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We present an efficient scalable streaming technique for mapping highly detailed color information on extremely dense point

clouds. Our method does not require meshing or extensive processing of the input model, works on a coarsely spatially-reordered

point stream and can adaptively refine point cloud geometry on the basis of image content. Seamless multi-band image blending

is obtained by using GPU accelerated screen-space operators, which solve point set visibility, compute a per-pixel view-dependent

weight and ensure a smooth weighting function over each input image. The proposed approach works independently on each

image in a memory coherent manner, and can be easily extended to include further image quality estimators. The effectiveness

of the method is demonstrated on a series of massive real-world point datasets.

Categories and Subject Descriptors: I.3.3 [Computer Graphics] Digitizing and scanning; I.3.7 [Computer Graphics] Three-
Dimensional Graphics and Realism

General Terms: Algorithms

Additional Key Words and Phrases: Photo blending, texture blending, point clouds, streaming, massive models

ACM Reference Format:

Pintus, R. and Gobbetti, E. and Callieri, M. 2011. Fast Low-Memory Seamless Photo Blending on Massive Point Clouds using a
Streaming Framework. ACM J. Comput. Cult. Herit. 4, 1, Article 1 (April 2011), 15 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Modern 3D scanners have greatly increased their resolution and speed, making it possible to produce
massive datasets in a very short time. This abundance of sampled points finds a perfect field of ap-
plication in Cultural Heritage, where both dense and extensive sampling is required. While a typical
representation for such data has been triangulated meshes, in recent years there has been a renowned
interest towards the direct use of point clouds, which are easier to create, manage and render. How-
ever, since a dense geometrical sampling is not enough to cope with all the needs in Cultural Heritage
study and preservation, 3D models are often enriched with color information. Even if there are hard-
ware solutions able to sample geometry and color altogether, their color quality and resolution are
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often deemed insufficient for Cultural Heritage. For this reason, it is necessary to rely on additional
photographic datasets. In this case, one needs to register the photos with the 3D model and then to
transfer color to geometry.
All currently proposed solutions for large models use triangle meshes, either obtained directly from

the geometric acquisition procedure (e.g., the intrinsic range map structure), or after a triangulation
of raw unstructured point clouds. Among these works, texture-based methods work well when we have
high-resolution images but small meshes (few million faces), while techniques that deal with huge
datasets (tens or hundreds of million faces) employ out-of-core multi-resolution data structures (both
for geometry and images) and per-vertex mapping. The latter methods are scalable in terms of color
and geometry complexity, but require vast amounts of processing (and pre-processing) time.

In this article, a revised version of our Eurographics 2011 contribution [Pintus et al. 2011], we
present an efficient scalable out-of-core streaming technique for mapping highly detailed color infor-
mation directly on extremely dense 3D point clouds using a constant small in-core memory footprint.
We work directly on a coarsely spatially-reordered point stream, which can be adaptively refined by
the method on the basis of image contents. Seamless multi-band image blending at each input point is
obtained by GPU accelerated screen-space operators, which solve point set visibility, compute a local
per-pixel view-dependent weight and also ensure a weighting function that smoothly varies over each
input image. To our knowledge, this is the first method capable to perform seamless image blending
on massive unstructured point clouds. Our results show that the resulting system is fast, scalable,
and high quality. In particular, we are able to process models with several hundred million points and
billions of pixels in times ranging from minutes to a few hours (see Sec. 10), outperforming current
state-of-the-art techniques in terms of time while achieving the same high quality.

2. RELATED WORK

Image blending for texturing 3D models is a wide and extensively studied field with a lot of success-
ful applications, especially in Cultural Heritage [Dellepiane et al. 2010; Hanke et al. 2010]. In the
following, we discuss only techniques closely related to ours.

