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Abstract

Very large and geometrically complex scenes, exceeding millions of polygons and hundreds
of objects, arise naturally in many areas of interactive computer graphics. Time-critical ren-
dering of such scenes requires the ability to trade visual quality with speed. Previous work
has shown that this can be done by representing individual scene components as multires-
olution triangle meshes, and performing at each frame a convex constrained optimization
to choose the mesh resolutions that maximize image quality while meeting timing con-
straints. In this paper we demonstrate that the nonlinear optimization problem with linear
constraints associated to a large class of quality estimation heuristics is efficiently solved
using an active-set strategy. By exploiting the problem structure, Lagrange multipliers es-
timates and equality constrained problem solutions are computed in linear time. Results
show that our algorithms and data structures provide low memory overhead, smooth level-
of-detail control, and guarantee, within acceptable limits, a uniform, bounded frame rate
even for widely changing viewing conditions. Implementation details are presented along
with the results of tests for memory needs, algorithm timing, and efficacy.

Key words: Multiresolution modeling, level-of-detail, adaptive rendering, numerical
optimization, time-critical graphics

1 Introduction

Very large and geometrically complex models are common in a number of appli-
cation domains, including rigid body simulations, computer-aided design, architec-
tural visualizations, flight simulation, and virtual prototyping [4]. These models,
exceeding millions of polygons and hundreds of distinct and possibly animated ob-
jects, cannot be displayed directly at interactive speeds even on high-end machines.
The traditional approach to render them in a time-critical setting is to pre-compute
a small number of independent level-of-detail (LOD) representations of each object
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Fig. 1. Multiresolution rendering example. These three snapshots illustrate an example
rendering of the ATLAS Experiment Pit, part of the LHC facility at CERN. In the bottom
image,all objects are rendered at maximum resolution. The top left image is what the viewer
actually sees during interactive navigation, with the resolution of each object modified to
meet timing constraints. The top right image depicts the resolution chosen for each object,
lighter shades representing more detail.

composing the scene, and to switch at run-time between the LODs. This solution
has drawbacks both in terms of memory needs and quality of results.

In this paper, we propose to model 3D scenes as collections of multiresolution
triangle meshes and to choose the resolution of each mesh by solving a continu-
ous constrained optimization problem, i.e. the maximization of scene quality under
timing constraints (see figure 1). Image quality degradation and rendering time are
predicted using customizable heuristics. We have recently demonstrated that this
solution, that predicts image quality degradation and rendering time using smooth
customizable heuristics, leads to significantly higher-quality results over current
LOD-based approaches [5]. In this paper, we build upon that work by developing
an improved optimization method tailored to a large class of heuristics. Our time-
critical multiresolution scene rendering framework improves over current LOD se-
lection methods in the following areas:

• Ability to meet timing constraints. In contrast to current static or feedback al-
gorithms, our technique is predictive and aims at guaranteeing a uniform, bounded
frame rate even for widely changing viewing conditions; the technique is thus ap-
propriate in a time-critical setting and enables the usage of user-input prediction
to reduce perceived lag at the application level;

• Scene and hardware independence.Both the image degradation associated to
using low resolution meshes and the hardware behavior are modeled by cus-
tomizable heuristics. This makes it possible to incorporate context-sensitive qual-
ity constraints and automatically adapts applications to the specific hardware on
which they are running, which is of primary importance for distributed multi-
platform graphics applications visualizing a shared model;
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• Low memory overhead.In contrast to standard LOD approaches, our multires-
olution structure is compact while remaining fast enough for high-speed render-
ing. Without using specific compression techniques the overhead associated to
our structure is of about 8% of the single full resolution mesh memory footprint
when only position and normal are associated to vertices and becomes smaller if
other attributes such as colors and texture coordinates are present;

• Smooth, measurable image degradation.Since our multiresolution structure
efficiently supports geomorphs, smooth transitions between resolutions are ob-
tained at no cost, without the need to resort to costly blending effects.

The rest of the paper is organized as follows. Section 2 reviews previous work in
time-critical multiresolution scene rendering. Section 3 gives an overview of the
general ideas of our approach, section 4 concentrates on the image quality degrada-
tion and rendering time prediction heuristics, while section 5 discusses the particu-
lar problem structure deriving from the selected heuristics and details a customized
optimization algorithm. Section 6 describes our multiresolution mesh representa-
tion. Section 7 shows some experimental results and discusses advantages and lim-
itations of the method. Finally, section 8 presents conclusions and a view of our
future work.

2 Background and related work

2.1 Levels-of-detail for time-critical rendering

Many applications dealing with time-critical graphics include the possibility to
store a 3D model in a fixed number of independent resolutions (e.g. OpenInventor
[6] and VRML [7]). The main advantages of LODs are the simplicity of implemen-
tation and the fact that, as LODs are pre-calculated, the polygons can be organized
in the most efficient way (triangle strips, display list), exploiting raw graphics pro-
cessing speed with retained-mode graphics. The main drawbacks of this technique
are related to its memory overhead, which severely limits in practice the number
of LODs per object. As an example, representing an object at just the four LODs
100%, 75%, 50%, 25% would cause an overhead of 150% over the single reso-
lution version. The small number of LODs might introduce visual artifacts due to
the sudden changes of resolution between differing representations [8] and, more
importantly, limits the degrees of freedom of the LOD selection algorithm.

Run-time LOD selection is typically done using static heuristics or feedback algo-
rithms. Static heuristics (e.g. distance-based [7], coverage-based [6], or perceptu-
ally motivated [9] LOD mappings) are not adaptive and are therefore inherently un-
able to produce uniform frame rates, while feedback algorithms, which adaptively
vary LOD mappings based on past rendering times (e.g. [10]) suffer of unavoidable
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overshoot and oscillation problems when the complexity of the environment varies
rapidly, e.g. when entering a room in an walkthrough application.

