leftmost plot in the third row of each group of images overlays the
two sets of statistics to highlight the improvement more e�ectively. Tab. 4 numerically presents the FLIP statistics
in terms of mean, weighted median, and 1st and 3rd quartile of the FLIP values. The best values, highlighted in
bold, all belong to the proposed approach.

4.2.2 Real-world painting mockups. In this section, we address the evaluation of our solution within a typical
real-world laboratory setting, which can be controlled to ensure the precision and reliability of the statistics and
the corresponding evaluation. Our focus centers on six painting mockups, each exhibiting a diverse array of
spatially varying material distributions across the surface (refer to Fig. 17). These mockups, originally designed
for testing BRDF capture methods [38], were executed on painting paper, employing standard acrylic colors. Our
objective was to achieve a wide spectrum of color mixtures and geometries, thereby encompassing di�erent
painting styles and e�ects. In terms of color mixtures, our experimentation spanned from vividly blended hues to
distinctly segregated color layers. As for geometry, we explored di�erent con�gurations, ranging from thinly
applied, �at color layers to the rich textures imparted by a heavily laden brush. We pushed the boundaries further,
experimenting with pronounced geometric features achieved by directly depositing color from the tube. To
enhance the diversity of our mockups, we applied a thin coating of gloss varnish to half of each surface once all
color layers had thoroughly dried. This dual treatment aimed to create a juxtaposition between a subtly di�usive
surface and an intensely re�ective one, thus enriching our evaluation with contrasting material properties.
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Fig. 14. Angular deviation between the ground truth normal maps and those computed using both the Robust Trimmed PS

and our approach.

For the acquisition of MLICs for our mockups, we employed a custom-designed light dome with a radius of
approximately 30cm. This dome was equipped with 52 neutral white LED lights, ensuring comprehensive coverage
across the visible spectrum. Images were taken with a DSLR FX Nikon D810 Camera with 36.3 megapixels with
a 50mm AF Nikkor Lens. Four glossy spheres were utilized to recover the light direction, while a Spectralon
target was captured for �at �eld light intensity calibration. These calibration techniques were instrumental in
guaranteeing consistency, precision, and highly controlled operations throughout the acquisition and processing
steps.
Our analysis of error statistics for virtual relightings, comparing results obtained with and without our

re�nement step, reveals more pronounced bene�ts of our shading normal computation in this real-world use case
than in the synthetic tests (refer to Fig. 18 and Fig. 19). We observed a relative improvement of up to approximately
10% in both PSNR and SSIM, with notably superior results in images illuminated frontally (higher image numbers)
compared to those under raking light conditions (lower image numbers), where shadows and di�use surface
signals predominate. This behavioris consistent with our expectations, as elucidated in Sec. 3, where we discussed
the enhanced presence and clarity of monotonicity in surfaces exhibiting highly glossy or specular pro�les rather
than di�use surface points. Nevertheless, it is reassuring to note that our algorithm also e�ectively preserves
the integrity of those di�use appearances, as evidenced by its performance on images captured under raking
light conditions. In Tab. 2 and Tab. 3, we respectively report the statistics for PSNR and SSIM for the real-world
painting mockups. The tables provide the minimum, �rst quartile, average, median, third quartile, and maximum
values, with the top-performing results highlighted in bold.
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(a) Paint-Texture-00 (b) Paint-Texture-01 (c) Paint-Texture-02

Fig. 15. The performance of all relit images for the three synthetic datasets simulating flat painting regions is assessed. We

present the percentage relative improvement for both the PSNR (Peak Signal-to-Noise Ratio) in the first row and the SSIM

(Structural Similarity Index) in the second row.

Fig. 16. We juxtapose selected original images of the three synthetic datasets simulating flat paintings regions with their

digitally relit versions generated from the SV-BRDF calculated using a normal map from a standard Robust Trimmed PS and

our refined normal map. The final two rows showcase the respective FLIP maps and associated statistics. The le�most plot in

the third row of each group of images overlays the two sets of statistics to highlight the improvement more e�ectively.

Concluding our analysis, Fig. 20 and Fig. 21 showcase the corresponding FLIP maps and statistics derived from
selected original images within the real-world painting mockups. Within each group of images, the leftmost plot
in the third row juxtaposes the two sets of statistics, e�ectively highlighting the improvement in relighting quality
obtained by our approach. For a comprehensive numerical overview, Tab. 5 provides FLIP statistics, including
mean, weighted median, and the 1BC and 3A3 quartiles of FLIP values. Notably, the most favorable values, denoted
in bold, are consistently attributed to our proposed approach.
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Dataset Min Q1 Avg Median Q3 Max

Paint-Texture-00
Robust Trimmed PS 28.02 36.76 37.69 38.42 39.77 42.88
Ours 29.88 38.74 40.85 41.70 43.53 46.11

Paint-Texture-01
Robust Trimmed PS 22.50 36.70 38.50 39.88 42.22 46.58
Ours 22.56 37.54 40.46 42.50 45.01 48.37

Paint-Texture-02
Robust Trimmed PS 27.82 37.83 39.92 40.62 43.66 47.11
Ours 28.71 38.63 42.62 43.93 47.46 49.40

Mockup #0
Robust Trimmed PS 20.06 30.50 32.56 32.48 35.55 41.42

Ours 21.04 31.51 33.03 33.17 35.73 41.24

Mockup #1
Robust Trimmed PS 19.98 30.80 32.30 33.00 34.77 39.39
Ours 21.71 31.40 33.07 33.52 35.02 39.46