Triangulated meshes are the dominant 3D data representation in Cultural Heritage applications.
However, the use of point clouds has recently gained a lot of attention, either because it is a sensi-
ble choice to explore in real-time huge datasets (e.g., as the Domitilla Catacomb [Scheiblauer et al.
2009]), or because it allows peculiar shading with interactive manipulation of lighting (e.g., as the
Dancers Column [Duguet et al. 2004]). The possibility to efficiently render these datasets by using the
GPU [Botsch and Kobbelt 2003; Gobbetti and Marton 2004] is certainly the main cause of this shift
between representations. Given this tendency, and the fact that producing high quality triangulations
from sampled point clouds is a costly task, the techniques that work directly on unstructured point
clouds are becoming more and more important.
Despite this interest towards point clouds, in literature there is a distinctive lack of techniques for

the color mapping which directly operates on point sets (in particular, on massive ones). Color map-
ping on point clouds passes in most cases through global or local triangulation of the dataset [Pu
and Vosselman 2009]. In other cases, the colored point clouds just contain the color returned by the
scanner [Scheiblauer et al. 2009], which mixes data from multiple scans in a single point cloud and
generally produces unpleasant confetti-style color variations, unsuited for Cultural Heritage usage.
Tools for the manipulation and editing of point clouds, such as PointShop [Zwicker et al. 2002], typi-
cally just implement basic operations for color transfer between photos and the point set, and are not
applicable to very large datasets that do not fit in main memory.
Most works on color mapping are targeting triangulated meshes, and deal in particular with the

problems related to the integration of data coming from different photos. If a surface element (vertex
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or face) is viewed by more than one camera, there is a set of candidate pixels which contribute to its
final color. Since a simple averaging of images produces color discontinuities, all recent papers compute
a per-pixel weight to drive the per-vertex (or per-face) texture blending. They use different approaches
such as surface orientation [Bernardini et al. 2001; Baumberg 2002], texture discrepancy between
adjacent triangles [Xu et al. 2010], viewing distance [Callieri et al. 2008], number of texels per triangle
[Allene et al. 2008], image-space distance to depth contours [Callieri et al. 2008; Baumberg 2002],
user defined stencil masks [Callieri et al. 2008], photometric estimators [Bernardini et al. 2001], etc..
Most of them are strictly dependent on a face-based representation, while some can also be applied
to point clouds. Our weighting scheme is inspired by the masks of Callieri et al. [2008], but uses a
single screen-space operator, applied to the depth frame buffer, which incorporates the effect of many
previously mentioned weights. Further, it ensures a smooth weighting function even in the presence
of user-defined stencil masks, leading to continuous blends.

Various methods exist to manage the computed weights to blend images. Some techniques employ a
best fragment approach using a Markov Random Field to assign a single image to each surface patch
[Gal et al. 2010; Xu et al. 2010]. The resulting texture is optimized using gradient domain blending
[Pérez et al. 2003] or other image-stitching methods. Some papers use global or local color correction
applied to adjacent patches [Xu et al. 2010; Bannai et al. 2007; Agathos and Fisher 2003]. Other
methods perform a per-vertex blending with weighted averaging [Callieri et al. 2008; Bernardini et al.
2001]. All of these approaches could be used in a multi-band framework blending [Burt and Adelson
1983; Allene et al. 2008], where an image is decomposed in frequency bands and for each of them a
different weighting function is applied. As in Baumberg [Baumberg 2002], we use a two frequency
band blending, avoiding blurring or ghosting due to small misregistration of the cameras with the 3D
model.
Most of the discussed techniques assume that both geometry and images fit in memory, which limits

the scalability of the methods. Some methods assume, instead, that the 3D model is very small and fits
in memory, while the image and mask dataset are stored in out-of-core structure (e.g., [Xu et al. 2010;
Callieri et al. 2008]). Callieri et al. [2008] deal with massive models by using two out-of-core structures,
one for the model and one for images and masks. However, random access traversals increase process-
ing time. Our streaming framework efficiently blends images on massive point clouds in a low-memory
setting and through memory-coherent operations, providing unprecedented performance. None of the
mentioned techniques support, as we do, adaptive geometry refinement as a function of image content.