As demonstrated by Funkhouser and Séquin [11], to guarantee bounded frame
times, predictive algorithms that optimize LOD selection based on estimates of
rendering time and image degradation must be used. Having aguaranteeon the
total maximum lag of the application is a necessary precondition for using predic-
tion techniques for lag reduction [12]. Unfortunately, the combinatorial optimiza-
tion problem associated to LOD selection is equivalent to a version of the Multiple
Choice Knapsack Problem [11,13], which is NP-complete, and approximation al-
gorithms that cannot guarantee optimality have to be used. Current state-of-the-art
techniques (Funkhouser and Séquin’s greedy algorithm [11] and Mason and Blake’s
incremental technique [13]) produce a result which is only guaranteed to be half as
good as the optimal solution and have a running time depending both on the number
of objects and on the number of LODs per object.

We have recently demonstrated that these problems are overcome when using ap-
propriate multiresolution data structures which enable to express predictive LOD
selection in the framework of continuous convex constrained optimization [5]. In
this paper, we present an improved optimization algorithm that efficiently exploits
the problem structure associated to a large class of image degradation and rendering
time heuristics.

2.2 Dynamic simplification

An alternative to per-object LOD selection is to dynamically re-tessellate visible
objects continuously as the viewing position shifts. As dynamic re-tessellation adds
a run-time overhead, this approach is suitable when dealing with very large objects
or static environments, when the time gained because of the better simplification is
larger than the additional time spent in the selection algorithm. For this reason, this
technique has been applied when the entire scene, or most of it, can be seen as a
single multiresolution object from which to extract variable resolution representa-
tions.

The classic applications of dynamic re-tessellation techniques are in terrain visual-
ization (see [14] for a survey). Hoppe [15] introduced view-dependent simplifica-
tion of progressive meshes, applying it to the visualization of single large objects.
Xia et al. [16,17] discuss the application of progressive meshes to scientific visual-
ization. Luebke and Erikson [18] apply hierarchical dynamic simplification to large
polygonal CAD models, by adaptively processing the entire database without first
decomposing the environment into individual objects. To support interactive ani-
mated environments composed of many objects, this paper focuses on per-object
view-independent resolution selection.

4



3 Overview of the approach

Our approach relies upon a scene description in which objects are represented as
multiresolution triangle meshes, i.e. compact data structures able to efficiently pro-
vide on demand a triangle mesh approximation of an object with the requested
number of faces. At each frame, we aim to find within a fixed short time the trian-
gle mesh representation for each potentially visible object that produces the “best
quality” image within the target frame time. This is done in an optimization phase
which takes as input the set of potentially visible objects determined by a culling
algorithm (e.g. bounding box or occlusion culling) and selects as output the list of
triangle meshes to be rendered.

More formally, a triangle mesh is a piecewise linear approximation of a 3D shape
that can be denoted by a tupleM = (K,V,A), whereK is a simplicial complex
specifying the connectivity of the mesh simplices (the adjacency of the vertices,
edges, and faces),V = {v1,v2, . . . ,vm} is the set of vertex positions defining
the shape of the mesh in<3, andA = {a1, a2, . . . , am} is the set of attributes
associated to the vertices ofM . Both the quality of approximation and the ren-
dering complexity are dependent upon the sizes ofK andV . A multiresolution
representation for a meshM with N (maxvertex) vertices andN (maxtri) triangles can
be seen as a function that takes as input the desired resolutionr ∈ [0, 1] ⊂ <
and produces as output another meshM(r) that approximates the same shape with
aroundbrN (maxtri)c faces. While the number of triangles is discrete, smooth transi-
tion between LODs can be obtained by using geomorphs [15], i.e. by interpolating
between neighboring representations.

At each frame, the culling algorithm produces thus a parameterized representation
of the visible objects set, which associates to each parameter valuer ∈ [0, 1]n an
actual set of triangle meshesS(r) = {M1(r1),M2(r2), . . . ,Mn(rn)}. Our goal
is to find the optimal parameter vectorr? for a given viewing configurationE ,
which includes all parameters of the environment that influence the computation
of the image of an object (e.g. viewpoint and viewing frustum, number and type
of active lights). To this end, we define two heuristics for the visible object set: a
cost(E , S(r)) heuristic, which estimates the time required to render a scene con-
taining the visible objects at resolutionr, and adegradation(E , S(r)) heuristic,
which estimates the quality degradation of the rendered image due to using lower
resolution objects to replace full resolution ones. Even though the complexity of a
multiresolution representation is discontinuous, as the number of triangles is dis-
crete, we can safely assume that degradation and cost heuristics are smooth. This
simplifying assumption, at the core of our approach, introduces an error which is
clearly negligible for sufficiently large values ofN (maxtri) with respect to the error
intrinsically induced by the use of heuristics.

Using this formalism, our approach to predictive adaptive rendering is stated as
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follows:

Minimize: degradation(E , S(r))

Subject to: cost(E , S(r)) ≤ t(desired)

r � 0

r � 1

(1)

where� and� denote componentwise inequality,0 and1 are constant vectors and
t(desired) is the target display time.

The difficulty of solving problem 1 depends largely on the nature of thedegradation
andcost heuristics. As we will see, by using a suitable multiresolution represen-
tation, simple forms of these heuristics can be found, leading to efficient solution
methods applicable in a time-critical setting.

4 Cost and degradation heuristics

4.1 Cost heuristic

Time-critical renderers are typically running on top of a pipelined graphics hard-
ware implementing a Z-buffer algorithm. Scene display starts with an initialization
phase (initial setup, buffer clears), followed by the sequential rendering of each of
the meshes, and finishes by a finalization phase (buffer swap). Initialization and
finalization time can be considered constants, while, assuming a fast enough CPU
and an efficient multiresolution mesh representation, mesh rendering is dominated
either by the time to define rendering attributes and process all the triangles, or by
the time to fill the covered pixels, depending on where the pipeline bottleneck is.
On most hardware configurations, the time to define rendering attributes and pro-
cess all the triangles is just dictated by the speed of the graphics pipe-line for all
operations before rasterization. On very high-end graphics systems, actually fetch-
ing triangles from the multiresolution structure may become the dominant phase.
In both cases, however, we assume that the cost remains linear in the number of
triangles and we thus only need to determine the “speed” of the dominant phase
for the prediction of the rendering time. As we will see in the results section, this
assumption is verified for the data structure presented in this paper.