Mockup #2
Robust Trimmed PS 21.62 31.53 33.72 34.63 36.23 43.30

Ours 22.18 32.43 34.26 34.97 36.92 43.23

Mockup #3
Robust Trimmed PS 19.83 33.85 38.28 38.66 42.80 53.11

Ours 20.95 34.96 39.22 39.87 43.74 52.80

Mockup #4
Robust Trimmed PS 28.26 37.15 39.92 39.85 43.82 51.09

Ours 29.48 38.63 40.83 40.89 44.29 50.89

Mockup #5
Robust Trimmed PS 22.65 36.32 37.73 38.80 40.80 43.63
Ours 23.73 36.55 38.13 38.95 41.08 43.94

Retablo Crop #0
Robust Trimmed PS 27.54 32.31 39.22 39.32 45.74 53.25
Ours 30.60 33.82 40.55 40.34 46.58 55.14

Retablo Crop #1
Robust Trimmed PS 20.76 27.49 38.92 39.80 49.55 54.96
Ours 24.26 29.73 40.67 41.03 50.26 56.95

Retablo Crop #2
Robust Trimmed PS 25.18 32.99 46.02 47.77 57.56 62.97
Ours 31.15 36.71 48.43 50.55 58.94 63.23

Table 2. PSNR (Peak Signal-to-Noise Ratio) statistics for all studied datasets are provided. We report the minimum, first

quartile, average, median, third quartile, and maximum values. The best values are highlighted in bold.

4.3 Evaluation on a real painting

We now analyze the e�ectiveness of our method when employed in the context of a very common cultural
heritage use case: the on-site free-form MLIC acquisition of large painted surfaces with subtle appearance and
geometric details using a �xed camera and a hand-held moving light. The results analyzed in this article concern
the outcomes of the capture, reconstruction, and relighting processes of two panels belonging to the retable of St.
Bernardino (1455). This polyptych, originally housed in the chapel of St. Bernardino within the St. Francesco
church in Cagliari, Italy, is currently held and exhibited at the Pinacoteca Nazionale in Cagliari. The �rst panel
(refer to Fig. 23) measures 34 × 25cm and is executed in oil on a wooden support, portraying the prophet Daniel.
The second panel (depicted in Fig. 26) is slightly larger, measuring 54 × 36 cm, and is adorned with a golden
arched frame illustrating Christ in pity, upheld by an angel. The lower portion of the composition cannot be fully
appreciated due to the state of preservation. Nevertheless, elements such as the Instruments of the Passion (Arma
Christi) remain discernible, including the cross with the titulus INRI, the ladder for Christ’s deposition, and the
cruci�xion nails. Both paintings were acquired in their pre-restoration state using a free-form setup, depicted
in Fig. 22, that comprises a 36.3 Megapixel DSLR FX Nikon D810 Camera equipped with a 50 AF Nikkor Lens and
a handheld white LED (5500K) covering the entire visible spectrum. Approximately 60 images were captured
for each MLIC. The acquired data underwent calibration using four glossy spheres and a gray frame positioned
around the object for estimating spatially-varying incident light direction and intensityemploying the camera
and light calibration method introduced by Pintus et al. [41].

Here, our attention is directed towards three speci�c image subregions/crops of the �rst panel (refer to Fig. 23),
chosen for their distinct characteristics. Crop #0 encompasses a gold-colored relief featuring several cracks and
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Dataset Min Q1 Avg Median Q3 Max

Paint-Texture-00
Robust Trimmed PS 0.961 0.977 0.981 0.980 0.987 0.993
Ours 0.978 0.988 0.989 0.990 0.991 0.994

Paint-Texture-01
Robust Trimmed PS 0.956 0.986 0.987 0.989 0.992 0.996
Ours 0.964 0.991 0.991 0.994 0.994 0.997

Paint-Texture-02
Robust Trimmed PS 0.962 0.986 0.987 0.989 0.991 0.994
Ours 0.975 0.990 0.992 0.994 0.995 0.996

Mockup #0
Robust Trimmed PS 0.773 0.919 0.929 0.940 0.957 0.972

Ours 0.823 0.922 0.935 0.944 0.955 0.970

Mockup #1
Robust Trimmed PS 0.756 0.919 0.923 0.939 0.954 0.973

Ours 0.828 0.926 0.934 0.942 0.956 0.972

Mockup #2
Robust Trimmed PS 0.764 0.917 0.922 0.936 0.948 0.967

Ours 0.800 0.923 0.928 0.940 0.949 0.967

Mockup #3
Robust Trimmed PS 0.785 0.966 0.960 0.980 0.987 0.995

Ours 0.829 0.970 0.966 0.982 0.987 0.995

Mockup #4
Robust Trimmed PS 0.837 0.969 0.966 0.981 0.991 0.996

Ours 0.879 0.972 0.973 0.984 0.991 0.996

Mockup #5
Robust Trimmed PS 0.832 0.970 0.966 0.981 0.984 0.988

Ours 0.871 0.972 0.970 0.981 0.984 0.988

Retablo Crop #0
Robust Trimmed PS 0.700 0.859 0.911 0.952 0.977 0.988
Ours 0.825 0.891 0.936 0.958 0.980 0.993

Retablo Crop #1
Robust Trimmed PS 0.313 0.566 0.794 0.923 0.981 0.991
Ours 0.564 0.709 0.860 0.937 0.986 0.993

Retablo Crop #2
Robust Trimmed PS 0.445 0.714 0.860 0.979 0.996 0.998

Ours 0.734 0.846 0.928 0.987 0.997 0.998

Table 3. SSIM (Structural Similarity Index) statistics for all studied datasets are provided. We report the minimum, first

quartile, average, median, third quartile, and maximum values. The best values are highlighted in bold.

