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Abstract 

We describe a framework for time-critical rendering of graphics 
scenes composed of a large number of objects having complex ge- 
ometric descriptions. Our technique relies upon a scene description 
in which objects are represented as multiresolution meshes. We per- 
form a constrained optimization at each frame to choose the resolu- 
tion of each potentially visible object that generates the best quality 
image while meeting timing constraints, The technique provides 
smooth level-of-detail control and aims at guaranteeing a uniform, 
bounded frame rate even for widely changing viewing conditions. 
The optimization algorithm is independent from the particular data 
structure used to represent multiresolution meshes. The only re- 
quirements are the ability to represent a mesh with an arbitrary 
number of triangles and to traverse a mesh structure at an arbitrary 
resolution in a short predictable time. A data structure satisfying 
these criteria is described and experimental results are discussed. 

Keywords: multiresolution modeling, level of detail, adaptive ren- 
dering, time-cri tical graphics 

1 Introduction 

The steadily increasing complexity of graphics applications 
presents important challenges to application developers. This is 
particularly true for highly interactive 3D programs, such as visual 
simulations and virtual environments, with their inherent focus on 
interactivity, low-latency, and real-time processing. Many applica- 
tion domains of interactive 3D graphics are characterized by the 
need to visualize in real-time dynamic graphics scenes with a com- 
plex geometric description. These scenes, exceeding millions of 
polygons and hundreds of objects, cannot be handled directly at in- 
teractive speeds even on high-end machines. As there is no upper 
bound on the complexity of a scene visible from a specific view- 
point, meeting the performance requirements dictated by the hu- 
man perceptual system requires the ability to trade rendering qual- 
ity with speed. Ideally, this time/quality conflict should be handled 
with adaptive techniques, to cope with the wide range of viewing 
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conditions while avoiding worst-case assumptions. 
Recently, a number of efficient adaptive algorithms have been 

introduced that incrementally adapt the rendering complexity of 
large-scale surfaces (e.g terrains [2, 131 or large organic surfaces 
[lo]). Many types of graphics scenes, however, often contain a 
large number of distinct and possibly animated small-scale objects 
(e.g. rigid body simulations, virtual engineering prototypes [22]). 
The traditional approach to render these scenes in a time-critical 
setting is to pre-compute a small number of independent level-of- 
detail (LOD) representations of each object composing the scene, 
and to switch at run-time between the LODs. 

In this paper, we propose to model 3D scenes as collections of 
multiresolution meshes and to choose the resolution of each mesh 
by solving a continuous constrained optimization problem (i.e. the 
maximization of scene quality under timing constraints). This time- 
critical multiresolution scene rendering framework improves over 
current solutions in the following areas: 

Ability to meet timing constraints. In contrast to current 
static or feedback algorithms, our technique aims at guaran- 
teeing a uniform, bounded frame rate even for widely chang- 
ing viewing conditions; the technique is thus appropriate in 
a time-critical setting and enables the use of prediction to re- 
duce perceived lag [24]; 

Scene and hardware independence. Both the desired qual- 
ity and the hardware behavior are modeled by customizable 
heuristics. This makes it possible to incorporate context- 
sensitive quality constraints and makes the algorithm indepen- 
dent from the specific hardware on which the application is 
running, which is of primary importance for distributed multi- 
platform graphics applications visualizing a shared model. 

Measurable image quality and distance from optimum. 
Since objects are modeled as multiresolution meshes, nearly 
imperceptible transitions between resolutions are obtained at 
no cost. Furthermore, our algorithm provides for each image 
both a quality measure and a bound on the distance in quality 
from the optimal one. The typical accuracy of our solutions is 
less than 5%, which is an order of magnitude better than what 
can be guaranteed by current combinatorial optimization ap- 
proaches [3, 171; 

Data structure independence. The optimization algorithm 
is independent from the particular data structure used to rep- 
resent multiresolution meshes. The only requirements are the 
ability to represent a mesh with an arbitrary number of tri- 
angles and to traverse the structure at an arbitrary resolution 
in a short predictable time. A data structure satisfying these 
criteria is presented in section 6. 
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2 Background and related work 

2.1 Levels-of-detail 
Many applications dealing with time-critical graphics include the 
possibility to store a 3D model in a fixed number of independent 
resolutions (e.g. Openlnventor [18] and VRML [23]). The main 
advantages of LODs are the simplicity of implementation and the 
fact that, as LODs are pre-calculated, the polygons can be organized 
in the most efficient way (triangle strips, display list), exploiting 
raw graphics processing speed with retained-mode graphics. The 
main drawbacks of this technique are related to its memory over- 
head, which severely limits in practice the number of LODs per 
object. This constraint might introduce visual artifacts due to the 
sudden changes of resolution between differing representations [8] 
and, more importantly, limits the degrees of freedom of the LOD 
selection algorithm. 