In other words, the cost of rendering a multiresolution meshM at resolutionr can
be estimated as follows:
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t(setup) +max

 t
(tri)r ·N (maxtri)(M)

t(pix)N (pix)(M, E)

 (2)

whereN (maxtri)(M) is the maximum number of triangles for meshM , t(setup) is
the time associated to setup the rendering environment for an object (e.g. material
binding time for OpenGL),t(tri) is the time to send a triangle through the pipeline
(i.e. the maximum between the time to fetch a triangle from the multiresolution
structure and that of processing it without rasterization),t(pix) is the time to fill a
pixel, andN (pix)(M, E) is an estimation of the number of pixels covered by mesh
M when rendered with a viewing configurationE . From equation 2, we can derive
the minimal resolutionr(min) under which a reduction in resolution (and therefore
possibly in quality) does not reduce rendering time:

r(min) =
t(pix)N (pix)(M, E)

t(tri)N (maxtri)(M)
(3)

The cost heuristics can thus be modeled as:

cost(E , S(r)) = t(fixed) + t(max)>r

r � r(min)

r � 1

(4)

wheret(fixed) = t(init) + t(final) +
∑
i t

(setup)
i is the resolution-independent portion of

the frame time,t(init) andt(final) are the frame initialization and finalization times,
t(max) is the vector containing the maximum rendering timet(tri) ·N (maxtri)(M) for
each meshM , andr(min) is the vector of minimal resolutions as of equation 3. The
constantst(setup), t(tri), t(pix), t(init), andt(final) can be determined by benchmarks in
a preprocessing step. As these constants obviously depend on rendering attributes
such as shading model, number of light sources, and texturing, we pre-compute
their values for each combination of rendering attributes and choose at run-time the
appropriate set of values to use for each object.

The cost model presented here assumes an ideal environment in which rendering
time is dictated only by rendering operations. In practice, however, process schedul-
ing, page faults, and other direct or indirect blocking kernel calls are out of user
control and have an impact on the rendering time. Our current approach to reduce
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unwanted variations in frame-rate is to add tot(fixed) a worst case estimate of the
impact of the system and application environment on the rendering time.

4.2 Image quality degradation heuristic

Thedegradation(E , S(r)) heuristic should provide an estimation of the perceptual
distance between the image produced by rendering in a viewing configurationE a
scene composed of the multiresolution objects present inS at resolutionsr and the
image obtained in the same configuration with all objects at full resolution.

Since local illumination models are used in time-critical applications, global image
quality degradation is well approximated by summing per-object quality degrada-
tion measures. Visual degradation can thus be modeled via an equation of the form:

degradation(E , S(r)) =
∑
i

winterest(E , Si)εimage(E , Si, ri) (5)

wherewinterest(M, E) is a resolution-independent weighting factor measuring the
importance of the objectM to the user from the viewpointE andεimage(E ,M, r)
is a factor estimating how well the image produced by the mesh at resolutionr
approximates the image of the mesh at maximum resolution.

4.2.1 Resolution-independent factors

In our implementation, object importance is modeled by:

winterest(E ,M) = wv(E ,M)we(E ,M)ws(M) (6)

wherewv(E ,M) andwe(E ,M) are factors proportional to the decline in visual acu-
ity with apparent object velocity and distance from the focus point andws(M) is
a user-definable object importance factor (e.g. to impose higher quality for interac-
tively manipulated objects). Various authors have derived velocity and eccentricity
factors from experimental data. We use the models developed by Reddy [19], which
are tailored to computer graphics imagery:
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wv(E ,M) =

 1 whenv ≤ 0.825

−0.463 log(v) + 0.9615 otherwise

we(E ,M) =

 1 whenE ≤ 5.79

7.49/(1 + 0.3E)2 otherwise

(7)

wherev is the apparent velocity of the object’s bounding box center andE is the ap-
parent distance of the projected bounding box to the focus point (i.e. to the screen’s
center or to the 2D cursor position during object manipulation). Bothv andE
should be measured in visual degrees, taking thus into account the physical display
resolution and physical viewing distance. The conversion from pixels to visual de-
grees is straightforward [19]:

p = 2d tan
1

2
min(

Rx

Wx

,
Ry

Wy

) (8)

wherep is the number of pixels per visual degree,Rx andRy are the horizontal
and vertical display resolution,Wx andWy are the physical horizontal and vertical
display size, andd is the physical viewing distance.

Similar models forwinterest, but with different formulations ofwv andwe are pre-
sented in [11,20,21,5].

4.2.2 Resolution-dependent factors

Accurately measuringεimage(E ,M, r) is the most challenging task: measuring im-
age difference using a perceptually meaningful image metric is still an open re-
search subject (e.g. see [22]) and all proposed techniques would require an exces-
sive amount of computation to be carried-out on-line. The main techniques that
have been proposed for run-time LOD selection (e.g. [11,20,5]) thus predict visual
degradation via an analytic function based on a more or less explicit model of the
effects of simplification on the graphics models. A formulation that generalizes a
wide class of proposed heuristics is the following:

εimage(E ,M, r) =
wi(E ,M)

α
r−α (9)

9



wherewi(E ,M) > 0 is a resolution-independent weighting factor andα > −1 is
an exponent defining the shape of the error curve. The most common choices for
these parameters are:

[20]:{wi(E ,M) =
N (pix)(E ,M)

N (maxtri)(M)
, α = 1}

[11]:{wi(E ,M) =
N (pix)(E ,M)

N (maxtri)(M)2
, α = 2}

[5]:{wi(E ,M) = N (pix)(E ,M)
√
N (maxtri)(M), α = −1

2
}

(10)

These formulations intuitively express image degradation as a function which monotonously
increases with the average projected triangle size.

