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Instant Automatic Emptying of Panoramic Indoor Scenes

Giovanni Pintore, Marco Agus, Eva Almansa, and Enrico Gobbetti

Fig. 1: Given a 360 panoramic photo of a cluttered indoor scene, our end-to-end approach automatically returns a photorealistic
view and depth of same scene emptied of furniture and clutter. Both visual appearance and depth, estimated at interactive speed, are
highly suitable for compelling and immersive XR applications, such as (re-)furnishing or planning of interior spaces.

Abstract—Nowadays 360◦ cameras, capable to capture full environments in a single shot, are increasingly being used in a variety of
Extended Reality (XR) applications that require specific Diminished Reality (DR) techniques to conceal selected classes of objects. In
this work, we present a new data-driven approach that, from an input 360◦ image of a furnished indoor space automatically returns,
with very low latency, an omnidirectional photorealistic view and architecturally plausible depth of the same scene emptied of all clutter.
Contrary to recent data-driven inpainting methods that remove single user-defined objects based on their semantics, our approach
is holistically applied to the entire scene, and is capable to separate the clutter from the architectural structure in a single step. By
exploiting peculiar geometric features of the indoor environment, we shift the major computational load on the training phase and
having an extremely lightweight network at prediction time. Our end-to-end approach starts by calculating an attention mask of the
clutter in the image based on the geometric difference between full and empty scene. This mask is then propagated through gated
convolutions that drive the generation of the output image and its depth. Returning the depth of the resulting structure allows us to
exploit, during supervised training, geometric losses of different orders, including robust pixel-wise geometric losses and high-order 3D
constraints typical of indoor structures. The experimental results demonstrate that our method provides interactive performance and
outperforms current state-of-the-art solutions in prediction accuracy on available commonly used indoor panoramic benchmarks. In
addition, our method presents consistent quality results even for scenes captured in the wild and for data for which there is no ground
truth to support supervised training.

Index Terms—Mediated and diminished reality, Omnidirectional, 360, Real-time performance issues, AR/MR/VR for architecture,
Computer vision, Machine learning

1 INTRODUCTION

Current 360◦ cameras offering viable low-cost and energy-efficient
solutions for full-context single-shot capture are increasingly popular
in many application fields [11]. Since the captured 360◦ content, also
known as panoramic, spherical, or omnidirectional imagery, covers the
entire sphere around the viewer, even a single shot cannot be statically
experienced at once, making it fundamentally different, more immersive
and more dynamic, than traditional 2D imagery [5]. In particular,
when consumed through Head-Mounted-Displays (HMDs), the user
actively focuses on the desired content via natural head movements,
just like humans do in real world, achieving a very high degree of
immersion [52]. For this reason, omnidirectional imagery is becoming
a fundamental component for creating immersive content from real-
world scenes, and for supporting a variety of Virtual Reality (VR)
applications [23]. Notably, virtual tours based on spherical images are
extremely popular in the real estate domain, and have rapidly increased
their appeal in the pandemic period [45]. A pure exploration of existing
environments through the original spherical photos, is, however very
limiting. Prominent examples of additional needs include the emptying
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of rooms before their presentation to virtual visitors (if only for privacy
reasons), or the refurnishing or redecorating of interior spaces [59]. In
this context, fast and effective Diminished Reality (DR) techniques,
which conceal real-life parts from the view field, are paramount to
remove the furniture and other clutter that masks the architectural
structure. In particular, DR features are essential to allow users to
immediately compare the furnished and unfurnished scene, and to
support Augmented Reality (AR) applications in placing objects in
the empty scene [42, 43]. Making these features available on novel
environments with minimum latency, ideally in real-time, would, in
addition, enable their usage in remote collaboration contexts, without
the need for prior modeling [48].

While a variety of object erasing and image inpainting solutions have
been presented in the literature (Sect. 2), DR for interior environments
must generate images of empty indoor spaces that not only have a real-
istic appearance, but respect the context in stricter ways, in particular
by inferring a plausible organization of the permanent architectural
structure that bounds the room’s interior [4]. Data-driven solutions,
that learn hidden relations from examples, are emerging as viable ap-
proaches for this class of problems. However, state-of-the-art methods
for image inpainting are mostly focused on photorealism [57, 62], and
additional information about the scene is exploited only from the se-
mantic point-of-view [4, 30, 64]. Current pipelines make limited use
of the structure of the observed scene, and reconstruction accuracy is
achieved at the price of high computational complexity or increased
user intervention, using, for example, recursive networks [18], multi-
branch architectures [62], and manual definition of specific parts of the
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original image to be removed [30].
In this work, we present a novel light-weight end-to-end deep net-

work that, from an input 360◦ image of a furnished indoor space auto-
matically returns, with very low latency, an omnidirectional photoreal-
istic view and architecturally plausible depth of the same scene emptied
of all clutter.

By harnessing the availability of large scale, photorealistic synthetic
datasets, we train our network on pairs using a set of examples com-
posed of registered equirectangular images of the cluttered environment
color, the empty environment color, and their depth. The final end-to-
end network is decomposed in two blocks, which are trained separately
to reduce training costs. The first block learns an attention mask of the
uncluttered parts of the input image, generating training examples from
the cluttered input image and the depth pairs. The second block takes as
input the attention mask and the cluttered image, and performs the syn-
thesis of the uncluttered scene, using for training indoor-specific losses
that embed our knowledge of expected indoor environments. Contrary
to other object removal approaches, our approach is holistically applied
to the entire scene, removing all clutter in a single step without user
intervention. Rapidly emptying the room without manual intervention
is the essential building block upon which the other features required
for a DR application. For instance, removing a single object (or keeping
only a single object) is achieved by compositing the empty room image
from our network with the original image, while taking into account
the computed object mask (see, e.g., the design of Gkiktas et al. [4]).
Moreover, by inferring the room’s geometry while removing clutter,
we provide support various scene edits, including adding/positioning
furniture while resting on floor or attached to a wall (see Fig. 1).