Synthetic Dataset Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Paint-Texture-00
Robust Trimmed PS 0.16 0.21 0.14 0.27

Ours 0.10 0.12 0.09 0.16

Paint-Texture-01
Robust Trimmed PS 0.09 0.16 0.08 0.24

Ours 0.08 0.11 0.06 0.20

Paint-Texture-02
Robust Trimmed PS 0.12 0.15 0.10 0.22

Ours 0.10 0.12 0.09 0.15

Table 4. FLIP statistics for the three synthetic datasets in Fig. 10.

a �at area with black writing. Typically, dark signals induce distortions in both the normal map and the �nal
relighted image due to the non-negligible e�ect of acquisition noise. Crop #1 depicts a decorative detail situated
within a predominantly �at area with cracks, while Crop #2 focuses on a facial detail within a highly glossy region.
In most original images, the highlights are so pronounced that the painted face is obscured and overshadowed by
the glossy signal, with evident paint mixing and various visible damages.

All evaluation metrics applied to these examples consistently demonstrate that shading normal computation
signi�cantly increases relighting quality (refer to Fig. 24). Some images exhibit a relative improvement in PSNR
of over 20%, while SSIM performance shows even greater enhancements, reaching up to an 80% improvement. As
observed in our other use cases, the improvement is particularly noticeable in front-illuminated images, where
highlights or other glossy e�ects are prevalent.
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(a) Mockups

(b) Mockup #0 (c) Mockup #1 (d) Mockup #2 (e) Mockup #3 (f) Mockup #4 (g) Mockup #5

Fig. 17. A set of painting mockups obtained through an RTI dome acquisition setup. Six image excerpts featuring diverse

material and geometric properties serve as test cases to evaluate the e�ectiveness of the proposed normal refinement

technique.

Fig. 25 depicts the rendered images alongside the FLIP maps and associated statistics. Additionally, Tab. 6
summarizes in tabular form the numerical values of the mean, weighted median, 1st, and 3rd quartile of the
error. In Crop #0, the improvement is evident as the gloss gold region is restored with greater accuracy, while
the perceptual error in the �at region, particularly in the darker parts of the writing, is notably reduced. Similar
results are observed in Crop #1 and Crop #2, where both the error images and the plots illustrate how the normal
re�nement signi�cantly enhances the quality of surface characterization and the corresponding virtual relighting.
Across all tested image crops, the proposed normal re�nement leads to an improved combination of surface
geometry and material, resulting in relightable images with signi�cantly reduced perceptual error. In this less
controlled but more realistic setup, the enhancement provided by our method is notably more pronounced and
evident than in synthetic tests and laboratory settings.
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(a) Mockup # 0 (b) Mockup # 1 (c) Mockup # 2

Fig. 18. The performance of all relit images for the first set of three painting mockups is assessed. We present the percentage

relative improvement for both the PSNR (Peak Signal-to-Noise Ratio) in the first row and the SSIM (Structural Similarity

Index) in the second row. Noticeably be�er results are observed in images with frontal illumination (higher image numbers)

compared to those with raking light conditions (lower image numbers), which primarily display the surface’s di�use signal.

Synthetic Dataset Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Mockup #0
Robust Trimmed PS 0.28 0.36 0.24 0.48

Ours 0.27 0.34 0.23 0.45

Mockup #1
Robust Trimmed PS 0.24 0.32 0.20 0.46

Ours 0.20 0.26 0.17 0.37

Mockup #2
Robust Trimmed PS 0.25 0.33 0.20 0.48

Ours 0.24 0.32 0.20 0.47

Mockup #3
Robust Trimmed PS 0.30 0.38 0.28 0.51

Ours 0.27 0.35 0.25 0.47

Mockup #4
Robust Trimmed PS 0.24 0.30 0.20 0.44

Ours 0.21 0.24 0.17 0.33

Mockup #5
Robust Trimmed PS 0.20 0.33 0.16 0.58

Ours 0.18 0.28 0.14 0.48

Table 5. FLIP statistics for the six real-world mockups in Fig. 17.

As a last additional consideration, another qualitative aspect that aids in assessing the possibly higher accuracy
of the extracted normal map is the degree of visual separation between the geometric signal and the material,
color, or optical maps. The tendency for some information to leak into others is a recognized challenge, in�uenced
by various factors including the inherent imperfections of analytical models of image formation, as well as
non-ideal and challenging-to-measure e�ects such as self and cast shadows, interre�ections, and global lighting
e�ects. Fig. 26 and Fig. 27 showcase examples where it is evident that the re�ned normal maps exhibit fewer
artifacts (and thus less distortion) compared to theoriginal normal map computed with the Robust Trimmed

PS. Notably, the color signal of the wood knot in the cross remains visible in the non-re�ned normal map. Our
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(a) Mockup # 3 (b) Mockup # 4 (c) Mockup # 5

Fig. 19. The performance of all relit images for the second set of three painting mockups is assessed. We present the

percentage relative improvement for both the PSNR (Peak Signal-to-Noise Ratio) in the first row and the SSIM (Structural

Similarity Index) in the second row. Noticeably be�er results are observed in images with frontal illumination (higher image

numbers) compared to those with raking light conditions (lower image numbers), which primarily display the surface’s

di�use signal.

Fig. 20. We juxtapose selected original images of the first set of three painting mockups with their digitally relit versions

generated from the SV-BRDF calculated using a normal map from a standard Robust Trimmed PS and our refined normal

map. The final two rows showcase the respective FLIP maps and associated statistics. The le�most plot in the third row of

each group of images overlays the two sets of statistics to highlight the improvement more e�ectively.

method e�ectively homogenizes this region, causing the color detail to disappear in the geometric reconstruction.
The rightmost images in the �gure display the angular di�erence, highlighting the areas where the correction
has been more pronounced. As we can see, several corrections appear in areas with colored details. Similarly, in
the other Retablo (refer to Fig. 27), black drawings and golden sections appear to signi�cantly distort the normal
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Fig. 21. We juxtapose selected original images of the second set of three painting mockups with their digitally relit versions

generated from the SV-BRDF calculated using a normal map from a standard Robust Trimmed PS and our refined normal

map. The final two rows showcase the respective FLIP maps and associated statistics. The le�most plot in the third row of

each group of images overlays the two sets of statistics to highlight the improvement more e�ectively.