3. TECHNIQUE OVERVIEW

The proposed technique is outlined in Fig. 1. We take as input a point stream and a set of images with
the corresponding camera parameters for inverse projection from image plane to 3D space. We start
by coarsely reorganizing the stream in a spatially coherent order by making it follow a space-filling
curve. For each image, we then perform the following operations. We render the point cloud from the
camera point of view, using a rendering method that performs a screen-space surface reconstruction.
We then estimate a per-pixel weight with a screen-space operator applied to the depth buffer and with
the contributions of other possible masks (e.g., user defined stencil masks). Then, we extract an edge
map from weights, compute a distance transform on it and multiply the weight by a function that
has zero values on the edges and grows smoothly accordingly with the distance map. In this way, we
ensure that the weighting function varies smoothly over each image, avoiding color discontinuities for a
seamless blending. We use these weights to project color from image pixels to points. For each image we
perform two streaming passes, which exploit the spatial ordering for visibility culling. In the first pass
the model is rendered in the depth buffer, while in the second pass we accumulate colors and update
weights. A multi-band approach is adopted and different weights are computed for each frequency

ACM Journal on Computing and Cultural Heritage, Vol. 4, No. 1, Article 1, Publication date: April 2011.



1:4 • R. Pintus and E. Gobbetti and M. Callieri

Fig. 1. Algorithm Pipeline. The inputs are a point stream and an image set. After a fast pre-processing, for each image we
render and fill in the point cloud, compute a per-pixel weight, and accumulate color, updating temporary out-of-core arrays for
each frequency band. In the last streaming pass, we combine band contributions.

band. After all images are blended, we perform one last streaming pass to produce the final color for
each point the final color by merging band contributions. For adaptive point cloud refinement, before
applying the color blending algorithm, we traverse the entire pipeline once to update the geometry, by
replacing the accumulation pass with the point population step (see Sec. 9).

4. OUT-OF-CORE STREAMING IMPLEMENTATION

Projecting high resolution images on detailed models is a challenging problem. This is mainly due to a
combination of ever increasing model complexity with the current hardware design trend that leads to
a widening gap between slow data access speed and fast CPU and GPU data processing speed. This is
particularly true when images and models are so large that they cannot be fully loaded in memory for
processing. Developing efficient data access and management techniques is key in solving our problem
efficiently.
In this work, we took the decision of sequentially processing images one after the other. I/O times are

thus reduced, and main memory usage remains constant. Point clouds are processed using a streaming
approach for all required operations, which are projecting the model to the depth buffer, accumulating
colors and weights, and selectively refining the model on the basis of image contents.

The fundamental idea behind this approach is to always process data sequentially by reading from
disk only a limited buffer at any time. This allows processing massive data sets very efficiently due to
coherent memory-access and disk look-ahead pre-fetch policies. Moreover, the system is fully scalable,
since at any given time only a fixed small fraction of the entire data set needs to reside in main memory.
All our operations are applied only to points visible from the current camera. Thus, in order to reduce
work, we reorganize the stream so that visibility culling can be efficiently performed while remaining
within a streaming framework. This is done by coarsely reordering it along a space filling curve, and
by rapidly skipping unnecessary sections while streaming.
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Fig. 2. Visibility insight. Visibility is related to the accessibility of a point with respect to the camera. Red dots are occluded
points, while green dots are visible points.

Reordering occurs once during pre-processing, and requires only two additional streaming passes
over the input point cloud. In the first pass, we coarsely estimate the local density of the cloud by
using a small in-core regular grid of cubic cells that subdivides the bounding box of the input dataset
and counting the number of points per cell. The size of a single cubic cell is heuristically estimated

in advance from the maximum expected number of points per cell by l =

√

AM

N
, where A is the side

area of the model bounding cube, M is the approximate desired point count per cell, and N is the
total number of samples. From this regular grid, we then estimate the output point stream layout, by
traversing the grid in 3D Morton order, and sequentially allocating blocks of points in the output point
cloud. In a second and final pass on the input point cloud, we fill the output point cloud, maintained as
a memory-mapped array, by reading in chunks of points, locally sorting them in Morton order [Morton
1966] to increase memory coherence, and writing them out at the correct output location.

The end result of this pre-processing step is a coarsely reordered point cloud, paired with an array of
cell descriptors containing for each cell the cell bounding box, for visibility culling, the position of the
first contained sample in the output array, and the number of contained samples. The 3D set of points
is thus transformed in a one-dimensional spatially coherent set that increases the likelihood that
neighboring cells produce the same visibility check output during streaming passes. This results in
increased performance, since it removes unnecessary I/O and processing operations, while decreasing
the number of jumps over the point stream, optimizing the disk look-ahead pre-fetch behavior.