Run-time LOD selection is typically done using static heuristics 
or feedback algorithms. Static heuristics (e.g. distance-based [23] 
or coverage-based [ 181 LOD mappings) are not adaptive and are 
therefore inherently unable to produce uniform frame rates, while 
feedback algorithms, which adaptively vary LOD mappings based 
on past rendering times (e.g. [ZO]) suffer of unavoidable overshoot 
and oscillation problems during visualization of discontinuous vir- 
tual environments. 

As demonstrated by Funkhouser and Sequin [3], to guarantee 
bounded frame times, predictive algorithms that optimize LOD se- 
lection based on an estimate of the time to render the frame must 
be used. Having a guarantee on the total maximum lag of the 
application is a necessary precondition for using prediction tech- 
niques for lag reduction [24] Unfortunately, the combinatorial op- 
timization problem associated to LOD selection is equivalent to a 
version of the Multiple Choice Knapsack Problem [3, 171, which 
is NP-complete, and approximation algorithms that cannot guaran- 
tee optimality have to be used. Current state-of-the-art techniques 
(Funkhouser and Sequin’s greedy algorithm [3] and Mason and 
Blake’s [17] incremental technique) produce a result which is only 
guaranteed to be half as good as the optimal solution. 

2.2 Dynamic simplification 

An alternative to per-object LOD selection is to dynamically re- 
tessellate visible objects continuously as the viewing position shifts. 
As dynamic re-tessellation adds a run-time overhead, this approach 
is suitable when dealing with very large objects or static environ- 
ments, when the time gained because of the better simplification is 
larger than the additional time spent in the selection algorithm. For 
this reason, this technique has been applied when the entire scene, 
or most of it, can be seen as a single multiresolution object from 
which to extract variable resolution representations. 

The classic applications of dynamic re-tessellation techniques 
are in terrain visualization (see [9] for a survey). Hoppe [ l  11 intro- 
duced view-dependent simplification of progressive meshes, apply- 
ing it to the visualization of single large objects. Xia et al. [26, 251 
discuss the application of progressive meshes to scientific visualiza- 
tion. Luebke and Erikson [ 161 apply hierarchical dynamic simpli- 
fication to large polygonal CAD models, by adaptively processing 
the entire database without first decomposing the environment into 
individual objects. To support interactive animated environments 
composed of many objects, we restrict ourselves to per-object con- 
stant resolution rendering. 

3 Overview of the approach 

Our approach relies u’pon a scene description in which objects are 
represented as multiresolution triangle meshes, i.e. compact data 

structures able to efficiently provide on demand a triangle mesh ap- 
proximation of an object with the requested number of faces. At 
each frame, we aim to find within a fixed short time the triangle 
mesh representation for each potentially visible object that pro- 
duces the “best quality” image within the target frame time. This 
is done in an optimization phase which takes as input the set of 
potentially visible objects determined by a culling algorithm (e.g. 
bounding box or occlusion culling) and selects as output the list of 
triangle meshes to be rendered. 

More formally, a triangle mesh is a piecewise linear approxima- 
tion of a 3D shape that can be denoted by a tuple M = ( K ,  V, A) ,  
where K is a simplicial complex specifying the connectivity of the 
mesh simplices (the adjacency of the vertices, edges, and faces), 
V = (211, 212, . . . , urn} is the set of vertex positions defining the 
shape of the mesh in IR3, and A = {alra2, .  . . ,arn} is the set of 
attributes associated to the vertices of M .  Both the quality of ap- 
proximation and the rendering complexity are dependent upon the 
sizes of K and V. A multiresolution representation ~ T M  for a 
mesh M with nv vertices and nt triangles can be seen as a function 
that takes as input the desired resolution T E [O, 11 C IR and pro- 
duces as output another mesh M‘ = m r ~ ( r )  that approximates the 
same shape with n~dcs’rd) = LmtJ  faces. 

