
Practical Volume Rendering in mobile devices

Pere Pau Vázquez Alcocer1

and Marcos Balsa Rodŕıguez2

1 UPC, MOVING Graphics group, Spain
www: http://moving.upc.edu/

e-mail: ppau@lsi.upc.edu
2 CRS4, Visual Computing Group, Italy

www: http://www.crs4.it/vic/
e-mail: mbalsa@crs4.it

Abstract. Volume rendering has been a relevant topic in scientific vi-
sualization for the last two decades. A decade ago the exploration of
reasonably big volume datasets required costly workstations due to the
high processing cost of this kind of visualization. In the last years, a high
end PC or laptop was enough to be able to handle medium-sized datasets
thanks specially to the fast evolution of GPU hardware. New embedded
CPUs that sport powerful graphics chipsets make complex 3D appli-
cations feasible in such devices. However, besides the much marketed
presentations and all its hype, no real empirical data is usually avail-
able that makes comparing absolute and relative capabilities possible. In
this paper we analyze current graphics hardware in most high-end An-
droid mobile devices and perform a practical comparison of a well-known
GPU-intensive task: volume rendering. We analyze different aspects by
implementing three different classical algorithms and show how the cur-
rent state-of-the art mobile GPUs behave in volume rendering.

1 Introduction

Discrete 3D scalar fields are used in a variety of scientific areas like geophysics,
meterology, fluid flow simulations and medicine; its exploration allows scientists
to extract different types of relevant information. The most outstanding prop-
erty of this kind of data is the availability of information in the whole volume,
with each space portion having differentiate values. Mesh-based visualization [1]
is not well suited to explore all this information since it is typically surface-
oriented. This led the development of a new branch of scientific visualization
to focus on volume rendering with the objective of enabling exploration of this
enormous sources of data. The last two decades volume rendering has been a
very active research topic generating many publications covering different issues
like illumination, compression or massive model exploration.

One of the main difficulties of volume rendering is the amount of information
to deal with. In the 1990s costly workstations were required to work with vol-
ume models using software rendering or special-purpose hardware. It was in the
later 2000s that interactive volume visualization became possible in high-range

desktop and laptop computers by exploiting the texture functionality present in
consumer graphics hardware [2].

Nowadays, laptops are being replaced by lighter and smaller embedded de-
vices, like smartphones or tablets, for everyday’s work. These devices have be-
come powerful enough to run complex 3D applications previously only available
to high end PCs and laptops. Current generation of mobile devices is able to run
3D games with quality comparable to the previous generation of console games.

Many vendors often praise the horsepower of the new CPUs and GPUs
sported in mobile phones. However, it is difficult to predict their performance
for graphics intense tasks, since it depends on a complex combination of com-
putation power, memory, bandwidth, and several other factors. Therefore, we
decided to evaluate the suitability of most modern devices for one well-known
GPU-consuming scenario: volume rendering. The contributions introduced in
this work are:

– An exhaustive analysis of the most recent mobile platforms and mobile de-
vices currently available in the market.

– An in-depth analysis of the performance of three state-of-the-art volume ren-
dering methods on a subset of the most relevant graphics hardware available
in modern mobile devices.

2 Previous Work

2.1 Volume Rendering Algorithms

Volume rendering is a set of techniques used to display a 2D projection of a 3D
discretely sampled dataset. These 3D datasets can come from different sources:
fluid simulation, geological exploration, medical images or industry object scans.
We will focus on medical models. The two most popular volume rendering tech-
niques are RayCasting and Texture Slicing.

RayCasting works by tracing rays from the camera into the volume and
solving the rendering integral along this rays. Volume ray casting was intro-
duced by Levoy[3] two decades ago; Krüger[4] et al. presented one of the first
GPU implementations one decade ago. Ray casting was done in software for
many years due to the lack of hardware support, which was introduced with
programmable shader functionality and 3D texture support. A modern GPU
implementation of this technique relies on the fragment shader to perform the
tracing of rays from eye view into the volume.