Fig. 22. Photographing and illuminating a painting (panel of the polyptych retable of Saint Bernardino, 1455, Cagliari, Italy).

The painting’s optical properties under varying illumination are captured by taking several dozen photos using a stationary

reflex camera and a handheld LED.

map. Our normal re�nement approach successfully eliminates the pattern caused by the drawings on the saint’s
clothes and compensates for deformations caused by the bright, golden regions surrounding the red motif.

5 Conclusions

Multi-Light Image Collections (MLICs) o�er comprehensive data for characterizing imaged objects and are
extensively used in many domains, among which cultural heritage is prominent. In particular, a variety of
Photometric Stereo techniques can provide a �ne geometric characterization of the imaged object’s surface,
o�ering a basis for many shape analysis applications [42]. For visual exploration, such normal maps are often
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(a) A painting (component of the Retable of S. Berndardino)

(b) Retablo Crop #0 (c) Retablo Crop #1 (d) Retablo Crop #2

Fig. 23. An artwork (a panel from the Retable of Saint Bernardino) captured using a free-form RTI acquisition setup. Three

image excerpts showcasing various material and geometric properties are employed to evaluate the e�ectiveness of the

proposed normal refinement technique.

coupled with SV-BRDF maps, which provide per-pixel coe�cients of analytical BRDF models, to create compact
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(a) Retablo Crop #0 (b) Retablo Crop #1 (c) Retablo Crop #2

Fig. 24. The performance of all relit images for the three Retablo crops is assessed. We present the percentage relative

improvement for both the PSNR (Peak Signal-to-Noise Ratio) in the first row and the SSIM (Structural Similarity Index) in

the second row. Noticeably be�er results are observed in images with frontal illumination (higher image numbers) compared

to those with raking light conditions (lower image numbers), which primarily display the surface’s di�use signal.

Fig. 25. We juxtapose selected original images of the three Retablo’s crops with their digitally relit versions generated from

the SV-BRDF calculated using a normal map from a standard Robust Trimmed PS and our refined normal map. The final two

rows showcase the respective FLIP maps and associated statistics. The le�most plot in the third row of each group of images

overlays the two sets of statistics to highlight the improvement more e�ectively.

and fast to evaluate models that can support a compelling visual exploration inside interactive relighting viewers.
However, such an approach may often lead to suboptimal visual outcomes. This occurs not only when the
geometric normals are inaccurately recovered by the Photometric Stereo method, but also in the presence of a
"perfect" geometric reconstruction, due to a variety of practical reasons. These include the presence of non-local
lighting e�ects in the input not taken into account in the BRDF �tter and, more in general, the discrepancy
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Fig. 26. Albedo to normal leakage is compensated by our normal refinement technique. Refined normal maps contain less

spurious signal (and so less normal distortion) than the normal map computed with the Robust Trimmed PS. The rightmost

images display the angular di�erence, emphasizing the areas where the corrections have been more pronounced.

Synthetic Dataset Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Retablo Crop #0
Robust Trimmed PS 0.53 0.61 0.46 0.76

Ours 0.39 0.47 0.32 0.63

Retablo Crop #1
Robust Trimmed PS 0.75 0.82 0.68 0.94

Ours 0.45 0.54 0.37 0.71

Retablo Crop #2
Robust Trimmed PS 0.64 0.69 0.58 0.79

Ours 0.35 0.38 0.29 0.50

Table 6. FLIP statistics for the three retablo crops in Fig. 23.

between the behavior of a pure normal+BRDF model and complex optical behaviors of many objects (e.g., due to
layering, subsurface scattering, and other e�ects).
In this work, we have proposed to decouple the normals used for shading from the geometric normals, as

done in many rendering frameworks. Building on the common and general assumption that the re�ectance
under local illumination in a typical normal+BRDF model is a monotonic function of the angle between the
shading normal and the bisector of lighting and viewing directions, we have proposed a solution that corrects
the orientation of the geometric normals into shading normals that better meet this assumption. Di�erently
from solutions that force the usage of a coupled shape and material solver, our method integrates seamlessly
into existing reconstruction pipelines, supporting a free mixing and matching of Photometric Stereo methods,
BRDF models, and BRDF �tters. Users can decide, in their application, to use our corrected normals also as
improved geometric normals, especially when using the most common normal recovery techniques (e.g., based on
trimming). As a more common alternative, they may opt for using separate normal maps for geometric analysis
and visualization. Through synthetic, laboratory, and real-world painting data, we have shown our method’s
e�ectiveness in enhancing the recovery of the original illumination at di�erent angles in relighting applications.
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Fig. 27. Albedo to normal leakage is compensated by our normal refinement technique. Refined normal maps contain less

spurious signal (and so less normal distortion) than the normal map computed with the Robust Trimmed PS. The rightmost

images display the angular di�erence, emphasizing the areas where the corrections have been more pronounced.

Our current work is concentrating on further enhancing the approach, in particular by reducing its computation
time. While latency in producing results is not critical, as the method is executed at processing time and often
coupled with other demanding steps for normal and material recovery, we still think that there is a large margin
of improvement in its execution time. In particular, we plan to improve the evaluation cost of the individual
metric evaluation steps, avoiding the sorting of the appearance pro�le at each evaluation. We are also looking at
employing an adaptive global solver, rather than the �xed-cost coarse-to-�ne approach discussed in this paper.
Finally, we plan to reduce the number of fully computed pixels by sharing solutions between nearby areas.