Our main contributions are summarized as follows:

• We propose a light-weight end-to-end deep-learning technique
(Sect. 3), which provides, at interactive rate, a panoramic indoor
scene emptied automatically without user intervention and suit-
able for use in XR applications. Our prediction network develops
in a linear fashion, with no need to fuse features from parallel
branches [4, 62], or to refine the result recursively [18]. In or-
der to alleviate the burden of convolutional gating for generic
user-assisted inpainting [57], we adopt instead a depth-separable
gated convolution strategy, reducing the number of parameters
and processing time while maintaining the effectiveness [53]. Fur-
thermore, both visual and geometric constraints are applied only
at training time, where the visual ones follow a strategy of transfer
learning [6] and the geometric ones adopt robust and efficient
losses that encode our prior knowledge on interior environments
(Sect. 3.3).

• We predict a geometric representation paired with the output im-
age, that is a dense depth estimation of the empty scene. This
geometric representation can be directly used as a basis for further
processing in XR application (e.g., to aid object positioning or to
compute occlusions). It is obtained jointly with the visual repre-
sentation and without the need of onerous parallel branches [4,62].
We also exploit it to define a robust and effective pixel-wise prior
together with other 3D priors and losses (Sect. 3.3) The generation
of a geometric clue as output reduces the need to add additional
semantic analysis on the image or to use GAN strategies [8,25] to
disambiguate the results obtained, as demonstrated by our results
(Sect. 4). By contrast, current inpainting methods are mainly fo-
cused on the visual and perceptual output [57,62], where structure
preservation is handled at image-feature level [17] or semanti-
cally [30, 64]. Other approaches are based, instead, on manual
and simplified annotations of the underlying layout, which does
not necessarily represent the true 3D geometry. This information
is best interpreted as a 2D semantic prior rather than a geometric
one [4, 64].

• We drive our training using a loss function that combines photo-
realistic and geometric terms. In particular, our geometric terms
exploit both pixel-wise information from depth maps and the con-
cept of virtual normals generated by triples of points at a large

distance [54], to efficiently recover the salient characteristics of
man-made indoor structures, in terms of flatness and smoothness,
without falling into restrictive structures such as Manhattan World,
Atlanta World or even vertical walls [36].

Our results show that our method outperforms current state-of-the-
art approaches, using common benchmarks with a measurable ground
truth, in terms of accuracy, quality and less computational complexity
(Sect. 4.3). Moreover, our model is also able to produce compelling
predictions even on images from common datasets where no ground
truth is available for training, as well as on novel images captured by
an user (Sect. 4.4).

2 RELATED WORK

DR for indoor scenes builds on techniques for data-driven inpainting
and image-to-image translation, and must extend them in order to pro-
duce a realistic and geometrically consistent environment, eventually
estimating the depth of the uncluttered scene. In the following, we
focus on the methods that are most closely related to ours.

Diminished reality for indoor spaces DR applications provide
the illusion of concealing, eliminating, and seeing through objects
while perceiving an environment. In contrast to AR and MR, which
superimpose virtual objects to real-world representations, they require
techniques to detect the unwanted objects and replace them with the
hidden background in generated images. In most DR applications, the
objects to be removed are already determined as targets of interest,
and specific techniques are employed for their detection (e.g., pedestri-
ans [13] or buildings [47]). In indoor spaces, the most basic operation
is the removal of interior clutter (furniture and other non-permanent
objects) [4, 40, 42, 43, 59], which is supported either through interactive
mask definitions (e.g., [4]), or through semantic or instance segmen-
tation (e.g., [64]). In this work, instead, we learn, from synthetic
examples, a geometric definition of clutter, that includes anything with
an appreciable geometric volume that is not part of the permanent ar-
chitectural structure. A wide variety of approaches have been proposed
in the literature for synthesizing the hidden background (see [26] for a
comprehensive survey). A number of methods employ reprojections of
actual background images, generated through a prior observation of the
same scene [27, 38] or a concurrent observation from other points of
view, e.g., by employing multiple cameras [24]. Since these approaches
require considerable effort and/or specialized setups, much research
has focused, instead, on generating plausible background rather than
recovering actual ones. Early solutions recovered background textures
from the same image, especially analyzing areas nearby removed ob-
jects (e.g., [12]). Since these methods are generally limited to small
holes and fairly regular scenes, the focus has recently shifted towards
data-driven solutions that learn from a large body of prior examples.
We follow this trend by generating a plausible background of a novel
scene using a single 360◦ observation, exploiting concepts from data-
driven inpainting and image-to-image translation, recovering not only
the color but also the geometry of the empty scene in the form of a depth
map. Shape inference is very important for DR of indoor environments,
since it improves texture reprojection [12, 28] and parallax effects [1],
and offers a basis for the editing operations [19, 59]. However, prior
DR solutions either expected a simplified geometry in the hidden area
(e.g., a plane [12, 28]) or required particular capture setup (e.g., multi-
view [24, 27, 38] or one or more RGB-D cameras [19, 40, 59]).