Together with ray casting, texture slicing is the second most popular tech-
nique for GPU based volume rendering. It is an object-order approach. The
proxy geometry used to render the volume data are 2D slices or quads. The
slices are projected onto the image plane and combined according to the com-
position scheme. Slices can be sorted front-to-back or back-to-front, although
probably the most popular is back-to-front order and relying on hardware color
blending. Since this technique only relies on standard 2D textures and texture
blending, which are available in graphics hardware since many years, it is the

most compatible and efficient technique. These techniques, as other object-order
algorithms, use simpler addressing arithmetics because of working in storage or-
der and so have better performance without complex improvements. These slices
can be object-aligned or view-aligned. Object-aligned slices require having three
slice sets in GPU, one for each axis, since we need to render the slice set that
is most perpendicular to the view direction. There are graphic glitches when
switching from one slice set to another. View-aligned slices do not have these
problems; however, view-aligned slices require 3D texture support. The proxy
geometry must be calculated each frame depending on the view position; for
this purpose, a bounding box is intersected with planes perpendicular to the
view direction and regularly arranged.

2.2 Mobile devices graphics hardware

Mobile devices, especially high-end models, have been typically accompanied
by graphics acceleration hardware, only 2D acceleration was supported at first
but current devices typically include 2D and 3D acceleration. As of today, it is
common in high-end mobile devices to have at least a resolution of 480 pixels
width and 800 pixels height, while while next generation will introduce resolu-
tions around 1200x720 (Samsung Galaxy Nexus and most Android tablets) or
2048x1536 (iPad3). This resolution increase comes together with a great increase
in graphics hardware performance. This is possible thanks to the powerful CPU
and GPU that they all have built-in. All of the devices included in the compar-
ison have support for OpenGL ES 2.0 enabling the use of shaders for graphics
programming. There are mainly five dominating architectures in the market (see
Table 1):

– Qualcomm. Qualcomm chipsets have been implemented in many devices
from a wide range of manufacturer’s, with HTC being its most dedicated
customer. The SoC solutions provided by Qualcomm come with a graphics
solution of its own called Adreno. There are three generations of Adreno
GPU’s: 200 (Nexus One), 205 (Htc Desire HD) and 220 (HTC Sensation);
each generation easily doubles the graphic performance of its antecessor.

– Texas Instruments. TI is one of the most well known embedded device man-
ufacturers and has been present in many Motorola devices and also in recent
LG devices (LG Optimus 3D). TI has frequently used the Power SGX 535
and Power SGX 540 GPUs from Imagination Technologies.

– Samsung. In the last years, has also developed a couple of ARM chipsets:
the Hummingbird implemented in the Samsung Galaxy S and accompanied
by a Power SGX 540 GPU, and the Exynos dual-core implemented in the
Samsung Galaxy S2 with the Mali-400MP GPU from ARM.

– NVIDIA. Last year NVIDIA introduced its Tegra 2 platform which is an
implementation of ARM’s instruction set and accompanied by an Ultra-low
voltage (ULV) GeForce graphic chipset also by NVIDIA. This was one of
the very first dual-core solutions for mobile devices and is present in the
majority of Android tablets sold the past 12 months.

– Apple. Initially integrated chipset solutions from other companies but with
the iPhone 4 they started developing their own chipsets, like the A4 in iPhone
4. This ARM processor is complemented with a Power SGX 535 GPU.

Table 1: Comparison of most extended mobile GPU hardware
Model MTris/sec MPix/sec 3D Manufacturer

textures

Adreno 200 22 133 Yes Qualcomm
Adreno 205 41 245 Yes Qualcomm
Adreno 220 88 500 Yes Qualcomm
Power SGX 535 14 500 No Imagination Technologies
Power SGX 540 28 1K No Imagination Technologies
Power SGX 543 40-200 1K No Imagination Technologies
Power SGX 543MP 40-532 1K-16K No Imagination Technologies
Mali 400MP 30 300-1K No ARM
Tegra2 71 1.2K No NVidia

In Table 1 there is a comparison of the most advanced graphic chipsets used
in current high-end mobile devices. There are two predominant manufacturers
in this table: Qualcomm and its Adreno family of GPUs, and Imagination Tech-
nologies with its Power SGX GPUs. Last year, the Tegra2 chipset from NVIDIA
has gained importance, specially for being included in almost all new Android
tablets. The Mali-400MP GPU is ARM’s proposal for their reference design. All
the GPUs present in this table offer support for OpenGL ES 2, and so shader
programming and state-of-the-art graphics. The only GPUs offering 3D texture
support are the ones from Qualcomm: the Adreno family. The numbers in this
table are mostly given by the manufacturers and should be taken only as peak
values, since they are very conditioned by hardware configuration parameters
such as clock frequency. For the sake of comparison, let’s say that current gen-
eration consoles peak numbers are not too far from those provided by mobile
hardware: the XBOX 360 has a peak of 500 million of triangles per second, while
the PS3 peak is at 250 million of triangles per second. And for the mobile GPUs
let’s mention the Power SGX 540, that could reach 90 million of triangles per
second by increasing clock’s frequency to 400Mhz, and the NVIDIA Tegra 2 with
a peak theoretical limit of 71 million of polygons per second. On the other hand,
for the purposes of our empirical comparisons, the most relevant numbers are
those related to fill rate (millions of pixels per second) because volume render-
ing applications use little geometry and depend mostly on fragment processing.
Comparing typical mobile GPU fill rate of 1 billion of pixels per second with
medium range Desktop GPU (like NVIDIA GTX 460) fill rate around 37 billion
of pixels per second, shows that there is still an important gap to be filled. It
must be taken into account that typical mobile devices have to render 384.000
pixels for a screen of 480x800, while a Full HD desktop monitor would require