4.2.3 Temporal coherence

The degradation heuristic defined in the previous sections is purely based on im-
age quality and does not depend on quality variation over time. It is possible to
explicitely take into account temporal coherence by including in equation 5 an hys-
teresis factor penalising resolution changes, as done for example in [5,11]. We have
found, however, that for complex scenes hysteresis is not necessary, as resolution
changes are already distributed on many objects and, because of the resolution-
independent factors, already primarily affect the objects on which changes are less
noticeable. We therefore do not include hysteresis in our quality degradation heuris-
tic.

5 Optimization algorithm

5.1 Resolution optimization problem

With our cost and degradation heuristics, the resolution optimization problem 1 can
now be written as:

min{f(r) =
∑
i

ci
α
r−αi : Ar � b} (11)

where
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A =



t
(max)
1 t

(max)
2 . . . t(max)

n

−1

−1
...

−1

1

1
...

1



,b =



t(desired) − t(fixed)

−r(min)
1

−r(min)
2

...

−r(min)
n

1

1
...

1



c =



wv(E ,M1)we(E ,M1)ws(M1)wi(E ,M1)

wv(E ,M2)we(E ,M2)ws(M2)wi(E ,M2)
...

wv(E ,Mn)we(E ,Mn)ws(Mn)wi(E ,Mn)



As we will see, this particular problem structure leads to an efficient numerical
solution techniques.

5.2 Idea of an active set strategy

The first-order necessary conditions for the existence of a minimizerr? of the con-
strained optimization problem 11 require the existence of Lagrange multipliersλi,
such that

∇rf(r?) +
∑
i∈A?

λ?iai = 0

λ?i ≥ 0
(12)

whereA? = {i ∈ I : ai
T r? = bi} is the active set atr?, I = {1, 2, ..., 2n + 1} is

the index set for the inequality constraints,ai denotes the i-th row of the constraint
matrix A, andbi denotes the i-th element of the constraint vectorb. This implies
that it is possible to search for a solution of the original inequality- constrained
optimization problem along the edges and faces of the feasible set by solving a
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sequence of equality-constrained problems of the formmin{f(r) : aTi r = b, i ∈
W}, iteratively refining the working setW with the aim of determining the optimal
active setA? which satisfies condition 12.

This type of optimization technique, known as ”active-set strategy” has proven very
effective for bound constrained or quadratic programming problems [23,24]. The
performance of the method depends on how efficient it is to generate an initial feasi-
ble solution, to solve equality constrained problems during the iterative refinement
phase, and to compute Lagrange multipliers for checking convergence. As we will
see, all these sub-problems can be solved with extreme efficiency in the case of
resolution optimization.

5.3 Active set strategy for resolution optimization

5.3.1 Initialization phase

The generation of a feasible starting pointr(0) and an initial working setW(0)

for the problem is straightforward, since we have known lower resolution bounds
r(min), a cost heuristic monotonously increasing withr, and a degradation heuristic
which is instead monotonously decreasing.

If the problem is infeasible (i.e.cost(r(min)) > t(desired)) or if the problem is feasible
with all objects at full resolution (i.e.cost(1) ≤ t(desired)), the optimization process
terminates and appropriate values forr? can be readily returned. In all other cases,
we know that the problem has a solution with a rendering time of exactlycost(r?) =
t(desired). This means that in the time-constrained case,1 ∈ A?, as constraint number
1 is the timing constraint which is always satisfied at the optimum. We can thus
initialize the working setW(0) = {1}. The simplest solution to generate a feasible
starting pointr(0) is to start searching for a solution fromr(0) = r(min), which we
know is feasible. An incremental technique that produces a value which is closer to
the optimum is to start from the resolution of the objects computed at the previous
frame (or from the minimal resolution for newly visible objects) and to iteratively
reduce, until the problem becomes feasible, object resolutions by a factorβ, starting
from the objects with the highest degradation/cost ratio [5].

5.3.2 Iterative refinement

At each iterationk, given a feasibler(k) and a current working setW(k), we find a
search directiond(k) by solving the equality constrained problem

min{f(r(k) + d(k)) : aTi (r(k) + d(k)) = bi, i ∈ W(k)} (13)
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The solution to this problem can be easily computed by introducing the Lagrangian
function Φ(d, ν) = f(r(k) + d) +

∑
i∈W(k) νi(a

T
i (r(k) + d) − bi) and solving for

∇d,νΦ(d, ν) = 0. Plugging equation 11 into this and solving ford gives us the
following simple analytic formula ford(k):

d
(k)
i =



−r(k)
i + bi+1

ai+1,i
if i ∈ L(k)

−r(k)
i + bi+n+1

ai+n+1,i
if i ∈ U (k)

−r(k)
i +

(b1−
∑

j∈B(k) (r
(k)
j +d

(k)
j )a1,j)ci

a1,i

1
α+1

∑
j∈I\B(k) cja1,j

1− 1
α+1

otherwise

(14)

whereL(k) = {i ∈ {1, 2, . . . , n} : i + 1 ∈ W(k)} is the index set of the vari-
ables whose value is determined by active lower bound constraints,U (k) = {i ∈
{1, 2, . . . , n} : i + n + 1 ∈ W(k)} is the index set of the variables whose value is
determined by active upper bound constraints, andB(k) = L(k) ∪ U (k).

Taking a stepd(k) would take us to the minimizer off on the subspace defined by
the current working set, but may violate some new constraints. We thus compute
the largest possible step sizeµ(k) ≤ 1 that does not violate any constraint and set
r(k+1) = r(k) + µ(k)d(k). The working set is then updated by including inW(k+1)

all constraints active atr(k+1) and the process is repeated until convergence.

5.3.3 Convergence test

If d(k) = 0, thenr(k) is a feasible solution of the problem which is also the mini-
mizer off on the subspace defined byW(k). First order optimality conditions imply
that there exist multipliersλ(k)

i such that:

∇rf(r(k)) +
∑

i∈W(k)

λ
(k)
i ai = 0 (15)

From 12, we know that ifλ(k)
i ≥ 0 for i ∈ W(k), thenW(k) = A? andr(k) is the

minimizer for the original problem. In this case, the iterative refinement process
can terminate with the solutionr? = r(k). Otherwise, we remove from the working
set the constraint with the most negativeλ(k)

i , therefore enabling a further decrease
in the value off in subsequent iterative refinement steps.