5. POINT CLOUD RENDERING WITH SCREEN-SPACE SURFACE RECONSTRUCTION

In order to implement our image composition method using small and efficient screen-space operators,
we need, as input, a screen-space representation of the surface defined by the point cloud. Given the
position, orientation and camera parameters, we employ a point-based technique implemented in GPU
that solves point visibility and fills the holes in the depth buffer between projected visible points. Vis-
ibility computation is based on the concept of “accessibility” of a point with respect to the camera. In
Fig. 2 we show an example in 2D; the green dots represent the points with a “big” solid angle (visible
points), while the red ones have a “small” solid angle (invisible points). For each frame pixel (back-
ground or projected) we check a fixed image-dependent neighborhood in the depth buffer to estimate
if neighbor points occlude it or not. After the visibility pass, a sparse depth buffer has to be filled to
obtain a smooth and usable representation. We employed a non-linear iterative method that is imple-
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Fig. 3. Weighting Function Computation. From left to right: rendered point cloud; photos being blended; user defined stencil
masks; per-pixel weights; masked per-pixel weights.

mented in a multi-pass off-screen diffusion process and exploits a bilateral-filtering approach with a
3x3 kernel. We perform two different operations: screen filling uses the information from the visibility
pass to compute the depth value of background points (holes between projected points), while filtering
meaningfully blends the original and the reconstructed data (to eventually remove the noise coming
from the previous filling). The main idea is to update depth values at each iteration with a weighted
average of the neighbors using the following weights:

wi =

(

1−
ri

2

)

[

1−min

(

1,
|zi − z0|

δ

)]

(1)

The first is a radial term, while the other term is 1 if the central pixel and the pixel i have the same
depth, while tends to zero if the difference in depth grows. δ is the tolerance used for considering two
z values comparable, and therefore participating to blending.

Since background points do not have a valid initial depth, which is necessary for the filtering, we
initialize them with the median of the neighbors. The choice of median instead of average comes from
an edge preserving filling strategy. At the end, the output is a consistent filled depth texture.

6. WEIGHTING FUNCTION

The weighting function depends on two estimations; the former is a local per-pixel weight computation,
while the latter (detailed in Sec. 7) is a distance map driven by edges extracted from the local weight.
Both are implemented with fragment shaders. Fig. 3(left) shows the rendered point cloud we use to
explain each step of our technique. It is a part of a church acquired with a time-of-flight laser scanner.
In the second column there are the images we want to map and blend, while the images in the third
one are the corresponding user defined stencil masks.
The local weight depends on the depth signal and requires a single GPU pass. For each projected

point i, let us call Pi and PS
i

its eye and screen coordinates. The position of the camera PC in eye
coordinate is the origin. We look in a screen-space region of dimension K around point i and, for each
pixel k in this neighborhood, we consider its Pk and PS

k
. Then we compute

wi =

∑K

k=1
wS

k
wk

∑K

k=1
wS

k

(2)

where
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Fig. 4. Photo Blending Strategy. Photo blending of two widely different images acquired with different color settings and
lighting conditions. On the left, masked per-pixel weights are used. On the right weights are smoothed with our method. Inset
figures show the contributions of the two images, indicated in red and blue.
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The weight wS

k
is a screen-space radial modulation and the value R ensures that both all pixels in-

side the neighborhood have a non-zero contribution and the nearest point outside it has a zero weight.
The term wk incorporates in a single value the effects of the most used weight estimators. Surface
Orientation: if the surface is orthogonal with the viewing direction all dot products are zero (we have
the maximum value), while the sum of absolute values of the dot product ensures that the more the
surface is tilted, the less is the weight value. Silhouettes and Contours: depth discontinuities result in
very high dot products, so the per-pixel weight has low values over object silhouettes and depth buffer
borders. Fig. 3(fourth column) shows the obtained weights. We could integrate them with other masks
too (e.g., distance, focus, stencil, image border masks etc.). In our case, we apply user defined stencil
masks (as in [Callieri et al. 2008]); they are very useful to remove from photos objects unrelated to Cul-
tural Heritage models (e.g., people visiting the site, scaffoldings etc.). The combination of weights and
stencil masks is depicted in Fig. 3(right). If we use this weight to blend images, we obtain the colored
model in Fig. 4 (top-left), which has color seams due to discontinuities in weight. These discontinuities
comes from the stencil mask, occlusions, image boundaries, and non-smooth weight transitions over
the geometry.