At each frame, the culling algorithm produces thus a a parame- 
terized representation S(r) of the visible objects set, which asso- 
ciates to each parameter value r E [0,1]” an actual set of triangle 
meshes S(r) = { ~ T M ~  ( T I ) ,  ~ T M ~ ( T Z ) ,  . . . , ~ T M ,  ( T “ ) } .  Our 
goal is to find the optimal parameter vector r* for a viewing con- 
figuration W .  To this end, we define two heuristics for the visible 
object set: a cost(W, S(r)) heuristic, which estimates the time re- 
quired to render a scene containing the visible objects at resolution 
r, and a benefit(W, S(r)) heuristic, which estimates the quality of 
the rendered image. 

Even though the multiresolution representation is discontinuous, 
as there are only nt possible values for a base mesh with nt tri- 
angles, we can safely assume that benefit and cost heuristics are 
smooth. This simplifying assumption, at the core of our approach, 
introduces an error which is clearly negligible for sufficiently large 
values of nt with respect to the error intrinsically induced by the 
use of heuristics. Furthermore, it should also be noticed that, even 
though this fact is not used in our implementation, smooth tran- 
sitions between LODs, and thus smooth benefit heuristics, can be 
obtained using geomorphs. 

Using this formalism, our approach to predictive adaptive ren- 
dering is stated as follows: 

Maximize: benef i t (W,  S(r)) 
Subject to: 

(1) 
cost(W, S(r)) 5 tCdesired) 
r t O  
r 5 1  

where and 3 denote componentwise inequality, 0 and 1 are 
constant vectors and t(desired) is the target display time. The cost and 
genefit heuristics, the optimization algorithm and the multiresolu- 
tion mesh representation are discussed in the following sections. 

4 Cost and benefit heuristics 

4.1 Cost heuristics 

The cost(W, S(r)) heuristic provides an estimation of the time nec- 
essary to render in a viewing configuration W (camera, lights), a 
scene composed of the multiresolution objects present in S at res- 
olutions r. Time-critical renderers are typically running on top of 
a pipelined graphics hardware implementing a Z-buffer algorithm. 
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Scene display starts with an initialization phase (initial setup, buffer 
clears), followed by the sequential rendering of each of the meshes, 
and finishes by a finalization phase (buffer swap). Initialization and 
finalization time can be considered constants, while, assuming a 
fast enough CPU and an efficient multiresolution mesh represen- 
tation, mesh rendering is dominated either by the time to define 
rendering attributes and process all the triangles, or by the time to 
fill the covered pixels, depending on where the pipeline bottleneck 
is. On most hardware configurations, the time to define rendering 
attributes and process all the triangles is just dictated by the speed 
of the graphics pipe-line for all operations before rasterization. On 
very high-end graphics systems, actually fetching triangles from the 
multiresolution structure may become the dominant phase. In both 
cases, however, we assume that the cost remains linear in the num- 
ber of triangles and we thus only need to determine the "speed' of 
the dominant phase for the prediction of the rendering time. In other 
words, the cost of rendering a multiresolution mesh M at resolution 
r can be estimated as follows: 

where maxtr i (M)  is the maximum number of triangles for 
mesh M ,  T(sctup) is the time associated to setup the rendering en- 
vironment for an object (e.g. material binding time for OpenGL), 
T('") is the time to send a triangle through the pipeline (i.e. the max- 
imum between the time to fetch a triangle from the multiresolution 
structure and that of processing it without rasterization), T(p'x) is 
the time to fill a pixel, and coverage(M, W )  is an estimation of 
the number of pixels covered by mesh M when rendered with a 
viewing configuration W .  From equation 2, we can derive the min- 
imal resolution r""'") under which a reduction in resolution (and 
therefore possibly in quality) does not reduce rendering time: 

(3) 

The cost heuristics can thus be modeled as: 

4.2 Benefit heuristics 
The benefit(W, S(r)) heuristic provides an estimation of the qual- 
ity of the image produced when rendering the multiresolution ob- 
jects in S at resolutions r. We currently use a simple formula de- 
rived from [3]: 

benefit(W, S(r)) = importance(Si, ~ ) a c c u r a c y ( ~ ; ,  r ; )  

( 5 )  

where importance(M,W) is a factor measuring the impor- 
tance of the object M from the viewpoint W and accuracy(M, r )  
is a factor measuring how well the mesh at resolution T approxi- 
mates the mesh at maximum resolution. Currently, we model object 
importance by 

I 

importance(M,r) = 
coverage(M, W ) f o c u s ( M ,  W)semantics(M) (6) 

where coverage(M, W )  is an estimation of the number of pixels 
covered by the object, focus(M, W )  is the distance of the object's 
projection to the center of the screen, and semantics(M) is a user- 
definable object importance factor (e.g. to impose higher quality for 
interactively manipulated objects). We have experimented with sev- 
eral definition of the accuracy heuristics. Visually pleasing results 
were obtained using accuracy(M, r )  = d m  for a mesh with 
N$"ax) vertices at the highest level of detail, which provides dimin- 
ishing returns at higher resolutions and, intuitively, relates repre- 
sentation accuracy to an indication of the distance between samples 
on the surface. 