The unique set of Lagrange multipliersλ(k)
i necessary for the convergence test is

easily computed by finding the minimum norm solution of equation 15. Plugging
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equation 11 into 15 and solving forλ(k)
i gives us the following simple analytic

formula:

λ
(k)
i =


−
∑

j∈I\B(k) a1,jcjr
−α−1
j∑

j∈I\B(k) a
2
1,j

if i = 1

−ci−1r
α−1
i−1 −λ

(k)
1 a1,i−1

ai,i−1
if i− 1 ∈ L(k)

−ci−n−1r
α−1
i−n−1−λ

(k)
1 a1,i−n−1

ai,i−n−1
if i− n− 1 ∈ U (k)

(16)

5.3.4 Time-critical optimization algorithm

While the presented algorithm is very efficient, requiring onlyO(n) operations per
step, it is possible that for very large scenes the time needed to find the optimal
solution could become too high for real-time use. However, as at each frame the
algorithm starts from a solution which is close to the one computed at the previous
frame and produces a sequence of intermediate solutionsr(1), r(2), ...monotonously
converging to the optimum, we know that acceptable approximate results are avail-
able at certain time-deadlines. It is thus possible to create a time-critical version of
the algorithm by modifying the termination criterion to not only include the conver-
gence test but also a test for the expiration of the allocated time. This idea is used
in algorithm 1. Both the CPU time spent in the optimization and the time that will
be spent in rendering the meshes at the resolution suggested by the optimization al-
gorithm are thus parameters of the algorithm and can be externally imposed. These
characteristics make it an ideal candidate for an optimization stage in a time-critical
rendering pipeline.

5.4 Time-critical rendering pipeline

A time-critical rendering pipeline aims to display an image at certain time-deadlines
independently of the complexity of the scene. To reach this goal, we exploit the
properties of our algorithm by adaptively controlling at each frame both the time
budget allocated to the optimization and the desired display time.

The parameters under system control are the maximum visual feedback lagt(lag),
and the fraction of the frame time to devote to optimization. At each frame, we per-
form the culling, optimization, and display steps in a sequence. The culling step’s
time may vary and is dependent on the type of algorithm used and on the complex-
ity of the scene as seen from the current viewpoint. Before starting the optimization
step, we measure how much of the frame time is still available and allocate in this
range the appropriate time budgets for the optimization and display steps. The op-
timization step is run for the allocated time and its result is then passed to the final
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Algorithm 1 Active-set strategy for solvingmin{f(r) : aTi r ≤ b, i ∈ I}
Given: Starting pointr(0) : aTi r(0) ≤ b, i ∈ I
Given: Timing constraintt(opt)

k ← 0; done ← false; stopped ← false
W(k) ← {i ∈ I : aTi r(k) = b}
while not (done or stopped ) do

d(k) ← arg mind{f(r(k) + d) : aTi (r(k) + d) = b, i ∈ W(k)}
if ‖d(k)‖ = 0 then

r(k+1) ← r(k)

λ(k+1) ← λ : ∇f(r(k+1)) +
∑
i∈W(k) λ

(k+1)
i ai = 0

j ← arg mini{λ(k+1)
i }

if λk+1
j < 0 then
W(k+1) ←W(k) \ {j}

else
W(k+1) ←W(k); done ← true

end if
else
µ(k) ← arg maxµ{µ = min(1,

bi−aTi r(k)

aTi d(k) ) : aTi d(k) > 0, i ∈ I \W(k)}
r(k+1) ← r(k) + µ(k)d(k)

W(k+1) ←W(k) ∪ {i ∈ I \W(k) : aTi r(k) = b}
end if
k ← k + 1; stopped = Time elapsed> t(opt)

end while
r? ← r(k)

W? ←W(k)

Ensure: r? is feasible andf(r?) ≤ f(r(0))
Ensure: done⇒ r? is optimal andW? is the optimal active set
Ensure: done⇒ Time elapsed≤ t(opt)

Ensure: not done⇒ Time elapsed≈ t(opt)

display stage. This time-critical computing approach bounds the maximum visual
feedback lag and enables the use of prediction techniques that extrapolate past user
input data to future time points for lag reduction [12].

On a single-processor machine, the maximum visual feedback lag also dictates
the maximum visual feedback frequency. On a multi-processor machine, visual
feedback frequency can be independently controlled using separate threads for each
pipeline stage, as in [10].
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6 Multiresolution mesh representation

Our optimization approach is independent from the particular data structure used to
represent multiresolution meshes. The only requirements are the ability to represent
a mesh with an arbitrary number of triangles and to traverse the structure at arbitrary
resolutions faster than the graphics pipe-line or, at least, in a time compatible with
our linear cost model. An additional requirement for our approach to be practical
for large scene databases is data structure compactness.

The Progressive Mesh (PM) [15] representation is a suitable candidate structure.
However, the PM representation is compact but cannot be rendered directly, since
it has first to be traversed to construct a single resolution mesh structure which is
then used for rendering [25]. Managing the dynamic mesh structures associated
to each multiresolution representation introduces both time and space overhead
in scene rendering application. Experimental results [25] indicate a reconstruction
rate of less than 200K triangles/sec on a Pentium Pro 200 Mhz. While this cost can
be amortized on more than one frame if the single resolution meshes are cached,
this is at the expense of memory. Moreover, exploiting per-object frame-to-frame
coherency is only a partial solution for complex scenes, because of the discontinuity
in scene complexity caused by objects entering into or exiting from the viewing
frustum [11].

In this section, we propose a simple multiresolution triangle mesh structure (TOM:
Totally Ordered Mesh) that efficiently supports vertex packing and indexing. The
structure is compact, requiring only a small overhead over the single full resolution
mesh, and provides fast triangle and vertex traversal rates at any resolution. A simi-
lar structure has been independently developed by Guéziec et al. [26] for streaming
geometry in VRML.