Data-driven inpainting The first data-driven inpainting ap-
proaches combined auto-encoders with an adversarial loss [32] or
global and local discriminators [7] to produce photo-consistent images.
They used regular or dilated convolutions [55] combining valid and
masked parts of the image, thus leading to visual artifacts such as color
discrepancy and blurriness. To overcome such limitations, Liu et al.
[20] introduced partial convolutions to handle masking effects. Later,
the partial convolution concept was revisited to incorporate structural
information (edges) in the reconstructed feature map [17]. Recognizing
the importance of edge preservation and generation, EdgeConnect [29]
introduced an edge generator to hallucinate edges in the missing re-
gions, to use them as structural guidance for the inpainting task. All
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Fig. 2: Model architecture. We process the input equirectangular image to identify the cluttered area in the scene, exploiting a light-weight
network (purple blocks - Sect. 3.1). The clutter mask and the input image are passed to the empty scene synthesis network (Sect. 3.2), including a
gated encoder (red blocks), a dilation bottleneck (yellow blocks) and a gated decoder (blue blocks), whose last layer is split in 2 layers: one for
the photorealistic equirectangular representation of the emptied scene and one for its depth. The scene synthesis network is trained end-to-end
through the methods and losses described in Sect. 3.3.

the above methods assume that the mask is given and concentrate on
the infilling part. Yu et al. [57] further extended the idea of partial
convolutions by proposing gated convolutions to learn a mask automati-
cally from a large number of examples. Combined with SN-PatchGAN
[16, 25], this approach showed the ability of effectively supporting
free-form user input as guidance. We also exploit gated convolutions,
but learn to separate clutter from architectural structure using examples
that exploit the availability of ground truth depths, without resorting
to user input in any of our phases. In parallel developments, several
authors have shown the importance of feature fusion at different scales,
including the pyramid-context encoder approach [58] and the mutual
encoder-decoder [21]. Conversely, Li et.al [18] propose a recurrent
(i.e., iterative) method to inpaint missing regions from the outer regions
of the hole towards the inner ones. Thanks to the data-driven design,
the method is superior to previous techniques that assumed that gaps
should be filled with similar content to that of the background, and
can hallucinate new content for large holes. Zheng et al. [62] further
extended the exploitation of global relations by designing a framework
to generate multiple plausible results with reasonable content for each
masked input, based on a probabilistic approach. To achieve that, they
combine generative and variational synthesis approaches. None of the
above methods, however, is applied to 360◦ imagery and exploits and
generates geometric data.

Image-to-image translation DR can be also recast as an image-
to-image translation problem [8], as it maps the input cluttered image
to the output uncluttered image. Visual content and style preservation
is very important in this context [3, 10]. Isola et al. [8] proposed con-
ditional GANs as a general solution to various translation problems,
semantic image synthesis being the most related to ours. The classic
approach is to use semantic labeling, and reconstruct images from the
semantic maps, preserving boundaries among classes [2]. Conserving
semantic information fed to a deep layer built by stacking convolutional,
normalization, and non-linear layers is, however, difficult, since nor-
malization layers tend to blur semantic input. For this reason, Park et
al. [30] introduced spatially adaptive normalization, in which the input
map is exploited for modulating the activation in normalization layers
through a spatially-adaptive, learned transformation. The approach
has been recently extended by introducing per-region style encoding
and allowing the user to select a different style input image for each
semantic region [64]. Very recently, PanoDR [4] applied the above
method to panoramic images of indoor scenes. In their approach, a
pixel-wise semantic prior maps each pixel to the ceiling, wall, or floor
class, while inpainting is performed exploiting a SEAN module [64].
As for classic inpainting methods, all these techniques are focused on
the perceptual aspect and, in order to improve the realism of prediction,

they exploit clues of image structure consistency (boundaries, edges),
additional semantic information [30, 64] or user input [57]. Using such
additional information mainly involves feature fusion from parallel
branches [4, 62] or refining the result recursively [18], increasing the
computational cost of the methods. In our approach, instead, we pro-
pose a linear pipeline avoiding feature fusion and recursion, leveraging
the fact that the scene to be reconstructed has a specific geometry, and
exploiting such an information only at training time. Furthermore, such
geometric constraints reduce the need to use adversarial losses [8, 25]
to disambiguate the results obtained, simplifying model structure and
training approach. This leads to novel contributions in terms of network
structure and loss functions.

Uncluttered depth estimation In order to integrate models into
the empty scenes, or to perform geometric measures, DR requires
shape information in addition to color. We do that by also inferring the
depth map of the uncluttered image. Learning-based monocular depth
estimation was introduced over a decade ago (e.g., Make3D [41]), and
the emergence of deep learning, as well as the availability of large-scale
3D datasets, has contributed to significant performance improvements.
Since the restricted field of view (FOV) of conventional perspective
images inevitably results in a limited geometric context [61], much
of the research on reconstruction of indoors from sparse imagery is
now focused on inferring depth from a single omnidirectional interior
image [33, 46, 50]. While these methods have been shown to cope
with large amounts of clutter, they target the generation of the visible
depth of the fully cluttered viewed room, rather than the estimation of
the depth of the uncluttered one. For this reason, specific approaches
for inferring the architectural layout are being actively researched. As
noted by Zou et al. [65], most current data-driven layout reconstruction
methods basically follow a pipeline that, based on specific indoor
assumptions (e.g., Manhattan World), predicts layout elements in image
space, followed by a post-processing for fitting a regularized 3D model
to the predicted 2D elements. Recent solutions fully working in 3D [34]
produce an approximate result in the form of a low-poly 3D mesh. By
contrast, our approach, differently from all prior approaches strives
to produce a per-pixel uncluttered depth, within a single-branch light-
weight network that also produces the uncluttered color.

3 METHODS

The overall architecture is illustrated in Fig. 2 and explained in the
following sections. We first process the input image (i.e, equirectan-
gular format) to identify the cluttered area in the scene, exploiting a
separately-trained light-weight network (purple blocks in Fig. 2), de-
scribed in Sect. 3.1. The returned clutter mask and the original input
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image are then passed to the empty scene synthesis network, described
in Sect. 3.2 (main network in Fig. 2), which returns the photorealistic
equirectangular representation of the emptied scene and its registered
depth. The scene synthesis network is trained end-to-end through the
methods and losses described in Sect. 3.3.

3.1 Clutter mask prediction

The first stage of our method consists of an identification of the area

containing the clutter that should be removed from the image I f
h×w to

generate the empty room color and depth panoramas. This identification

consists of a binary mask Mh×w, that contains 1 for pixels containing
clutter, and 0 otherwise. Contrary to many current DR approaches, that
are oriented to the removal of single objects, we do not expect that users
define it interactively [4], eventually supported by object recognition
and segmentation systems [64], but learn how to generate this mask
directly from I f through a lean segmentation network. We do that since
we want our mask to identifies all the non-permanent structures that
need to be removed at the same time, differentiating them from the
architectural layout of the room.