rendering 2, 073.600 pixels, which is 5.4X the number of pixels in a mobile de-
vice. Anyway, including these 5.4X factor in the comparison still gives 6.8 times
more fill rate to medium-range desktop GPUs.

3 Implementation details

Our application implements two different rendering techniques for volume ren-
dering: object-aligned slices and ray casting. The object-aligned slices technique
is implemented both for 2D textures and 3D textures in order to make the ap-
plication compatible with more hardware. Not all the techniques work on every
device since 3D textures are not common in embedded graphics chipsets, but
having these different implementations allows us to compare which one per-
forms better on different hardware. We have also implemented a benchmark
thought to be executed on many different devices with heterogeneous hardware
configurations in order to compare performance.

Fig. 1: These images compare a detail in two renditions of the CT head dataset
at half viewport resolution (left) and full viewport resolution (right)

Since the frame rates are not high, as we will show later, we need to add some
improvements in order to make the application interactive. Being the application
so pixel intensive, we took to two different approaches for level of detail: reducing
the number of slices and reducing the viewport resolution. When low viewport
resolution is enabled, static renders are also done in half resolution; thanks to

linear interpolation using half the resolution of the viewport still give good visual
quality slightly alleviating the aliasing (see Figure 1).

Fig. 2: These images show renditions at full viewport size of the CT head dataset
(with dimensions 256x256x113) using 64, 128, and 256 slices, respectively

On the other hand, reducing the number of slices without using lower resolu-
tion viewport produces more noticeable artifacts (see Figure 2). For this reason,
we propose using the maximum number of slices to match dataset dimensions
and simply enable low viewport resolution to improve interaction. We offer the
user the option to define a lower slice count for rendering while there is user
interaction for slowest devices, but in our tests it has only been needed for ray
casting where the hardware still performs at low frame rates.

We have also taken care of the usability of our approach. For volume models,
the definition of a transfer function is a very important step, since it determines
which information is visible and how. We implemented a transfer function editor
tailored to small screens with numerous visual feedbacks for selection, such as
the selection highlighting in yellow, or the mini-zoom tool tailored to perform
fine selection whilst avoiding the problem of finger occlusion (see Figure 3).

4 Results

We have performed a variety of performance tests with different configurations to
be able to extract meaningful information about different hardware restrictions:

– Sampling resolution. We have run benchmarks with different volume sam-
pling frequencies (number of slices for slice-based renderers or number of
samples per voxel for the ray cast renderer) to analyze the impact of voxel

Fig. 3: Edition of the transfer function with the mini-zoom helper. This function
defines two sub-functions associating transparency and color to the scalar values

color composition on performance. We have run the tests with the Engine
dataset with dimensions 256x256x256 because most of the devices tested
haven’t been able to load larger datasets. Only for the 3D texture slice ren-
derer and for the ray caster we have run the benchmark with the Sheep
dataset with dimensions 352x352x256.

– Viewport resolution. We have run benchmarks in full resolution (480x800)
and half resolution (240x400) to analyze the effect of fill rate.

The benchmarks consist of a series of camera positions that are rendered
consecutively. These camera positions start very close to the viewer with the
volume covering the full viewport and gets farther and farther progressively
while rotating exactly five times 360 degrees until the volume only covers about
1/8 of the screen. This way we get an averaged frame time from all the views of
the volume covering the full viewport and only covering a small portion.