7. SEAMLESS BLENDING THROUGH WEIGHT SMOOTHING

To produce a seamless blending, the main idea is to find edges in the computed weighting function
and to modulate weights over the image with a function proportional with the distance from those
discontinuities. We first apply an edge extractor to find edges in the weight and we assign a zero
weight to these pixels and a value equal to 1 to the others Fig. 5(top row). This is implemented in a
single GPU pass. In order to take into account image boundaries, we set boundary weights to zero.
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Fig. 5. Smooth weight generation. Rows from top to bottom: edge map; distance transform; per-pixel weight modulated with
distance transform term. Figures are modified in brightness and contrast in order to enhance readability.

For non-edge pixels we compute a quadratic function of the normalized distance from the nearest
edge, using a multi-pass screen-space operator. We use a jump-based approach similar to Rong and
Tan [2006]. They perform a jump pass and some diffusion passes of step length 1 to decrease the
residual error. We instead perform only two jump passes and in the second pass we set the distance
as the less between the new and the old value. In this way the error will converge to zero and we
ensure a smooth distance field Fig. 5(middle row). Then, we multiply normalized distance mask with
the previous weight function. Fig. 5(bottom row) shows final weights. As showed in Fig. 4(right) this
approach guarantees a weight sufficiently smooth to produce a meaningful and seamless color signal.
To better explain the behavior of the proposed method, small sub-figures in Fig. 4 show the results of
the corresponding blending strategy in the extreme case of two completely different images (red and
blue).

8. COLOR ACCUMULATION AND MULTI-BAND BLENDING

We perform a streaming pass over the point set to project image color on the 3D model. For each
sample we project its position in the depth buffer and, using a tolerance factor, we decide whether it is
visible or not. If the point passes the visibility check, we accumulate the color information taken from
the current image using the computed weight. We maintain, during the loop on the image set, two
temporary values for each point: the weighted color and the sum of the previous computed weights.
Since we adopt a multi-band blending, the accumulation is performed for each band separately. For this
reason, we have to split the input image set in NB sets, where NB is the number of frequency bands,
and, for each point, we need to maintain a vector of NB tuples of color and sum of weights. For each
band we need to decide the weighting strategy too. Typically, linear filters are used for low-frequency
bands, while non-linear or even best-weight approaches are used for high-frequency signals. At the end
of M image projections we need an additional streaming pass to merge all the bands together. As in
Baumberg [2002], we decide to apply a two band approach. We apply a blurring operator to obtain
the low frequency image set, while each high frequency image is computed as the difference between
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Fig. 6. Multi-band blending. On the left, rendering of an archaeological site with the color blended with our technique. On
the right, a detail of this model (red rectangle) after single-band (lower triangle) and multi-band (upper triangle) blending.
Multi-band blending avoids blurring due to small 2D-3D misalignment.

the original and the low-frequency version. The computation of low and high frequency bands is fast
performed in GPU. We use the weighting function w explained in Sec. 6 for the first set, while we use
w4 for the high-frequency band. As shown in Fig. 6, two band method avoids blurring or ghosting due
to non-perfect alignment between images and point cloud.