For training, we exploit the large body of information provided by
recent large-scale photorealistic synthetic datasets [63], which contain
the registered representation of empty and non-empty rooms. Even
though, in this paper, we only exploit the differentiation between clutter
and layout, for maximum generality, we cast our problem as a classi-
fication problem, since many datasets contain, for each pixel also the
type of object and/or the type of layout surface (ceiling, floor, wall).
Such a classification might be of interest for reconstruction or when
wanting to remove only particular kinds of objects.

For the present paper, we only consider a two-class situation (lay-
out=0, clutter=1), that can be generated, in absence of annotations
in the source datasets, by simply comparing the ground-truth depths

of the empty (De
h×w) and non-empty (D f

h×w) room representations,
including in the clutter class the pixels for which D f < De and to the
layout class all others.

With this approach, we define as clutter the portions of the environ-
ment that have an appreciable geometric volume in the room, but are
not part of the bounding architectural structure of the room. Flat objects
such as electric outlets or decorations (or mirror images) thus appear
in the empty room by design. Such a definition is also commonly
adopted for indoor structured reconstruction approaches [35, 37]. This
choice avoids the need for semantic annotations, and lets the system
learn a stable association between color and geometric shape using a
completely automatic method using commonly available datasets. This
approach does not exclude a combination with semantic information
(e.g., [64]) to also remove flat objects.

We predict our full-empty mask from the image I f
h×w as a dual

channel probability map Dm
2×h×w (i.e., full and empty channel), using

a very lightweight encoder-decoder network based on the U-Net archi-
tecture, using just 256 channels as bottleneck (i.e., 4M parameters) and
skip-connections [39].

The training of this network, the purple one in Fig. 2, is performed
independently from the image synthesis network, as we experienced
that training the clutter mask network simultaneously with the image
synthesis network produces little or no advantages, but imposes an
additional load on the entire training process (see Sect. 4).

For each of the two channels, training of the clutter mask is driven
by binary cross-entropy loss:

−
1

n
∑

p∈Dm
c

( p̂ log p+(1− p̂) log(1− p)) (1)

where Dm
c is the slice c of Dm, p is the predicted probability of one

pixel of being of class c, and p̂ is the ground truth probability. The

final predicted binary mask Mh×w, that feeds the second stage of our
complete network, is obtained by assigning each pixel to the class
with maximum probability and setting the pixel value according to this
classification.

3.2 Empty scene synthesis

To generate the empty scene image and depth, we adopt the architecture
illustrated in Fig. 2. The overall encoder-decoder scheme follows a com-
mon design for image inpainting [7], exploiting dilated convolutions
as bottleneck [55], and gated convolutions for encoding decoding [56].
Compared to the baseline [7, 56], our architecture is thinner, deeper,
and with fewer parameters. Moreover, it has only a single branch and it
includes several solutions (described below) to improve accuracy and
reduce computational complexity. Furthermore, given the spherical
nature of the image, we adopt circular padding along the horizon for
convolutions, thus removing longitudinal boundary discontinuity, and
reflection padding to alleviate the singularities at the poles [4].

The input of the network consists of a masked image of the cluttered
room, with white in clutter regions, together with the binary mask indi-
cating the hole regions (Sect. 3.1). The paired input is encoded through
a sequence of light-weight gated convolutions having different strides
(the 6 layers in red in Fig. 2), so that the original size is reduced by a
factor four in each direction. Each encoding convolution is followed by
instance normalization [49] and ReLU activation.

In our network, we adopt a specific form of gated convolution, that
integrates a learnable gating technique when selecting features [56],
since vanilla convolutions are ill-fitted for image inpainting [7, 56].

Considering a standard convolutional layer and a Cin−channel input
feature map, each pixel located at (y,x) in the Cout − channel output
map is computed as:

Oy,x =
k′h

∑
i=−k′h

k′w

∑
i=−k′w

Wk′h+i,k′w+ j · Iy+i,x+ j (2)

where x,y represents the location along the x- and y-axis of the output

map, kh and kw is the kernel size (e.g. 3×3), k′h = kh−1
2 , k′w = kw−1

2 ,

W ∈ R
kh×kw×Cin×Cout are convolutional filters, and Iy+i,x+ j ∈ R

Cin and

Oy,x ∈ R
Cout are inputs and outputs. The application of the same filters

at each spatial location (y,x) is not appropriate. This is because, for
inpainting, the input will need to combine valid pixels/features coming
from regions outside holes with invalid pixels/features (in shallow
layers) or synthesized pixels/features (in deep layers) coming from
masked regions [57]. Although simple partial convolutions [20] can
be used to make the convolution dependent only on valid pixels, they
are not suitable for our problem, since, essentially, they act as single-
channel hard-gating.

Thus, we adopt a gated convolution (GC) approach [57], expressed
as:

G = conv(Wg, I)
F = conv(W f , I)
O = σ(G)

�

ψ(F)
(3)

where σ is the Sigmoid function, which outputs values in [0,1], ψ is
an activation function (ReLU in our case), and Wg and W f are two dif-
ferent sets of convolutional filters, which are used to compute the gates
and features respectively. GC enables the network to learn a dynamic
feature selection mechanism. It should be noted that, according to
Equation 2, Wg has kh × kw ×Cin ×Cout parameters, almost doubling
the number of parameters and processing time in comparison to vanilla
convolution. In order to simplify training and guarantee low latency at
inference time, our network uses a modified version of GC called Light
Weight Gated Convolutions (LWGC), which reduces the number of pa-
rameters and processing time while maintaining the effectiveness [53].
Specifically, we decompose G from Equation 3 into a depth-wise con-
volution [53] (i.e., 3×3) followed by a 1×1 convolution, having, as
a result, the same gating step but with only kh × kw ×Cin +Cin ×Cout

parameters.