We have defined four different qualities based on sampling frequency. For
slice-based renderers, quality 0 uses at most 64 slices per axis, doubling the
slice count until quality 3 where 512 slices per axis is the limit (depending on
the dataset). Quality is defined as the number of samples per voxel for the ray
casting renderer, with 0 being 0.25 samples per voxel (taking into account only
1 of every 4 voxel) and 3 being 1 sample per voxel. It must be noted that for
the 2D texture slice renderer we resample the textures in order to reduce the
texture data size. This allows us to load bigger volumes although the rendering
will be in lower resolutions (ie. the slices in a 5123 dataset in quality 2 would be
resampled to 2563). The maximum effective volume size we have been able to
load in most devices is the 2563 Engine dataset for this renderer; it has the big
disadvantage of requiring 3 slice sets, one for each axis, and so uses three times
more GPU memory. For the 3D texture slice renderer and the ray cast renderer

the limits are imposed by the drivers and the largest volume dataset that we
have been able to load is the 352x352x256 Sheep dataset.

Table 2: Benchmark results of the implemented volume renderers on different
mobile devices in full viewport resolution and half viewport resolution. Quality is
the number of slices [64, 128, 256, 512] for slice-based renderers and the number
of samples per voxel [0.25, 0.5, 0.75, 1] for the ray casting renderer. The values
in the table are frames per second

high resolution low resolution

Galaxy S Advent HTC HTC Galaxy S Advent HTC HTC
Qual. Vega desire desire Z Vega desire desire Z

slices 2d 0 6.28 7.41 5.75 13.25 11.49 22.73 15.15 34.48
1 3.24 3.65 3.08 7.35 6.85 12.66 22.47
2 1.91 1.92 2.2 5.38 3.64 7.14 5.92 9.95
3

slices 3d 0 5.08 10.31 6.76 11.24
1 2.65 5.15 4.37 6.62
2 1.84 2.33 2.33 3.71
3 1.81 1.63 2.43 2.94

ray cast 0 0.42 2.06 1.71 5.38
1 1.54 0.95 4.02
2 0.96 0.65 3.06
3 0.77 1.96

GPU Power Tegra 2 Adreno Adreno Power Tegra 2 Adreno Adreno
SGX 540 200 205 SGX 540 200 205

Table 2 shows the frame rate values obtained from running the benchmark on
different devices. The 2563 Engine model has been used for all the benchmarks.
All these devices have a screen resolution of 480x800 and the results are for low
(half the viewport resolution) and for high resolution (full viewport resolution).
From this table, we can infer that the Samsung Galaxy S, with a performance
boost of 2X, is less affected by reducing the resolution than the HTC desire,
which gets a boost of 3X. The Adreno 205 GPU in the HTC Desire Z and the
Tegra 2 in the Advent Vega show the same 3X performance boost with half
resolution. The Advent Vega has not achieved the results that one could expect
from the Tegra 2 chipset (while the LG Optimus 2X also including the Tegra 2
performs significantly better, as will be seen later).

4.1 Device performance comparison

We have run our benchmarks on many devices to illustrate the results of the 2D
texture slice renderer, which is the most compatible approach; this will give us
a good overview of current mobile GPUs performance.

In Figure 4 we can see benchmark results for all the devices we have tested
with the slice renderer based on 2D textures. There are four differentiated groups:

Fig. 4: Benchmark results of various devices for the 2D texture slice renderer.
Lowest lines show Nexus One, Samsung Galaxy S with previous generation single
core hardware and the Advent Vega, a low-cost Tegra 2 device

– The Samsung Galaxy S2, with a dual-core processor including the Mali-
400MP GPU, achieved the best performance by almost doubling its nearest
competitor. This is one of the latest devices in the market at the time of
writing. On the other hand, they have not support for 3D textures.

– The HTC Desire HD/Z are two recent devices from HTC; they implement
the second generation of Adreno processors, the Adreno 205. This GPU fam-
ily is the only one that we know to have 3D texture support. Its performance
is in the second range quite below the Galaxy S2.

– The LG Optimus 2X, with a dual-core CPU based on NVIDIA Tegra 2
platform, is half way between the Qualcomm first and second generations
of GPUs. The Tegra 2 platform was expected to perform much better, but
seems that for our benchmark implementation this is not the case.

– The Nexus ONE, HTC Desire, Samsung Galaxy S and the Advent Vega are
in the last group. The first two integrate the Adreno 200 from the first
generation of Qualcomm chipsets, while the Samsung Galaxy S sports a
powerful Power SGX 540 from Imagination. The Advent Vega seems to lack
some driver optimizations since the same platform in the Optimus 2X has
performed significantly better. Taking the Advent Vega apart, this last group
if composed of some of the most extended single-core Android devices.