Due to its simplicity and modularity, we expect this method to be adopted to improve the quality of the existing
reconstruction pipelines.
Moreover, our current work has been, so far, tested in the context of the main target of MLIC acquisition

and reconstruction in cultural heritage, which are objects with mostly �at global scale geometry but intricate
small-scale details. This class of objects includes not only paintings, such as those that we have evaluated in our
results section but also other cultural objects such as frescoes, gra�ti, wall incisions, coins, bas-reliefs, and many
more. The technique itself is, however, not limited to this use case, and we plan to evaluate its suitability for 3D
objects with complex geometries, exhibiting a variety of curvatures and occlusions from di�erent angles.

Acknowledgments

We thank the National Archaeological Museum and the National Art Gallery in Cagliari for access to artworks
for digitization and fruitful collaboration. This work received funding from Sardinian regional authorities under
the XDATA project (art 9 L.R. 20/2015). We also acknowledge the contribution of project “REFLEX – REFLectance

ACM J. Comput. Cult. Herit., Vol. 18, No. 0, Article Just Accepted. Publication date: 2025.



Monotonicity-based Shading Normals from MLICs • Just Accepted:31

EXploration: improving the acquisition, distribution, and exploration of multi-light image collections for surface
characterization and analysis” (PRIN2022) funded by the EU Next-GenerationEU PNRR, component M4C2-1.1.

References

[1] Jens Ackermann, Michael Goesele, et al. 2015. A Survey of Photometric Stereo Techniques. Foundations and Trends in Computer Graphics

and Vision 9, 3-4 (2015), 149–254. doi:10.1561/0600000065
[2] Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2013. Practical SVBRDF Capture in the Frequency Domain. ACM TOG 32, 4 (2013),

110–1. doi:10.1145/2461912.2461978
[3] Neil Alldrin, Todd Zickler, and David Kriegman. 2008. Photometric Stereo with Non-Parametric and Spatially-Varying Re�ectance. In

Proc. CVPR. IEEE, 1–8. doi:10.1109/CVPR.2008.4587656
[4] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström, and Mark D. Fairchild. 2020. FLIP: A Di�erence

Evaluator for Alternating Images. Proc. ACM SIGGRAPH 3, 2 (2020), 15:1–15:23. doi:10.1145/3406183
[5] Jonathan T Barron and Jitendra Malik. 2014. Shape, Illumination, and Re�ectance from Shading. IEEE TPAMI 37, 8 (2014), 1670–1687.

doi:10.1109/TPAMI.2014.2377712
[6] Ronen Basri, David Jacobs, and Ira Kemelmacher. 2007. Photometric Stereo with General, Unknown Lighting. International Journal of

Computer Vision 72, 3 (2007), 239–257. doi:10.1007/s11263-006-8815-7
[7] Guanying Chen, Kai Han, Boxin Shi, Yasuyuki Matsushita, and Kwan-Yee K Wong. 2019. Self-Calibrating Deep Photometric Stereo

Networks. In Proc. CVPR. IEEE, 8739–8747. doi:10.48550/arXiv.1903.07366
[8] Zhe Chen, Shohei Nobuhara, and Ko Nishino. 2021. Invertible Neural BRDF for Object Inverse Rendering. IEEE TPAMI 44, 12 (2021),

9380–9395. doi:10.1109/TPAMI.2021.3129537
[9] Gyeongmin Choe, Srinivasa G Narasimhan, and In So Kweon. 2016. Simultaneous Estimation of Near IR BRDF and Fine-Scale Surface

Geometry. In Proc. CVPR. IEEE, 2452–2460. doi:10.1109/CVPR.2016.269
[10] Julie Dorsey, Holly Rushmeier, and François Sillion. 2010. Digital Modeling of Material Appearance. Elsevier.
[11] Mark S Drew, Yacov Hel-Or, Tom Malzbender, and Nasim Hajari. 2012. Robust Estimation of Surface Properties and Interpolation of

Shadow/Specularity Components. Image and Vision Computing 30, 4-5 (2012), 317–331. doi:10.1016/j.imavis.2012.02.012
[12] Shireen Y Elhabian, Ham Rara, and Aly A Farag. 2011. Towards Accurate and E�cient Representation of Image Irradiance of Convex-

Lambertian Objects under Unknown Near Lighting. In Proc. ICCV. IEEE, 1732–1737. doi:10.1109/ICCV.2011.6126437
[13] Every Texture. 2024. 3D Texture Database. https://everytexture.com/ [Online; accessed-July-31-2024].
[14] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse Rendering for High-Resolution SVBRDF

Estimation from an Arbitrary Number of Images. ACM TOG 38, 4 (2019), 134–1. doi:10.1145/3306346.3323042
[15] Athinodoros Georghiades. 2003. Incorporating the Torrance and Sparrow Model of Re�ectance in Uncalibrated Photometric Stereo. In

Proc. ICCV. IEEE, 816–823. doi:10.1109/ICCV.2003.1238432
[16] D.B. Goldman, B. Curless, A. Hertzmann, and S.M. Seitz. 2005. Shape and Spatially-Varying BRDFs from Photometric Stereo. In Proc.

ICCV. IEEE, 341–348 Vol. 1. doi:10.1109/ICCV.2005.219
[17] Geo�rey Grimmett. 2006. The Random-Cluster Model. Vol. 333. Springer. doi:10.1007/978-3-540-32891-9
[18] Dar’ya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and Mashhuda Glencross. 2016. BRDF Representation

and Acquisition. Computer Graphics Forum 35, 2 (2016), 625–650. doi:10.1111/cgf.12867
[19] Aaron Hertzmann and Steven M Seitz. 2005. Example-based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs.