Repeated dilations [55] are used for the bottleneck (Fig. 2, yellow
blocks), thus increasing the area that each layer can use as input. It
should be noted that this is done without increasing the number of learn-
able weights, but obtained by spreading the convolution kernel across
the input map. The dilated convolution operator is then implemented
as a gated convolution (i.e., Equation 3), but with some differences. It
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is expressed as:

Dy,x = σ(b+
k′h

∑
i=−k′h

k′w

∑
i=−k′w

Wk′h+i,k′w+ j · Iy+η i,x+η j) (4)

where, assuming the same notation of Equation 2, η is a dilation factor,

σ()̇ is a component-wise non-linear transfer function and b ∈ R
Cout is

the layer bias vector. With η = 1, the equation becomes the standard
convolution operation. In our model, we adopt, respectively, η =
2,4,8,16 for the four bottleneck layers.

Using this strategy, we aggregate multi-scale contextual information
without losing resolution, thus capturing the global context efficiently
by expanding the receptive field, avoiding additional parameters and
preventing information loss. This is important for the image completion
task, as capturing sufficient context is critical for realism. By using
dilated convolutions at lower resolutions, the model can effectively
cover a larger area of the input image when computing each output
pixel than with standard convolutional layers [7].

The network decoder (7 blue layers in Fig. 2) follows a scheme
which is symmetrical with respect to the scheme of the encoder. Five
layers, based on gated convolutions, restore the resolution of the output
to the original input resolution, and a final double layer (two layers in
parallel) is dedicated respectively to the synthesized RGB image and
its depth (Fig. 2). These last two layers have two different activation
functions, respectively tanh for the RGB output and ELU for the depth
output.

3.3 Training and losses

During the training phase, we compute the parameters of the network
(Sect. 3.2) using a supervised training approach. To this end, we
currently exploit Structured3D [63]), a large-scale, synthetic database
of indoor scenes. For each scene, a photorealistic, equirectangular
rendering of the cluttered environment is matched with the rendering of
the same empty scene and with its depth map. It should be noted that
such a pixel-wise accurate matching between full and empty scenes and
their depths is practically only possible with synthetic data. However,
an important benefit of our method is the ability to perform transfer
learning efficiently, so the model trained on the synthetic dataset also
performs very well on real images, as demonstrated in our results
(Sect. 4).

Our loss functions are designed to combine a visual term, that mea-
sures the photorealistic quality of the output, with a geometric term,
that drives the solution towards a plausible reconstruction of an indoor
environments.

The visual term is a combination of different domain losses to ensure
the photorealistic quality of the predictions:

Lvis = λpxLpx +λpercLperc +λstyleLstyle (5)

The first term is a pixel-based L1 loss between the predicted RGB image
Iout and the ground truth empty scene image Igt . Lperc and Lstyle are
the data-driven perceptual and style losses [3]. These enforce Iout and
Igt to have a similar representation in the feature space as computed by
a CNN model ψ , which, as in many image synthesis approaches, is a
pre-trained V GG−19 [44]. The perceptual loss is, thus, given by:

Lperc =
N−1

∑
n

�

�ψn(Iout)−ψn(Igt)
�

�

1
(6)

and computes the L1 distance between the projection of Iout and Igt into
high-level features using the pre-trained network ψ , thus preserving
high-level content of the image. In Equation 6, ψn is the activation map
of the n-th selected layer. In our loss, we use relu11, relu21, relu31,
relu41 and relu51 layers [10].

The style loss, calculated on the same layers of perceptual loss, is
given by:

Lstyle =
N−1

∑
n

�

�

�
Kn(ψn(Iout)

T ψn(Iout))−ψn(Igt)
T ψn(Igt)

�

�

�

1
(7)

which includes the Gram matrix function, where the high level feature
ψ(x)n is of shape (HnWn)×Cn, resulting in a Cn ×Cn Gram matrix,
and Kn is the normalization factor 1/CnHnKn for the nth selected layer.
Differently from the perceptual loss, this component gives more impor-
tance to local similarity (e.g., texture).

The geometric term is a combination of low- and high-order 3D
constraints:

Lgeom = λdLd +λnLn (8)

The low-order term Ld is a robust pixel-wise loss between the predicted
depth Dout and the ground truth depth of the empty scene Du (Sect. 3.1).
Similarly to other recent state-of-the-art solutions (e.g., BiFuse [50]
and SliceNet [33]), we adopt as objective function the Adaptive Reverse
Huber Loss (BerHu) [15].

For the high-order term Ln, we consider a geometric constraint from
a global perspective to take long-range relations into account. This
is achieved by exploiting the concept of virtual normal [54], i.e., the
normal vector of a virtual plane formed by three randomly sampled non-
collinear points in 3D space. By minimizing the direction divergence
between a small set of ground-truth and predicted virtual normals,
serving as a high-order 3D geometric constraint, we preserve the global
shape of the model. Such an approach is very effective for indoor
environments, typical composed of the union of a small set of smooth
surfaces.

From the given depth map Dh×w, a 3D point cloud is reconstructed
by spherical projection, so that, for each pixel pi(ui,vi) ∈ D, we obtain
the location Pi(xi,yi,zi) in 3D coordinates with respect to the sphere
center (i.e., camera point-of-view). N triples of points are randomly
sampled from the point cloud. The three points {(Pa,Pb,Pc)} in each
triple are restricted to be non-collinear as defined by the following
condition:

C = {α g "(
−−→
PaPb,

−−→
PaPc f β ,α g "(

−−→
PbPc,

−−→
PbPa f β} (9)

where α = 150◦ and β = 30◦ in our experiments.