6.1 TOM: Totally Ordered Mesh

Several algorithms have been recently published that simplify a polygonal mesh by
iteratively contracting vertex pairs (e.g. [27,28,15,29–31]). A vertex pair contrac-
tion operation, denoted(v1, v2) → ṽ, replaces two vertices(v1, v2) with a single
target point̃v to which all the incident edges are linked, and removes any triangles
that have degenerated into lines or points. The operation is quite general, and can
express both edge-collapse and vertex clustering algorithms. The primary differ-
ence between vertex pair contraction algorithms lies in how the particular vertex
pairs to be contracted are chosen and in where the new vertices are positioned. We
define vertex substitution, denotedv1 → v2, the restricted form of vertex pair con-
traction where the target pointṽ is constrained to be the second vertex of the pair,
v2 (see figure 2). By iteratively applying vertex substitution, a triangle mesh can
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be reduced by removing one vertex and possibly some degenerated faces at a time.
Recent research results demonstrate that good simplification quality and speed can
be obtained using this technique [32].
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v
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Fig. 2.Vertex substitution. On the left, the substitutionv1 → v2 removes two triangles, as
(v1, v2) is an edge. On the right, the substitutionv1 → v2 just connects two disjoint mesh
regions. In both cases, all the simplification information can be retrieved from data stored
at the vertex level in the original vertex list.

6.1.1 Data structure

As iterative vertex substitution does not modify vertex data and does not add new
vertices, the only information that has to be stored explicitly is the vertex substitu-
tion history of each vertex. A total order can be defined both on the vertex list and
on the triangle list based on the contraction resolution. Sorting according to this
order after the simplification generates a compact and efficient data structure (see
figure 3). By ordering the vertex list, we obtain a packed representation where the
active vertices at vertex resolutionrv = n

N(maxvertex) are exactly the firstn ones in the
vertex array of sizeN (maxvertex). Moreover, by ordering the triangle list, we have a
way to iterate through the triangles that define the mesh at an arbitrary resolution
in a time depending only on the number of active triangles and the lengths of the
vertex substitution chains.

The memory overhead introduced to store the multiresolution mesh is limited to
the space required to store the vertex substitution history associated to vertex pair
contraction. We encode a vertex substitution by associating to each vertex the vertex
resolution at which the transformation occurs and the reference to the vertex by
which it is to be substituted. As vertices are sorted according to their resolution,
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Fig. 3. TOM data structure. Multiresolution meshes are stored using a vertex list and a
triangle list sorted according to contraction resolution.
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only the vertex reference needs to actually be stored, since the vertex resolution
is implicit in the vertex index. The minimal vertex resolution of a triangle, i.e.
the vertex resolution at which a triangle is removed from the mesh because of the
contraction of one of its edges, does not need to be stored, as it can be retrieved in
a short time by traversing the substitution chains of its vertices.

With this representation, the space overhead over a single-resolution mesh rep-
resentation is equal to just one vertex index per vertex. For a typical mesh of
N (maxtri) = 2N (maxvertex) triangles, considering to use 32 bits to represent both
a vertex index and a floating point number, the overhead associated to the above
structure is of about 8% of the single full resolution mesh memory footprint when
only position and normal are associated to vertices and becomes smaller if other
attributes such as colors and texture coordinates are present.

6.1.2 Mesh traversal

To render a mesh with a specified number of trianglesn, we first determine the
vertex resolutionrv at which triangle numbern+ 1 collapses, then traverse the first
triangles following the vertex chains until the active vertices are reached. Triangle
traversal stops at the first collapsed triangle, i.e. the first time a triangle has two
equal vertex indices. It should be noted that, as the structure is based on vertex sub-
stitution, it could be impossible to get an approximation with exactlyn triangles,
as each substitution deletes one or more faces (typically two for manifold objects).
In this case, the traversal algorithm enumerates at mostn faces, introducing a neg-
ligeable error.

As demonstrated in the results section, the lengths of the substitution chains are
limited and relatively independent from the model size. In any case the lenght at
full resolution is always so that triangle traversal at full resolution is strictly linear.
When resolution decreases, the traversal rate also decreases but slowly, because
vertex substitution cannot, by definition, create too long chains for all the vertices.
In fact, each vertex substitutionv1 → v2 increments by one the depth of all the
vertex chains containing vertexv1 but also keeps unchanged the length of all chains
containing vertexv2.

Smooth transitions between resolutions can be obtained by interpolating vertex
data. As only one vertex is substituted at each simplification step, only the attributes
for the last active vertex have to be interpolated before the traversal. We currently
implement this feature using linear interpolation for all data.
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7 Implementation and results

An experimental software library supporting the time-critical multiresolution scene
rendering algorithm described in this paper has been implemented and tested on
Silicon Graphics IRIX and Windows NT machines. The results presented here were
obtained on a Silicon Graphics 320 PC running Windows NT 4.0 and configured
with a single 500 MHz Pentium III processor with 512 Kb L2 cache, 256 Mb RAM,
and a Cobalt graphics chipset.

7.1 TOM data structure

The triangle meshes used in the evaluation were selected among those available in
the public domain to enable comparison with other approaches. The characteristics
of these meshes are summarized in table 1. Multiresolution versions have been con-
structed using a memoryless simplification algorithm similar to the one introduced
by Lindstrom and Turk [30], modified for building TOM data structures by incre-
mentally constructing vertex chains during simplification. A detailed description of
the simplification technique is beyond the scope of this paper. Details are available
elsewhere [33].