IEEE TPAMI 27, 8 (2005), 1254–1264. doi:10.1109/TPAMI.2005.158
[20] Tomoaki Higo, Yasuyuki Matsushita, and Katsushi Ikeuchi. 2010. Consensus Photometric Stereo. In Proc. CVPR. IEEE, 1157–1164.

doi:10.1109/CVPR.2010.5540084
[21] Michael Holroyd, Jason Lawrence, Greg Humphreys, and Todd Zickler. 2008. A Photometric Approach for Estimating Normals and

Tangents. ACM TOG 27, 5 (2008), 1–9. doi:10.1145/1457515.1409086
[22] Xinyi Huang, Hao Cao, and Bingjing Jia. 2023. Optimization of Levenberg Marquardt Algorithm Applied to Nonlinear Systems. Processes

11, 6 (2023), 1794. doi:10.3390/pr11061794
[23] Zhuo Hui and Aswin C Sankaranarayanan. 2015. A Dictionary-Based Approach for Estimating Shape and Spatially-Varying Re�ectance.

In Proc. ICCP. IEEE, 1–9. doi:10.48550/arXiv.1503.04265
[24] Zhuo Hui and Aswin C Sankaranarayanan. 2016. Shape and Spatially-Varying Re�ectance Estimation from Virtual Exemplars. IEEE

TPAMI 39, 10 (2016), 2060–2073. doi:10.1109/TPAMI.2016.2623613
[25] Satoshi Ikehata. 2018. CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces. In Proc. ECCV. Springer, 3–18.

doi:10.1007/978-3-030-01267-0_1
[26] Satoshi Ikehata, David Wipf, Yasuyuki Matsushita, and Kiyoharu Aizawa. 2012. Robust Photometric Stereo using Sparse Regression. In

Proc. CVPR. IEEE, 318–325. doi:10.1109/CVPR.2012.6247691

ACM J. Comput. Cult. Herit., Vol. 18, No. 0, Article Just Accepted. Publication date: 2025.

https://doi.org/10.1561/0600000065
https://doi.org/10.1145/2461912.2461978
https://doi.org/10.1109/CVPR.2008.4587656
https://doi.org/10.1145/3406183
https://doi.org/10.1109/TPAMI.2014.2377712
https://doi.org/10.1007/s11263-006-8815-7
https://doi.org/10.48550/arXiv.1903.07366
https://doi.org/10.1109/TPAMI.2021.3129537
https://doi.org/10.1109/CVPR.2016.269
https://doi.org/10.1016/j.imavis.2012.02.012
https://doi.org/10.1109/ICCV.2011.6126437
https://everytexture.com/
https://doi.org/10.1145/3306346.3323042
https://doi.org/10.1109/ICCV.2003.1238432
https://doi.org/10.1109/ICCV.2005.219
https://doi.org/10.1007/978-3-540-32891-9
https://doi.org/10.1111/cgf.12867
https://doi.org/10.1109/TPAMI.2005.158
https://doi.org/10.1109/CVPR.2010.5540084
https://doi.org/10.1145/1457515.1409086
https://doi.org/10.3390/pr11061794
https://doi.org/10.48550/arXiv.1503.04265
https://doi.org/10.1109/TPAMI.2016.2623613
https://doi.org/10.1007/978-3-030-01267-0_1
https://doi.org/10.1109/CVPR.2012.6247691


Just Accepted:32 • Pintus, Zorcolo, and Gobbe�i

[27] Yakun Ju, Kin-Man Lam,Wuyuan Xie, Huiyu Zhou, Junyu Dong, and Boxin Shi. 2024. Deep Learning Methods for Calibrated Photometric
Stereo and Beyond: A Survey. arXiv preprint arXiv:2212.08414 (2024), 1–19. doi:10.48550/arXiv.2212.08414

[28] Guillaume Lavoué, Nicolas Bonneel, Jean-Philippe Farrugia, and Cyril Soler. 2021. Perceptual Quality of BRDF Approximations: Dataset
and Metrics. Computer Graphics Forum 40, 2 (2021), 327–338. doi:10.1111/cgf.142636

[29] Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro,WojciechMatusik, Hanspeter P�ster, Ravi Ramamoorthi, and Szymon Rusinkiewicz.
2006. Inverse Shade Trees for Non-Parametric Material Representation and Editing. ACM TOG 25, 3 (2006), 735–745. doi:10.1145/
1141911.1141949

[30] Chen Liu, Michael Fischer, and Tobias Ritschel. 2023. Learning to Learn and Sample BRDFs. Computer Graphics Forum 42, 2 (2023),
201–211. doi:10.1111/cgf.14754

[31] M.I.A. Lourakis. Jul. 2004. levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. [web page]
http://users.ics.forth.gr/ lourakis/levmar/. [accessed-July-31-2024].

[32] Tom Malzbender, Dan Gelb, and Hans Wolters. 2001. Polynomial Texture Maps. Proc. ACM SIGGRAPH (2001), 519–528. doi:10.1145/
383259.383320

[33] MathWorks. 2024. monotonicity, Quantify monotonic trend in condition indicators. https://www.mathworks.com/help/predmaint/ref/
monotonicity.html [Online; accessed-July-31-2024].