The normal vector ni of the plane formed by the three points is
computed by:

ni =

−−→
PaPb ×

−−→
PaPc

�

�

�

−−→
PaPb ×

−−→
PaPc

�

�

�

(10)

The high order loss Ln is computed by:

Ln =
1

N

N

∑
i=1

�

�

�
ni

pred −ni
gt
�

�

�
(11)

A small number of triples is sufficient to produce effective results. As
an example, for each predicted or ground truth depth, having 512×1024
size, we randomly sample 3600 triplets, from which we obtain a pair of
3600 virtual normals, i.e., less than 0.7% of the pixels. The contribution
of geometric terms is highlighted in the ablation study at Sect. 4.5.

The relative importance of each loss term is determined by the values
of the λx coefficients. In our experiments we use λpx = 4,λperc =
1,λstyle = 40,λd = 0.5,λn = 0.5.

4 RESULTS

Our approach was implemented using PyTorch [31] and has been tested
on a large variety of indoor scenes. In this paper, we report on results on
the benchmarks used by the majority of state-of-the-art works [22, 63].
In addition, we report on the applications to scenes captured by non-
professional users.

Two examples of depth and color representations of empty rooms
starting from a single-shot panoramic image of cluttered environments
are presented in Fig. 3. The accompanying videos shows sequences
taken from Diminished Reality applications in which users explore
several panoramic scenes, going from the real cluttered view to the
synthetic uncluttered view. The video also shows an example of refur-
nishing, where 3D models of furniture are placed within the virtually
emptied room.
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Fig. 3: Two examples of inference of color and depth of the empty room from a single-shot 360◦ panorama

4.1 Training and testing datasets

We use Structured3D [63] to train, validate and numerically compare
our results to ground truth and other works. Structured3D [63] is
a large-scale photo-realistic dataset containing 3.5K house designs
created by professional designers with a variety of ground truth 3D
structure annotations, including 21,000 photo-realistic full-panoramic
(i.e., equirectangular format) indoor scenes. These panoramic scenes
are provided with or without furniture and objects. For all configu-
rations, both RGB images and depth maps are provided, allowing us
to immediately use them for training, validating, and testing without
further configuration. The official splitting [63] is used, with no overlap
among training and testing partitions.

It should be noted that, while our method makes no particular as-
sumption on the architectural structure, Structured3D mostly includes
Atlanta World structures [36], leading to a better performance on scenes
also meeting these constraints, even though this constraint is not nec-
essary for our network structure. As a further minor limitation of
this dataset, we noted that the environment map of the outdoors seen
through the windows is replicated in scenes that are part of the training
and testing partition. We plan to generate higher variations both of
room geometry and outdoor textures in our future works.

In addition to testing with Structured3D, we also adopt Matter-
port3D [22], a large-scale RGB-D dataset containing 10,800 panoramic
views from 194,400 RGB-D images of 90 real building-scale scenes,
to test our method on real-world scenes. We also exploit this dataset to
demonstrate our transfer-learning capabilities. Furthermore, to demon-
strate the robustness of the method towards real acquisitions of various
types, we selected scenes from a variety of real-world datasets used
in the field of automatic building reconstruction [36] or manually ac-
quired by non-professional users using the widely available Ricoh Theta
spherical cameras.

4.2 Setup and computational performance

We trained both the clutter mask prediction (Sect. 3.1) and the scene
synthesis (Sect. 3.1) networks with the Adam optimizer [14], with
β1 = 0.9, β2 = 0.999, on two NVIDIA RTX 2080Ti GPUs (11GB
VRAM) with a batch size of 8 and a learning rate of 0.0001. When
using the typical 512×1024 resolution, the average training time for the
clutter mask prediction model is 32ms/image, while it is 196ms/image
for the scene synthesis model. We adopt for training both networks the
Structured3D [63] official splitting. V GG−19 [44] pre-trained model
is the one provided by TorchVision [31].

Table 1 presents our computational performance compared to state-
of-the-art inpainting methods. Although our method is fully scalable
in resolution (see Table 2), Table 1 shows the performance with a
resolution compatible with the other baselines and adopted in previ-
ous comparisons [4], avoiding modifications of the other models (i.e.,
256×512). Our method is clearly the most lightweight and has a lower
computational complexity (e.g., GFLOPS) than the compared inpaint-

Method Params³ GFLOPS³ ms/frame³
RFR [18] 30.59 M 412.22 157

Deepfillv2 [57] 13.86 M 163.44 41

PanoDR [4] 20.88 M 122.53 270

Our 6.06 M 41.03 17

Table 1: Computational performance. We show our computational
performance compared to other state-of-the-art works on a single
NVIDIA RTX 2080Ti GPU.

ing methods. Moreover, as our approach is designed to remove all the
objects in the scene at the same time without user intervention, our pre-
sented statistics include the cost of both the clutter mask estimation and
scene synthesis networks, while other methods, designed for general
infilling, report results only for the synthesis part.

Resolution Params GFLOPS ms/frame

256×512 6.06 M 41.03 15

512×1024 6.06 M 164.11 41

1024×2048 6.06 M 656.45 174

Table 2: Computational scalability. We show our computational
performance and latency time for different input resolution. Our results
demonstrate how we diminish images with a very low latency even
when resolution increase.

Table 2 shows, instead, how our approach scales to higher resolutions.
As demonstrated in the results, we diminish images with a very low
latency, even at the higher tested resolution (1024×2048). Applications
can, thus, provide a quick feedback following a camera motion and/or
environmental changes. While we currently exploit these advantages
for interactively taken single-shot images, the achieved performance
makes it possible to consider an extension to real-time room emptying
during continuous capture. As a term of comparison, approaches such
as PanoDR [4] take 1183 GFLOPS at the 512×1024 resolution (i.e.,
close to an order of magnitude larger than ours), making it hard to
perform the inference on a single commodity graphics board.