4.3 Temporal coherence 
The benefit heuristic defined in the previous section measures im- 
age quality and does not depend on its variation over time. It is 
often useful to include temporal coherence as a quality component 
to minimize sudden changes in resolution of visible objects, for 
example when extremely large objects appear or disappear. This 
can be done by including an hysteresis factor penalizing resolution 
changes in equation 5. We define hysteresis as follows: 

where T(fixed) = p i n i t )  + Tcfind) + xi T F )  is the resolution- 
independent portion of the frame time, and T@") are the 
frame initialization and finalization times, t(max) is the vector con- 
taining the maximum rendering time T(Iri) . maxtr i (M)  for each 
mesh M ,  and dmin) is the vector of minimal resolutions as of equa- 
tion 3. ne constants p e t u p )  ~ ( t r i )   pix) ~ ( i n i 0  and p f i n a l )  can 
be determined by benchmarks in a preprocessing step. As these 
constants obviously depend on rendering attributes such as shad- 
ing model, number of light sources, and texturing, we pre-compute 
their values for each combination of rendering attributes and choose 
at run-time the appropriate set of values to use for each object. 

The cost model presented here assumes an ideal environment in 
which rendering time is dictated only by rendering operations. In 
practice, however, process scheduling, page faults, and other direct 
or indirect blocking kernel calls are out of user control and have 
an impact on the rendering time. Our current approach to reduce 
unwanted variations in frame-rate is to add to T ( f i z e d )  a worst case 
estimate of the impact of the system and application environment 
on the rendering time. . 

, >  

where n is the number of visible objects and dold) their resolu- 
tion at the previous frame. We have found, however, that for most 
complex scenes hysteresis is not necessary, and this factor is not 
included in the examples presented in the paper. 

5 Optimization algorithm 

5.1 Idea of a barrier method 
As benefit and cost functions are convex and smooth, a very 
straightforward method for solving the resolution optimization 
problem with a guaranteed specified accuracy is to use an inte- 
rior point algorithm for convex optimization [27]. The idea of in- 
terior point methods is to transform the original problem into an 
effectively unconstrained problem by incorporating in the objective 
a barrier function which is smooth, convex, and tends to infinity as 
the parameter approaches the boundary of the feasible set. Thus, if 
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an initial feasible point is known, the transformed problem can be 
efficiently solved using standard unconstrained convex minimiza- 
tion techniques (e.g Newton's method [ 191). 

In our case, using a logarithmic bamer function, the resolution 
optimization problem becomes: 

2 n + 1  
Minimize: - E fO(X)+@(X)  

Subject to: f i ( x )  5 0, i = 1,. . . ,2n  + 1, 
Where: zi = d K ,  i = 1 , .  . . , n 

n 

fo(x) = - Cimportance(S; ,  WIZ; 

@(x) = - log(-fi(x)) 

z 

2n+l 

i=l 

f i + ~ + ~ ( x )  = xz - 1 ,  i = 1 , .  . . , n 

where fo is the benefit heuristic of equation 5, f l ,  . . . , f2n+l  
are functions which are non negative if the cost constraints in equa- 
tion 4 are met, and @ is the logarithmic barrier function penalizing 
constraint violations. It can be demonstrated that the solution of 
this problem is at a point x*(E) in which ~ o ( x * ( E ) )  - fo(x*)  5 E ,  
where x *  is the optimum solution of the original problem [27]. 

In other words, while the computation of the optimal resolution 
for a scene with potentially visible objects implies the solution of a 
linear problem with 1 quadratic and 2n linear constraints, a solution 
with accuracy E can be found by unconstrained minimization of the 
smooth convex function g(x) = Y f o ( x )  + @(x). 