[34] Daisuke Miyazaki, Kenji Hara, and Katsushi Ikeuchi. 2010. Median Photometric Stereo as Applied to the Segonko Tumulus and Museum
Objects. International Journal of Computer Vision 86 (2010), 229–242. doi:10.1007/s11263-009-0262-9

[35] Yasuhiro Mukaigawa, Yasunori Ishii, and Takeshi Shakunaga. 2007. Analysis of Photometric Factors Based on Photometric Linearization.
JOSA 24, 10 (2007), 3326–3334. doi:10.1364/JOSAA.24.003326

[36] László Neumann, Attila Neumannn, and László Szirmay-Kalos. 1999. Compact Metallic Re�ectance Models. Computer Graphics Forum

18, 3 (1999), 161–172. doi:10.1111/1467-8659.00337
[37] Taishi Ono, Hiroyuki Kubo, Kenichiro Tanaka, Takuya Funatomi, and Yasuhiro Mukaigawa. 2019. Practical BRDF Reconstruction Using

Reliable Geometric Regions from Multi-View Stereo. Computational Visual Media 5 (2019), 325–336. doi:10.1007/s41095-019-0150-3
[38] Ruggero Pintus, Moonisa Ahsan, Antonio Zorcolo, Fabio Bettio, Fabio Marton, and Enrico Gobbetti. 2023. Exploiting Local Shape

and Material Similarity for E�ective SV-BRDF Reconstruction from Sparse Multi-Light Image Collections. ACM JOCCH 16, 2 (2023),
39:1–39:31. doi:10.1145/3593428

[39] Ruggero Pintus, Tinsae Gebrechristos Dulecha, Irina Ciortan, Enrico Gobbetti, and Andrea Giachetti. 2019. State-of-the-art in Multi-Light
Image Collections for Surface Visualization and Analysis. Computer Graphics Forum 38, 3 (2019), 909–934. doi:10.1111/cgf.13732

[40] Ruggero Pintus, Andrea Giachetti, Giovanni Pintore, and Enrico Gobbetti. 2017. Guided Robust Matte-Model Fitting for Accelerating
Multi-light Re�ectance Processing Techniques. In Proc. British Machine Vision Conference. BMVA, 32.1–32.15. doi:10.5244/C.31.32

[41] Ruggero Pintus, Alberto Jaspe Villanueva, Antonio Zorcolo, Markus Hadwiger, and Enrico Gobbetti. 2021. A Practical and E�cient Model
for Intensity Calibration of Multi-Light Image Collections. The Visual Computer 37, 9 (September 2021), 2755–2767. doi:10.1007/s00371-
021-02172-9

[42] Ruggero Pintus, Kazim Pal, Ying Yang, Tim Weyrich, Enrico Gobbetti, and Holly Rushmeier. 2016. A Survey of Geometric Analysis in
Cultural Heritage. Computer Graphics Forum 35, 1 (2016), 4–31. doi:10.1111/cgf.12668

[43] Gilles Pitard, Gaëtan Le Goïc, Alamin Mansouri, Hugues Favrelière, Simon-Frederic Desage, Serge Samper, and Maurice Pillet. 2017.
Discrete Modal Decomposition: a New Approach for the Re�ectance Modeling and Rendering of Real Surfaces. Machine Vision and

Applications 28, 5-6 (2017), 607–621. doi:10.1007/s00138-017-0856-0
[44] Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo. 2015. Image Based Relighting using Neural Networks. ACM TOG 34, 4

(2015), 111:1–111:12. doi:10.1145/2766899
[45] Leonardo Righetto, Fabio Bettio, Federico Ponchio, Andrea Giachetti, and Enrico Gobbetti. 2023. E�ective Interactive Visualization of

Neural Relightable Images in a Web-based Multi-Layered Framework. In Proc. GCH. Eurographics, 57–66. doi:10.2312/gch.20231158
[46] Leonardo Righetto, Arianna Traviglia, Michela De Bernardin, Enrico Gobbetti, Federico Ponchio, and Andrea Giachetti. 2023. Ancient

Coins’ Surface Inspection with Web-Based Neural RTI Visualization. In Optics for Arts, Architecture, and Archaeology (O3A) IX, Vol. 12620.
SPIE, 91–98. doi:10.1117/12.2674888

[47] Fabiano Romeiro and Todd Zickler. 2010. Blind Re�ectometry. In Proc. ECCV. Springer, 45–58. doi:10.1007/978-3-642-15549-9_4
[48] Roland Ruiters and Reinhard Klein. 2009. Height�eld and Spatially Varying BRDF Reconstruction for Materials with Interre�ections.

Computer Graphics Forum 28, 2 (2009), 513–522. doi:10.1111/j.1467-8659.2009.01390.x
[49] Szymon M Rusinkiewicz. 1998. A New Change of Variables for E�cient BRDF Representation. In Rendering Techniques. Springer, 11–22.

doi:10.1007/978-3-7091-6453-2_2
[50] Hiroaki Santo, Masaki Samejima, Yusuke Sugano, Boxin Shi, and Yasuyuki Matsushita. 2017. Deep Photometric Stereo Network. In Proc.

ICCV workshops. IEEE, 501–509. doi:10.1109/ICCVW.2017.66
[51] Boxin Shi, Ping Tan, Yasuyuki Matsushita, and Katsushi Ikeuchi. 2012. Elevation Angle from Re�ectance Monotonicity: Photometric

Stereo for General Isotropic Re�ectances. In Proc. ECCV. Springer, 455–468. doi:10.1007/978-3-642-33712-3_33

ACM J. Comput. Cult. Herit., Vol. 18, No. 0, Article Just Accepted. Publication date: 2025.

https://doi.org/10.48550/arXiv.2212.08414
https://doi.org/10.1111/cgf.142636
https://doi.org/10.1145/1141911.1141949
https://doi.org/10.1145/1141911.1141949
https://doi.org/10.1111/cgf.14754
https://doi.org/10.1145/383259.383320
https://doi.org/10.1145/383259.383320
https://www.mathworks.com/help/predmaint/ref/monotonicity.html
https://www.mathworks.com/help/predmaint/ref/monotonicity.html
https://doi.org/10.1007/s11263-009-0262-9
https://doi.org/10.1364/JOSAA.24.003326
https://doi.org/10.1111/1467-8659.00337
https://doi.org/10.1007/s41095-019-0150-3
https://doi.org/10.1145/3593428
https://doi.org/10.1111/cgf.13732
https://doi.org/10.5244/C.31.32
https://doi.org/10.1007/s00371-021-02172-9
https://doi.org/10.1007/s00371-021-02172-9
https://doi.org/10.1111/cgf.12668
https://doi.org/10.1007/s00138-017-0856-0
https://doi.org/10.1145/2766899
https://doi.org/10.2312/gch.20231158
https://doi.org/10.1117/12.2674888
https://doi.org/10.1007/978-3-642-15549-9_4
https://doi.org/10.1111/j.1467-8659.2009.01390.x
https://doi.org/10.1007/978-3-7091-6453-2_2
https://doi.org/10.1109/ICCVW.2017.66
https://doi.org/10.1007/978-3-642-33712-3_33