4.3 Performance vs. ground truth and competitors

We compared our performance to the one achieved by several state of
the art inpainting methods [4, 18, 57, 62], which are representative of
the most related approaches discussed in Sect. 2. To provide a quan-
titative evaluation with respect to ground truth, we train all methods
using Structured3D [63] and used the official implementation, min-
imally adapted to the equirectangular format, for the computational
performance evaluation (Sect. 4.2). Table 3 presents results on the full
Structured3D [63] test set, according to its official split.
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(a) RGB input (b) ground truth (c) other [4] (d) our RGB (e) our depth

Fig. 4: We present qualitative performance and comparison vs. ground truth and other approaches on the Structured3D dataset [63]. We compare
to panoDR [4], which has the best panoramic performances among the available methods. We additionally show our output depth paired with our
visual results (Fig. 4d).

We adopt standard metrics: Mean Absolute Error (MAE), Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [51]
and the Learned Perceptual Image Patch Similarity (LPIPS) [60].
LPIPS is a metric that has been shown to better assess the percep-
tual similarity between two images. It measures the distance between
the target and generated images using features extracted from a pre-
trained VGG-16 model. Since other compared approaches assume that
a mask of the parts of the image to be removed is provided by a user
(i.e., the whole clutter), we have used as input the ground truth clutter
mask (Sect. 3.1). Note that this aspects favors the other approaches,
since for our method we use, instead, the mask estimated from the color
input.

Even with this difference, our method outperforms the other ap-
proaches on all considered metrics. This can be explained by the fact
that the currently available methods are designed to remove limited
portions of the image or single objects, rather than the entire clutter
preserving only the architectural layout, while our method is adapted
to that situation. This fact clearly shows the advantage of designing a
task-specific network.

Method LPIPS³ MAE³ PSNR↑ SSIM↑
RFR [18] 0.418 0.201 10.885 0.745

PicNet [62] 0.472 0.204 10.922 0.733

Deepfillv2 [57] 0.354 0.188 11.235 0.729

PanoDR [4] 0.310 0.172 11.612 0.754

Our 0.129 0.040 24.702 0.925

Table 3: Quantitative performance. We show our quantitative perfor-
mance compared to other state-of-the-art works.

Fig. 4 presents some examples of our qualitative performance
(Fig. 4d), compared to ground truth (Fig. 4b) and to other methods
(Fig. 4c). We choose to compare our approach with PanoDR [4], since
it was specifically designed for diminished reality on panoramic im-
ages and, in our tests, it is the best performing among the other tested
methods. Moreover, the method embeds several other state-of-the-art

solutions for image inpainting [57, 64]. Our method performs well un-
der different conditions, such as near and far objects, poorly or highly
textured walls, more or less distorted foreground, as well as background
occlusions.

Fig. 4e shows the depth produced by our method (Fig. 4e), which
is not computed by the other inpainting solutions. To provide a term
of comparison, we compared our method with state-of-the-art publicly
available networks for panoramic depth prediction, i.e., SliceNet [33]
and HoHoNet [46], trained on the Structured3D [63] dataset, and
with the work of Jin et al. [9], which released the full-empty dataset
adopted in this work. Since we target the estimation of the depth of
the uncluttered scene, while competing methods do not differentiate
clutter from architectural structure, the comparison is performed in the
uncluttered areas for SliceNet [33] and HoHoNet [46], i.e., only for
pixels not masked with the ground truth masks (Sect. 3.1). To compare
ourselves with Jin et al. [9], we use instead the official data provided by
the authors on the same data used by our method, since their original
code is not available.

Table 4 provides depth results using the common metrics, i.e., mean
absolute error (MAE), mean squared error (MSE), root mean square
error of linear measures (RMSE) and relative accuracy δ1, defined as
the fraction of pixels where the relative error is within a threshold of
1.25. For MAE, MSE, and RMSE, smaller is better (unit is meter),
while for δ1 larger is better.

Method MAE³ MSE³ RMSE↑ δ1 ↑
HoHoNet [46] 0.101 0.076 0.206 0.932

Jin et al. [9] - 0.071 0.642 0.958

SliceNet [33] 0.082 0.054 0.198 0.961

Our 0.091 0.073 0.197 0.954

Table 4: Depth prediction performance. We show our quantitative
performance compared to other state-of-the-art works.

It should be noted that, despite the limited complexity of our network,
and the fact that it also targets color estimation, the accuracy of our
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(a) input [22] (b) prediction (c) input [22] (d) prediction

(e) user input (f) prediction (g) user input (h) prediction

Fig. 5: We present qualitative performance on data for which no ground truth or training set was available. Here, we show cases from the large
scale real-world dataset Matterport3D [22] and from typical user-acquired scenes, where captured images are not perfectly aligned and the
photographer is visible.

depth prediction appears comparable to the results of state-of-the-art
specific methods for panoramic depth estimation [33, 46]. Our very
good results with a much leaner network are due to the fact that, in this
particular setting, we target reconstruction only of the fairly regular
areas comprising the architectural layout of the room, while methods
seeking to reconstruct the full depth [33, 46] must handle much more
variable and discontinuous visible shape, due to the high presence of
furniture and other objects that have to be measured.

4.4 Performance in-the-wild

Fig. 5 presents qualitative performance on data for which no ground
truth or training set was available. This situation is the expected usage
of our method.

In the upper part of the figure, we show scenes from the large-scale
real-world dataset Matterport3D [22]. In the bottom part of the figure,
we show scenes acquired by non-professional users using commodity
low-cost devices (i.e., Ricoh Theta V and Ricoh Theta Z), collected or
acquired by us. In the case of Matterport data, the blur in the upper and
bottom part of the scene is due to the fact that those areas are missing
due to hardware limitation of the device, and have been approximated
in the input scene with a color diffusion.

Although the training of our model was done on a synthetic dataset
mainly including Atlanta World structures [36], our method makes
no special assumption on the indoor scene kind, or about the precise
alignment of the camera with respect to the ground [33, 46] (within
the limits of rational, even manual, capture). Furthermore, the method
automatically removes the photographer who takes a panoramic photo
by holding the camera (i.e., that is considered as clutter). As an example,
the last row of Fig. 5 shows our prediction when capture is not aligned
to the ground and when the user is visible in the cluttered scene. In all
cases, our method is able to predict compelling empty scenes on real
data acquired with different devices, automatically removing various
types of clutter and very heterogeneous furniture.