9. ADAPTIVE POINT CLOUD REFINEMENT

A major problem arises if the number of pixels in the image set is much greater than the geometrical
sampling. In this case a lot of details in the image will be lost in the colored 3D model, since our
approach produces a color per point and for each image we assign to a sample a weight and a color
corresponding with one pixel only. If we look at a pixel neighborhood we could apply techniques similar
to feature-preserving down-sampling to avoid missing high frequency components but, if the number of
points is too low compared to the pixel sampling, the issue remains critical. Since during the off-screen
rendering we build a non-sparse view-dependent surface representation of the model, we can re-project
back the new filled points from the depth buffer to the object to increase point cloud local density. A
brute-force approach is to re-project back all the points corresponding with valid pixels, such that
the final model will have more points than the sum of all valid pixels; roughly speaking, no pixel color
information is lost. This increases the number of points even if we don’t need it, e.g., in the parts with a
single, flat color. Our idea is to adaptively add points only for the color features. Exploiting multi-band
computation, we add a point to the geometry if the corresponding high frequency pixel value is above a
fixed threshold. Since we blend one image at a time we cannot re-project points and accumulate colors
together in a single streaming pass, because each added point could be visible from an already mapped
photo; this will produce a non-coherent image blending. If we want to add high frequency points we
must perform the entire pipeline twice. The first time we substitute the accumulation pass in Fig. 1
with the re-projection and for each image we update the geometry in the out-of-core structure. After all
images are considered, we re-launch the original algorithm to blend the textures on the new adaptively
over-sampled point cloud. Fig. 7 shows how very fine details are better preserved if this adaptive point
cloud refinement is adopted. The model is a Tutankhamon Head. A part of the model in Fig. 7(left) is
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Fig. 7. Adaptive point cloud refinement. Left: complete model. Middle: image blending on original point cloud. Right:
image blending on adaptively refined point cloud. This Tutankhamon Head model is courtesy of ISCR, Istituto Superiore per la
Conservazione e il Restauro, Roma.

Table I. Dataset specifications and algorithm performances.
Model Resolution (# Points) Images (width x height) M pixels No Morton Morton Tmp Disk Space

David 28M 67 (2336x3504) 548 5m21s 5m12s 960MB
Church 72M 162 (3872x2592) 1625 4h30m 47m30s 2.2GB
Arch. Site 133M 19 (3872x2592) 19 2h55m 1h43m 4GB
David 470M 67 (2336x3504) 548 21h6m 4h40m 14GB

critical because while in the high resolution images it was acquired a very narrow and long crack of
the real model (highlighted in the red rectangle), the point cloud has a low local density. Fig. 7 (middle)
shows both the row and the rendered point cloud after texturing in the case no refinement is applied;
the crack is not continuous and in some parts it is barely visible. Our refinement technique adaptively
adds points only across the crack, without loss of any segments and making geometrical features
clearly readable Fig. 7 (right). The rendering of the point cloud only (in upper triangles) shows how
we are able to reach high quality results in terms of fine detail preservation just adding a very low
number of points.

10. RESULTS

The proposed technique was implemented on Linux using C++ with OpenGL and GLSL. Our bench-
marks were executed on a PC with an Intel 2.4GHz CPU, 4GB RAM, a 500GB 7200RPM Hard Disk
and a NVidia GeForce GTX 460. To evaluate the effectiveness of our approach, in terms of both com-
putational time and quality, we present results on massive 3D datasets mapped with a high number
of images (see Table I). David is a 3D model acquired with a triangulation laser scanner [Levoy et al.
2000], while Church and Archaeological Site are models from time-of-flight laser scanner. All tests
were executed with disk caches flushed.
The parameters guiding the method depend on the sampling rates of the point cloud and the image

set. First of all, the size of visibility kernel and the number of filling iterations grow as the maximum
ratio between pixel sampling rate and 3D sampling rate. In turn, since the filling operation, for each
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Fig. 8. Colored David 0.25mm dataset. A 470 million points 3D model with color coming from a 548 Mpixel dataset (67
photos). The model is from the Digital Michelangelo project, courtesy of Marc Levoy and the Soprintendenza ai beni artistici e
storici per le province di Firenze, Pistoia, e Prato.
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Fig. 9. Colored model of a church. A 72 million points 3D model of a church with color coming from a 1.6 Gpixel dataset
(162 photos).

point, ensures smoothness inside a region that depends on the number of iterations, weight should be
computed within a region of similar size. For the datasets presented here, we used very conservative
settings corresponding to a 21x21 visibility kernel (and thus 21 filling iterations). Finally, the role of
the edge extractor is to limit the maximum acceptable value of the normalized weight screen-space
gradient, assigning a zero weight if the slope is higher than a threshold, which we set at the 10% of
the highest possible difference between two weight values (i.e., 0.1).
Results obtained with David at 28M points (56M triangles) can be compared with those obtained