Mesh Vertices Triangles Site

bunny 35942 69449 www-graphics.stanford.edu

fandisk 6871 12946 www.research.microsoft.com/˜hoppe

cow 2915 5804 www.cs.cmu.edu/˜garland/cow.html
Table 1
Triangle meshes used in the tests

7.1.1 Memory

Table 2 summarizes the storage requirements of the TOM structure for the test
meshes, compared to the original mesh in face-vertex form, to a typical LOD rep-
resentation with the six levels of details 100%, 50%, 25%, 12%, 6%, 3%, and to
a progressive mesh (PM) representation using the memory-resident data structure
presented in [25], simplified by removing face-level attributes to make compar-
ison fair. As the PM representation cannot be rendered directly, but has first to
be traversed to construct a single resolution mesh structure [25], we provide for
this representation the minimum and maximum memory required, corresponding
to rendering the mesh at the lowest, respectively highest, possible resolution. All
size estimations assume that the mesh contains only normals as vertex attributes,
and that 32 bits are used for both integer and floating point data.
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Mesh bunny fandisk cow

Face-Vertex 1656 (100%) 313 (100%) 136 (100%)

TOM 1797 (108%) 340 (108%) 148 (108%)

LOD 3521 (213%) 666 (213%) 290 (212%)

PM-0% 1966 (119%) 376 (120%) 159 (117%)

PM-100% 4436 (268%) 840 (269%) 364 (267%)
Table 2
Minimum storage needs for a rendering application.Sizes in Kb, percentages are with
respect to the mesh in face-vertex form.

As we can see from table 2, the TOM multiresolution structure is the most com-
pact, with an overhead of only 8% with respect to the single resolution mesh in
face-vertex form. The overhead fraction is further reduced when associating more
attributes at each vertex (e.g. normal, color, texture coordinates).

7.1.2 Traversal and rendering

As we are focusing on time-critical scene rendering applications, the most impor-
tant results are relative to the triangle traversal rate through our multiresolution
structure. The overhead with respect to traversing a single resolution mesh is only
dependent on the lengths of the vertex substitution chains. Figure 4 presents the
overhead associated to traversing thebunny, fandisk, andcow meshes at various
resolutions. As we can see, the results on different meshes are very similar. The
overhead grows slowly with the simplification ratio, and in all cases, never exceeds
75%. It is thus possible to traverse all active triangles while retrieving vertex at-
tributes at a speed sufficient to feed the 3D graphics pipeline even on high-end 3D
accelerators.
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Fig. 4. Multiresolution traversal overhead. Ratio of extra vertices traversed to render
meshes at multiple resolutions. Resolution expressed as fraction of vertices.

Figure 5 presents the data structure traversal and rendering performance obtained
with the multiresolution structure for thecowmesh. Similar results were obtained
for the other meshes and are not presented here. For the benchmarks we used two
directional lights, Gouraud shading, and a viewing configuration compressing the
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mesh to a 50x50 pixel area, to avoid fill-rate bottlenecks. Our current implementa-
tion renders meshes with the strict OpenGL 1.0 core command set as a sequence of
independent triangles whose vertices are specified usingglNormal/glVertex
calls. We expect a performance improvement by using theEXT vertex array
extension.

As we can see, even using standard OpenGL, the rendering performance at all res-
olutions for the multiresolution version is similar to the limit given by rendering a
streamlined version of the mesh. In both cases, the meshes are rendered at a con-
stant speed of about 800 KTris/second at all resolutions, showing that our linear
cost heuristics is a good approximation of the rendering behavior. Triangle traver-
sal rates on the multiresolution structure, measured by having the traversal routine
call empty vertex/normal procedures are well above the rates obtained with the ren-
dering code for all resolutions, since they range from 3.7 MTris/second to over 10
MTris/second. We can therefore expect to have good timing predictions using the
linear cost heuristics even on current high-end machines.
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Fig. 5. Multiresolution traversal and rendering performance. Timing statistics for the
cowmesh. Experimental measures on a SGI 320, single 500 MHz Pentium III with 512 Kb
L2 cache, 256 Mb RAM, Cobalt graphics. Rendering environment: two directional lights,
one material per object, Gouraud shading, independent triangles, one normal per vertex

7.2 Time-critical rendering

To test the behavior of our algorithm, we have written a simple walkthrough appli-
cation on top of our multiresolution modeling and time-critical rendering libraries.
In this application, the culling phase uses a simple bounding box test, the optimiza-
tion phase uses the algorithm presented in this paper, and rendering is performed in
OpenGL, with one positional light, one material per object, Gouraud shading, and
one normal and one color per vertex. The application is single-threaded and the high
resolutionQueryPerformanceCounter API is used for all timing measures.
In all tests, we have used the parameters{wi(E ,M) = N(pix)(E,M)

N(maxtri)(M)
, α = 1} for

the degradation heuristic. A videotape demonstrating the system with recordings of
live sequences is available [34].

21



Fig. 6.Scene walkthrough environment. Test scene at full resolution contains 529 objects
for a total of 3,070,316 triangles. The camera is moving from point A to point C along the
path colored in black, always looking towards point B.

7.2.1 Cost model coefficients

The cost model coefficients corresponding to the rendering environment used in
the benchmark application where determined experimentally by rendering sample
objects with a variety of sizes and LODs. Table 3 summarizes the values used for
the tests.

Description Cost model coeff. Value

Initialization/finalization t(setup) + t(final) 13889µs

Triangle draw t(tri) 1.064µs/tri

Pixel fill t(pix) 0.005µs/pix

Material setup t(init) 49.14µs/obj
Table 3
Cost model coefficient for benchmark application.Experimental measures on a SGI
320, single 500 MHz Pentium III with 512 Kb L2 cache, 256 Mb RAM, Cobalt graphics.
Rendering environment: one positional light, one material per object, Gouraud shading,
independent triangles, one normal and one color per vertex

7.2.2 Test environment

We have recorded various parameters during the walkthrough of a test scene con-
taining 529 objects for a total of 3,070,316 polygons (see figure 6). The figure was
constructed by randomly distributing over the X-Y plane colored replicas of the
cowmesh. Images were displayed on a 512x512 window.

The scene has been constructed and the camera path has been established so as
to include various extreme viewing configurations, representing typical situation:
scene exploration, object inspection, sudden changes of interest.
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All objects are initially visible from point A and are progressively exiting from
the viewing frustum until point B is reached, where the camera is focusing on one
objects, the others remaining on the background. At point B, the camera suddenly
changes orientation, and a large number of objects becomes immediately visible.
Finally, the camera moves back towards point C, always looking towards the scene.