Monotonicity-based Shading Normals from MLICs • Just Accepted:33

[52] Boxin Shi, Ping Tan, Yasuyuki Matsushita, and Katsushi Ikeuchi. 2013. Bi-Polynomial Modeling of Low-Frequency Re�ectances. IEEE
TPAMI 36, 6 (2013), 1078–1091. doi:10.1109/TPAMI.2013.196

[53] Boxin Shi, Zhe Wu, Zhipeng Mo, Dinglong Duan, Sai-Kit Yeung, and Ping Tan. 2016. A Benchmark Dataset and Evaluation for
Non-Lambertian and Uncalibrated Photometric Stereo. In IEEE TPAMI. IEEE, 3707–3716. doi:10.1109/TPAMI.2018.2799222

[54] William M Silver. 1980. Determining Shape and Re�ectance using Multiple Images. Ph. D. Dissertation. Massachusetts Institute of
Technology.

[55] David Tingdahl, Christoph Godau, and Luc Van Gool. 2012. Base Materials for Photometric Stereo. In Proc. ECCV. Springer, 350–359.
doi:10.1007/978-3-642-33868-7_35

[56] Tanaboon Tongbuasirilai, Jonas Unger, Christine Guillemot, and Ehsan Miandji. 2022. A Sparse Non-Parametric BRDF Model. ACM
TOG 41, 5 (2022), 1–18. doi:10.1145/3533427

[57] Kenneth E Torrance and Ephraim M Sparrow. 1967. Theory for O�-Specular Re�ection from Roughened Surfaces. JOSA 57, 9 (1967),
1105–1114. doi:10.1364/JOSA.57.001105

[58] Bruce Walter. 2005. Notes on the Ward BRDF. Technical Report PCG-05. Program of Computer Graphics, Cornell University.
[59] Feishi Wang, Jieji Ren, Heng Guo, Mingjun Ren, and Boxin Shi. 2023. DiLiGenT-Pi: Photometric Stereo for Planar Surfaces with Rich

Details-Benchmark Dataset and Beyond. In Proc. ICCV. IEEE, 9477–9487. doi:10.1109/ICCV51070.2023.00869
[60] Robert J Woodham. 1980. Photometric Method for Determining Surface Orientation from Multiple Images. Optical engineering 19, 1

(1980), 139–144. doi:10.1117/12.7972479
[61] Lun Wu, Arvind Ganesh, Boxin Shi, Yasuyuki Matsushita, Yongtian Wang, and Yi Ma. 2011. Robust Photometric Stereo via Low-Rank

Matrix Completion and Recovery. In Proc. ACCV. Springer, 703–717. doi:10.1007/978-3-642-19318-7_55
[62] Tai-Pang Wu and Chi-Keung Tang. 2009. Photometric Stereo via Expectation Maximization. IEEE TPAMI 32, 3 (2009), 546–560.

doi:10.1109/TPAMI.2009.15
[63] X-Rite. 2020. Appearance Exchange Format. https://www.xrite.com/axf [Online; accessed-July-31-2024].
[64] Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi Ramamoorthi. 2018. Deep Image-based Relighting from Optimal Sparse Samples.

ACM TOG 37, 4 (2018), 126. doi:10.1145/3197517.3201313
[65] Mingjing Zhang and Mark S Drew. 2014. E�cient Robust Image Interpolation and Surface Properties using Polynomial Texture Mapping.

EURASIP Journal on Image and Video Processing 2014, 1 (2014), 25. doi:10.1186/1687-5281-2014-25
[66] Todd Zickler, Ravi Ramamoorthi, Sebastian Enrique, and Peter N. Belhumeur. 2006. Re�ectance Sharing: Predicting Appearance from a

Sparse Set of Images of a Known Shape. IEEE TPAMI 28, 8 (2006), 1287–1302. doi:10.1109/TPAMI.2006.170

ACM J. Comput. Cult. Herit., Vol. 18, No. 0, Article Just Accepted. Publication date: 2025.

https://doi.org/10.1109/TPAMI.2013.196
https://doi.org/10.1109/TPAMI.2018.2799222
https://doi.org/10.1007/978-3-642-33868-7_35
https://doi.org/10.1145/3533427
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.1109/ICCV51070.2023.00869
https://doi.org/10.1117/12.7972479
https://doi.org/10.1007/978-3-642-19318-7_55
https://doi.org/10.1109/TPAMI.2009.15
https://www.xrite.com/axf
https://doi.org/10.1145/3197517.3201313
https://doi.org/10.1186/1687-5281-2014-25
https://doi.org/10.1109/TPAMI.2006.170

	Abstract
	1 Introduction
	2 Related work
	2.1 Relightable images
	2.2 Photometric Stereo
	2.3 SV-BRDF fitting
	2.4 Our contribution

	3 Method
	3.1 Normal refinement
	3.2 Implementation

	4 Results
	4.1 Modularity test
	4.2 In-depth quantitative evaluation
	4.3 Evaluation on a real painting

	5 Conclusions
	Acknowledgments
	References