The generation of a feasible starting point for this problem is 
straightforward, since we have known lower resolution bounds 
r(m'n) and a cost heuristic increasing monotonously with r. The 
simplest solution is to start from d m l n )  + €1 for a small E. An in- 
cremental technique that produces a value which is closer to the 
optimum is to start from the resolution of the objects computed at 
the previous frame (or from the minimal resolution for newly vis- 
ible objects) and to iteratively reduce object resolutions by factor 
a starting from the objects with the lowest benefitkost ratio. The 
iteration terminates when problem becomes feasible or all objects 
are at the lowest resolution. 

5.2 Time-critical sequential unconstrained mini- 
mization 

Depending on the size of the problem and required accuracy, di- 
rectly solving equation 8 for a small E may require an excessive 
number of Newton iterations or fail due to numerical problem. A 
more efficient way to do it is, instead, to solve a sequence of prob- 
lems for decreasing values of E ,  starting at each step from the pre- 
viously computed sub-optimal value [ 151. This nonlinear program- 
ming technique is known as sequentiaf unconstrained minimization. 
It is easy to prove that, starting with a requested accuracy do) and 
updating it at each iteration by a factor t ,  p > 1, the algorithm 
converges to an accuracy E after exactly 1 + [iog,(E/E(o))l steps 
[Is]. 

In our case, the optimization algorithm itself has to work in a 
time-critical context, which means that it has to ensure that an ap- 
proximate result is available at certain time-deadlines. The termi- 
nation criterion for a time-critical implementation of the algorithm 

has thus to be the expiration of the allocated time and not only an 
accuracy criterion. 

Algorithm 1 Time-critical rendering optimization 
Require: a visible object set S(r) of size n 

Given: timing constraints t(dyd), t('ptimize) 

Given: desired accuracy ~ ( ~ ~ ~ l ~ ~ ~ )  

~ i ~ ~ ~ :  machine parameters  setup), p 0 ,  T ( P ~ X )  @init) @rind) 

Given: algorithm parameters 

r t strictly feasible point as of section 5.1 
E t do) 
r*(E) t a r g m i n , ( Y f o ( r )  + @) 
r e r*(E) 
while E > ddCsired) or time elapsed < t(optimize) do 

> 0, p > 1 
t minimum resolution as of equation 3 

E t :  

r* ( E )  t arg min, ( 
r t I*(€) 

fo (r) + @) 

end while 
Ensure: r is E-sub0 timal 
Ensure: E 5 E(dcsiregor time elapsed z t(optimrEe) 

Ensure: rendering time of S(r) will be less than t(desired) 

This idea is used in algorithm 1. The proposed method has the 
following properties: 

controlled optimization and rendering time: both the CPU 
time spent in the optimization and the time that will be spent 
in rendering the meshes at the resolution suggested by the op- 
timization algorithm are parameters of the algorithm and can 
be externally imposed; 

customizable quality measure: the algorithm does not de- 
pend on the specific quality measure presented in this paper 
but only on the fact that the function is convex and smooth; 

certificate of sub-optimality: the algorithm not only pro- 
vides a suboptimal solution but also a bound on the distance in 
quality from the optimal one. This measure provides a direct 
indication on whether the resources allocated to the optimiza- 
tion are sufficient which is of great help during the design 
phase of time-critical programs. 

While certain other algorithms share some of these properties, 
they typically do not meet the capability of our algorithm in all of 
these areas. Its characteristics make it an ideal candidate for an 
optimization stage in a time-critical rendering pipeline. 

5.3 Time-critical rendering pipeline 

A time-critical rendering pipeline aims to display an image at cer- 
tain time-deadlines independently of the complexity of the scene. 
To reach this goal, we exploit the properties of our algorithm by 
adaptively controlling at each frame both the time budget allocated 
to the optimization and the desired display time (see figure 1). 

The parameters under system control are the maximum visual 
feedback lag T(lag), and the fraction of the frame time to devote to 
optimization. At each frame, we perform the culling, optimization, 
and display steps in a sequence. The culling step's time may vary 
and is dependent on the type of algorithm used and on the complex- 
ity of the scene as seen from the current viewpoint. Before starting 
the optimization step, we measure how much of the frame time is 
still available and allocate in this range the appropriate time bud- 
gets for the optimization and display steps. The optimization step 
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I OPTIMIZATION I 

P E y  L-! ~ 

checkpoint 

to tO+T(Iag) 

Figure 1: Time-critical rendering pipeline. The total frame time 
is imposed by the user. The time budget allocated to the optimiza- 
tion and display stages is decided after measuring how much time 
has been spent in the culling stage. 

is run for the allocated time and its result is then passed to the fi- 
nal display stage. This time-critical computing approach bounds 
the maximum visual feedback lag and enables the use of prediction 
techniques that extrapolate past user input data to future time points 
for lag reduction [24]. 