Without resolution adaptation, rendering times on the machine used for the tests
varies from 752 to 3320 milliseconds per frame depending on the number of visible
objects.

7.2.3 Experimental results and discussion

The number of potentially visible triangles for each observer viewpoint along the
test path, as well as the number of triangles actually rendered to meet a display time
constraint oft(desired) = 100ms is presented in the bottom diagram of figure 8. The
corresponding frame time statistics are presented in the top diagrame of the same
figure. The predicted frame time closely matches the actual measured frame time,
validating our cost model assumptions.

The actual frame time is maintained below the desired time even in the presence of
large variations in visual complexity. Speedups with respect to full resolution ren-
dering range from 7.5x to 33.2x. Even with a relatively large number of objects, we
can see that the optimization time remains relatively small compared to the display
time. The tests have been performed using a time constraint for the optimization
step oft(opt) = 7ms. For large portions of the path, optimization has been com-
pleted in a time sensibly inferior to the allocated limit (typically3ms), producing
an optimal solution and leaving more time for other system tasks. In a more elab-
orate implementation, a feedback algorithm could be used for the adaptation of
t(opt).

Fig. 7.Test scene as seen from viewpoint B.Smooth shading, flat shading, and resolution
mapping.

Figure 7 presents the scene as seen from viewpoint B. In the first image, the objects
are rendered in smooth shading, as presented to the viewer during interaction. The
middle image presents the scene seen from the same viewpoint, with all objects
rendered in flat shading to emphasize tessellation details. The last image depicts
the resolution chosen for each object, lighter shades representing more detail. In
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this particular frame, resolutions have been distributed in the range[0.376, 0.996].
The mapping illustrates the effect of the degradation heuristic on the distribution of
the polygon budget. As we can see, there is a wide variation between resolutions,
but little perceptual differences between levels of detail, which only appear with
some evidence in the flat shading figure.

Timing and quality results are significantly better than what can be obtained with
the standard discrete LOD approaches.

7.2.4 CAD visualization example

Computer Aided Design (CAD) and architectural models typically contain hun-
dreds of objects and hundreds of thousands to millions of 3D primitives. Our algo-
rithm can be used to display these models at interactive rates. We have tested our
experimental walkthrough application on a model of the ATLAS Experiment Pit,
a component of the Large Hadron Collider (LHC), a particle accelerator facility
of the European Laboratory for Particle Physics (CERN) in Geneva, Switzerland.
The full resolution model contains 250K triangles and 985 parts. Figure 9 presents
three images of the detector. In the first image, the detector is rendered at full reso-
lution. In the middle image, the resolution of each of the detector’s component has
been adapted to meet a rendering time constraint of100ms on the machine used
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for the tests. The overall complexity of the model has consequently been reduced
to 110’300 triangles from the original 245’538. The last image depicts the resolu-
tion chosen for each object, lighter shades representing more detail. The mapping
illustrates that the reduction in detail has been obtained by simplifying the small
components in the interior of the detector. Figure 10 shows another frame of the
walkthrough, with the user focusing on the details which were reduced in the over-
all view. Now, construction details in the foreground are clearly visible, and timing
constraints are met by reducing the complexity of background objects.

Fig. 9. ATLAS Experiment Pit, part of the LHC facility at CERN. Full resolution
(245’638 triangles), adaptive resolution (110’300 triangles), and resolution mapping.

Fig. 10.ATLAS Experiment Pit detail, part of the LHC facility at CERN. Full resolu-
tion (221’814 triangles), adaptive resolution (116’716 triangles), and resolution mapping.

8 Conclusions and future work

We have described a framework for time-critical rendering of very large and geo-
metrically complex scenes. Our technique relies upon a scene description in which
individual scene components are represented as multiresolution triangle meshes.
We perform a constrained optimization at each frame to choose the resolution of
each potentially visible object that generates the best quality image while meet-
ing timing constraints. Image quality degradation and rendering time are predicted
using customizable heuristics.

While our previous work [5] focused on a general solution to the problem, valid as
long as the problem remains convex, the present work demonstrates that the par-
ticular optimization problem associated to a large class of commonly used heuris-
tics can be solved more efficiently using an active-set strategy, which searches for
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a solution of the original inequality-constrained optimization problem along the
edges and faces of the feasible set by solving a sequence of equality-constrained
problems. By exploiting the problem structure, Lagrange multiplier estimates and
equality constrained problem solutions are computed in linear time. An important
area for future work is the development and validation of perceptually accurate
image degradation measures, as well as of approximations leading to simplified
numerical solution methods applicable in a time-critical setting.

The applicability of our approach depends on the ability to represent a mesh with an
arbitrary number of triangles and to traverse a mesh structure at an arbitrary reso-
lution in a short predictable time. A data structure satisfying these criteria has been
described. The current data structure only supports view-independent resolution
rendering, which is appropriate for scenes composed of many small scale objects.
We are working on extending the data structure to support high-speed variable res-
olution traversals. In this case, the optimization algorithm will assign a polygon
budget to each of the visible objects based on timing constraints, but each object
will autonously decide how to distribute this budget at each frame. This approach
will improve the visual quality of scenes composed of large objects with linked
pieces. Currently, selecting different resolutions for the pieces may lead to cracks
in the overall assembly, a problem that can be avoided by treating each group of
linked pieces as a single multiresolution object.

Our experimental results demonstrate that the presented algorithms and data struc-
tures provide low memory overhead and smooth level-of-detail control, and guaran-
tee, within acceptable limits, a uniform, bounded frame rate even for widely chang-
ing viewing conditions. The system enables the handling of scenes totaling millions
of polygons and hundreds of independent objects on a standard graphics PC.

We believe that ultimately a time-critical rendering system should combine algo-
rithms such as ours with occlusion culling [35], image based rendering [36] and
other rendering acceleration methods [37]. The system should automatically parti-
tion the scene, choosing the most appropriate methods to use for different sets of
objects based on cost/quality consideration and algorithm constraints.
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