The biggest difference in the results, compared to standard synthetic
testing sets, is on the lighting appearance of the resulting scene, which
sometimes differs from the setup of the original cluttered scene (Fig. 5a).
One of the evident consequences of this phenomenon is the different
color tone of some scenes (Fig. 5b). This is not surprising, since our
model does not, at the moment, make any assumption about lighting.
This aspect could be object of future works (Sect. 5).
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4.5 Discussion and ablation study

In this section, we discuss our major technical choices, supported by an
ablation study, and several features and limitations of our method. As
seen in the previous sections, our approach proves to be light-weight
and scalable (see Table 2). It should also be noted that the 3D output
allows for real-time 3D rendering applications, independent of image-
based rendering applications only, for instance the usage of geometric
features to help positioning virtual objects on the ground or aligned
to walls (Fig. 1). As shown in Table 4, our depth estimation reaches
state-of-the-art quality. Fig. 6 shows an example of the predicted point
cloud, which represents a good approximation of the underlying layout
of the scene.

(a) Output depth (b) Point cloud

Fig. 6: Predicted depth and its point cloud. Example of 3D point
cloud generated from the predicted depth.

Throughout Table 5, we show the differences in performance, with
the same setup as in previous numerical experiments (see Sect. 4.2),
in exploiting the geometric features of the scene. In particular, PWG
indicates the use or not of pixel-wise geometric loss and HOG of high-
order geometric loss (Sect. 3.3). In the first case, we tested the model
by passing the ground truth masks directly, and found no performance
improvement over using masks learned from the model itself. It should
be noted that this approach is much more efficient than using adversarial
losses, as done in many infilling techniques (see Sect. 2). For the GAN
option, we have tested a discriminator-based loss that is learned during
training (i.e., PatchGAN [8]). We experiment that an adversarial loss
gives a boost in performance without geometric hints (second row
of Table 5), but does not give additional performance when already
using geometric losses. Regarding the initial mask (Sect. 3.1), we

PWG HOG UI GAN LPIPS³ SSIM↑ δ1 Dout ↑
- - - - 0.398 0.698 -

- - - ✓ 0.302 0.748 -

✓ - - - 0.164 0.833 0.905

✓ ✓ ✓ - 0.136 0.914 0.954

✓ ✓ - ✓ 0.121 0.918 0.952

✓ ✓ - - 0.129 0.925 0.954

Table 5: Ablation facts. We show the effect of several key choices
of our approach. In bold the adopted configuration. PWG: pixel-wise
geometry loss; HOG: high-order geometric loss; UI: user interven-
tion; GAN: adversarial-loss; LPIPS,SSIM and δ1 metrics described in
Sect. 4.3.

also experimented that an extreme accuracy of it is not required for
our model to work (i.e., 97% IoU), as the gating mask is dynamically
propagated and learned, and the purpose of the first network is more
related to bootstrapping feature gating. We have also verified that
training the clutter mask network in a separate stage is more efficient
than training it simultaneously with the scene synthesis model, since it
accelerates convergence and reduces the use of memory during training
connected to loading all the data at the same time (i.e., both cluttered
and uncluttered depth).

Our model proves versatile on different types of indoor scenes,
even as the type of real or synthetic input data varies. However, there
are cases, mainly in real-world scenes very different from training
data, where our method did not produce plausible images. The first
row in Fig. 7 shows one of these cases. The particular conditions of

(a) Input (b) Prediction

Fig. 7: Limiting cases. Due to the particular lighting condition our
network returns a blurred model.

illumination and the presence of many reflections do not lead to a
plausible reconstruction. The geometry, in this case, is not sufficient
to model the scene, also for the presence of unconventional structures
very distant from the domestic training set on which the network has
been trained. This drop in performance under these particular lighting
conditions is not surprising, as our method does not actually model the
lighting of the scene. This aspect will be object of future work.

Moreover, while our method does not explicitly impose the typical
restrictive priors of several competitors (e.g., Manhattan World, Atlanta
World, vertical walls), and is, therefore, adaptable to more general
architectures, the only currently available training dataset [63] is of the
Atlanta World type. Thus, irrespective of the generality of our network
architecture, performances clearly decay when moving away from this
type of scenes. The second row in Fig. 7 shows a room characterized
by a lot of clutter and a very sloping ceiling, where the lower perimeter
walls are barely visible. Under these conditions, it is difficult to retrieve
contextual and geometric information to reconstruct the missing parts,
resulting in several artifacts. Since this limitation is related to lack
of training examples, we expect major improvements when datasets
containing this kind of architecture will become available.

5 CONCLUSIONS

We have presented a new data-driven approach that, from an input 360◦

image of a furnished and cluttered indoor space automatically returns,
at interactive speed, a 360◦ photorealistic view and depth of the same
scene emptied of all furniture and other clutter. Rather than casting the
problem as a simple image infilling problem, we consider the correla-
tion between color and geometry that occurs in indoor spaces. This
allows us to exploit, beside perceptual and style objective functions, ge-
ometric losses of different orders, including robust geometric pixel-wise
and high-order 3D losses targeted for indoor structures, simplifying the
prediction model and its computational complexity. The experimental
results demonstrate that our method provides interactive performance
and outperforms current state-of-the-art solutions on commonly used
indoor panoramic benchmarks and also for indoor scenes captured in
the wild and for which there is no ground truth to support supervised
training. While this article focused on a method to support low-latency
emptying of single 360◦ shots, with subsequent exploration and editing
of the produced static environment, the accuracy and speed achieved
could make it possible to consider immersive dynamic scenarios with
acquisition and modification of the scene, even in motion and in real-
time. In the future, we plan to extend our work in this sense, also
considering the lighting model and the spatial coherence of prediction.
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