with a similar hardware configuration and using the current state-of-the-art work dealing with mas-
sive models [Callieri et al. 2008], which also maintains both the 3D model and the images out-of-core.
They build a multi-resolution data that requires about 50 minutes of pre-processing and they randomly
access this data during the blending; for this reason their approach takes about 15.5h (930 minutes) for
the entire computation (pre-processing included). Their temporary files have a disk space occupancy
of 6.2 GB. Our results clearly shows that our method outperforms previous solutions. The proposed
streaming approach, by using space partitioning, results in a speed up of two orders of magnitude. It
should be noted that models of this size, since our data structures are very compact, can be effectively
cached by the I/O subsystem in memory, which is not possible for the more costly multi-resolution tri-
angulations employed by Callieri et al. [2008]. The increase is, however, also evident for models which

ACM Journal on Computing and Cultural Heritage, Vol. 4, No. 1, Article 1, Publication date: April 2011.



Fast Low-Memory Seamless Photo Blending on Massive Point Clouds using a Streaming Framework • 1:13

are much larger. E.g., our David 470M can be processed in less than five hours, while Callieri et al.
[2008] require over fifteen hours for the David 28M dataset.
Our visibility culling method, based on Morton ordering, is particularly valid for large datasets that

do not fit in main memory, as in the cases of Church, Archaeological Site and David 470M. With these
datasets we have a large fraction of time needed to traverse the point stream, so the precomputed
Morton-ordering helps to increase efficiency in both rendering the geometry and accumulating colors.
The Church dataset (Fig. 9) is a point cloud with 72M points and 162 photos (more than 1.5G pix-
els) and it takes 2 minutes and 14 seconds for pre-processing and 45 minutes 12 seconds for texture
blending with visibility check; this is about the 17% of the 4 hours and 30 minutes needed for the
computation without visibility check (no Morton-ordering). The computation requires temporary disk
occupancy of 2.2GB. The Archaeological Site model (Fig. 6) has 133M points and we project 19 images
of 10M pixels in 1 hour and 43 minutes (about 13 mins. pre-processing and 1.5h blending); the size
of temporary files is 4GB. The blending without Morton-ordering and visibility culling takes about 3
hours. The biggest model we have tested is the David with 470M points and 67 images (548M pixels).
Its size on disk is about 18GB for the input and output point cloud, 212MB for the images and about
14GB for temporary files. The pre-processing time needed to order the point set is about 17 minutes
while the blending time is about 264 minutes; the computation without ordering and visibility checks
requires 21 hours, about five times more.
Representative examples of the quality of the photo blending are presented in Fig. 8, which depicts

some details of the David 470M dataset. Finally, Fig. 10 illustrates another example of high quality
blending using adaptive point cloud refinement. In this figure, we show another critical part of the
same 3D model in Fig. 7. Here the low resolution point cloud results in bad feature preservation while,
in the refined textured model, we add some points in the color contours (high frequency pixels) to
achieve a meaningful representation of silhouettes (e.g., non-noisy iris boundaries). The original point
cloud in Fig. 7 and Fig. 10 has 800Kpoints and the image set contains more than 60Mpixels; a brute
force refinement (re-project all valid pixels in the image set) would add 13.3Mpoints, while the result
of our adaptive method has only 700Kpoints more than the original. Thus, we get a highly detailed
colored model saving 94% of the points.

11. CONCLUSIONS AND FUTURE WORK

We have presented an efficient scalable streaming technique for mapping highly detailed color informa-
tion on extremely dense point clouds. Our seamless multi-band image blending method works directly
on a coarsely spatially-reordered point stream and can adaptively refine point cloud geometry on the
basis of image content. It works independently on each image in a memory coherent manner, and can
be easily extended to include further image quality estimators. Currently, photo blending is applied
as an off-line processing task. Since blending of single images is relatively fast, we are extending the
system by integrating it within the same interactive application used for alignment. This would allow
fast visual checks of the quality of the result, and could help with image registration. In particular,
by analyzing the correlation of images in areas of multiple overlap, it should be possible to guide the
system in the alignment phase.
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Fig. 10. Adaptive point cloud refinement. Left: complete model. Middle: image blending on original point cloud. Right:
image blending on adaptively refined point cloud. This Tutankhamon Head model is courtesy of ISCR, Istituto Superiore per la
Conservazione e il Restauro, Roma.
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