4.2 Comparing the volume rendering implementations

We see how the slice-based renderers have much better performance than the
ray casting; this is mainly because the work done in the fragment shader is much

lighter and most of the work is done in the composition phase performed just
after that using the typical hardware pipeline which is much more optimized.
For the 2D texture slice renderer we have used the 2563 Engine dataset and
so quality 2 and 3 have the same performance. The trilinear filtering used by
3D textures is one of the reasons of the performance gap between the 2D and
3D slice renderer, trading visual quality for performance. For the ray casting
renderer the intensive use of fragment shaders takes the GPU to its limits.

Mobile GPUs are not yet as capable as their desktop and laptop counterparts
due mainly to low graphic unit count and no dedicated graphic memory. Lat-
est mobile GPUs typically have between 4 and 12 processing units or shaders,
depending on them having unified shader architecture or implementing Ver-
tex/Fragment shaders, and shared system memory with some fraction of this
memory reserved for the GPU. On the other hand, latest mobile devices sport-
ing these GPUs also include high resolution screens (ranging from 800x400 to
1280x720 and 5” to 10”). These two facts: low processing unit count with no
dedicated memory and high resolution screens introduce a big bottleneck into
the fragment shader phase. We have seen that typically using partial resolution
is enough for giving good results in such small screens, specially while interact-
ing, mainly because human eye is not able to exploit this high resolution at the
typical usage distance (around 15-30 cm).

5 Conclusions and Future Work

We have achieved interactive frame rates on most high-end mobile devices cur-
rently available. We also implemented a transfer function editor that is spe-
cially designed for small screens. However, many aspects could be improved
on both sides. The object-aligned slices approach produces disturbing graphic
glitches when changing the point of view from one axis to another; also there
are noticeable artifacts when looking at steep angles. For the 2D texture slice
renderer, requiring three slice sets is unavoidable but by using the volume ren-
dering schema presented by Krüger[5] the graphic glitches produces by slice set
changes should be unnoticeable. Also the usage of multiple textures per slice
and implementing trilinear filtering on the shader should improve visual quality.
All these extensions will add a considerable CPU and GPU cost. For the 3D
texture slice renderer the most noticeable problem is due to the object-aligned
slices again, requiring high number of slices to produce a high quality view. In
this case, implementing view-aligned slices would give much better results at
the expenses of some performance loss due to the calculation of new slices each
frame. The ray casting renderer we have implemented is very basic and can
be greatly improved both for quality and performance. Using too few samples
produces many artifacts, but this is unavoidable due to the low performance
of this technique on current hardware. To improve performance, we could use
empty-space skipping [6] to avoid sampling empty regions at the expenses of
using another low resolution 3D texture and one extra texture access at each
sample point. However, these are improvements we plan for next generation de-

vices. At the moment of the implementation, the most advanced devices and
were LG Optimus 2x and Samsung Galaxy SII. All the implemented techniques
could be greatly improved by adding shadows. However, this would add quite
many calculations on the fragment shader and could not be feasible.

Acknowledgments

This project has been supported by TIN2010-20590-C02-01 Project of the Span-
ish Government and People Programme (Marie Curie Actions) of the EU’s 7th
Framework Programme FP7/2007-2013/ under REA grant agreement n290227.

References

1. Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering, Third Edition.
A K Peters (2008)

2. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS workshop on Graphics hardware. HWWS ’01, ACM (2001) 9–16

3. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8
(1988) 29–37

4. Krüger, J., Westermann, R.: Acceleration techniques for gpu-based volume render-
ing. In: Proceedings IEEE Visualization 2003. (2003)

5. Krüger, J.: A new sampling scheme for slice based volume rendering. In: Volume
Graphics. (2010) 1–4

6. Li, W., Mueller, K., Kaufman, A.: Empty space skipping and occlusion clipping
for texture-based volume rendering. In: In Proc. IEEE Visualization 2003. (2003)
317–324

	Practical Volume Rendering in mobile devices
	 Pere Pau Vázquez Alcocer1 cl@@auth and Marcos Balsa Rodríguez2
	1 Introduction
	2 Previous Work
	2.1 Volume Rendering Algorithms
	2.2 Mobile devices graphics hardware

	3 Implementation details
	4 Results
	4.1 Device performance comparison
	4.2 Comparing the volume rendering implementations

	5 Conclusions and Future Work