On a single-processor machine, the maximum visual feedback 
lag also dictates the maximum visual feedback frequency. On a 
multi-processor machine, visual feedback frequency can be inde- 
pendently controlled using separate threads for each pipeline stage, 
as in [20]. 

6 Multiresolution mesh representation 

Our optimization algorithm is independent from the particular data 
structure used to represent multiresolution meshes. The only re- 
quirements are the ability to represent a mesh with an arbitrary 
number of triangles and to traverse the structure at arbitrary resolu- 
tions faster than the graphics pipe-line or, at least, in a time compat- 
ible with our linear cost model. An additional requirement for our 
approach to be practical for large scene databases is data structure 
compactness. 

The Progressive Mesh (PM) [ 1 I] representation is a suitable can- 
didate structure. However, the PM representation is compact but 
cannot be rendered directly, since it has first to be traversed to con- 
struct a single resolution mesh structure which is then used for ren- 
dering 1121. Managing the dynamic mesh structures associated to 
each multiresolution representation introduces both time and space 
overheads in scene rendering application. Experimental results [ 121 
indicate a reconstruction rate of less than 200K triangles/sec on a 
Pentium Pro 200 Mhz. While this cost can be amortized on more 
than one frame if the single resolution meshes are cached, this is 
at the expense of memory. Moreover, exploiting per-object frame- 
to-frame coherency is only a partial solution for complex scenes, 
because of the discontinuities in scene complexity caused by ob- 
jects entering into or exiting from the viewing frustum [3]. 

In this section, we propose a simple multiresolution triangle 
mesh structure (TOM: Totally Ordered Mesh) that efficiently sup- 
ports vertex packing and indexing. The structure is compact, requir- 
ing only a small overhead over the single full resolution mesh, and 
provides fast triangle and vertex traversal rates at any resolution. A 
similar structure has been independently developed by GuCziec et 
al. /7] for streaming geometry in VRML., 

, 

Triangle list 

\ Tzz&z-+ 
traversal 

Figure 2: TOM data structure. Multiresolution meshes are stored 
using a vertex list and a triangle list sorted according to contraction 
resolution. 

6.1 TOM: Totally Ordered Mesh 

Several algorithms have been recently published that simplify a 
polygonal mesh by iteratively contracting vertex pairs (e.g. [14, 
5, 6, 11, 21, 41). A vertex pair contraction operation, denoted 
(w1, w2) -+ 6 ,  replaces two vertices (VI, w2) with a single target 
point 6 to which all the incident edges are linked, and removes 
any triangles that have degenerated into lines or points. The opera- 
tion is quite general, and can express both edge-collapse and vertex 
clustering algorithms. The primary difference between vertex pair 
contraction algorithms lies in how the particular vertex pairs to be 
contracted are chosen and in where the new vertices are positioned. 
We define vertex substitution, denoted v1 -+ v2, the restricted form 
of vertex pair contraction where the target point ij is constrained to 
be the second vertex of the pair ( ~ 2 ) .  By iteratively applying vertex 
substitution, a triangle mesh can be reduced by removing one ver- 
tex and possibly some degenerated faces at a time. Recent research 
results demonstrate that good simplification quality and speed can 
be obtained using this technique [I]. 

As iterative vertex substitution does not modify vertex data and 
does not add new vertices, the only information that has to be stored 
explicitly is the vertex substitution history of each vertex. A total 
order can be defined both on the vertex list and on the triangle list 
based on the contraction resolution. Sorting according to this or- 
der after the simplification generates a compact and efficient data 
structure (see figure 2). 

By ordering the vertex list, we obtain a packed representation 
where the active vertices at vertex resolution T,, = are exactly 
the first n ones in the vertex array of size N,. Moreover, by order- 
ing the triangle list, we have a way to iterate through the triangles 
that define the mesh at an arbitrary resolution in a time depending 
only on the number of active triangles and the lengths of the vertex 
substitution chains. 

The memory overhead introduced to store the multiresolution 
mesh is limited to the space required to store the vertex substitu- 
tion history associated to vertex pair contraction. We encode a ver- 
tex substitution by associating to each vertex the vertex resolution 
at which the transformation occurs and the reference to the vertex 
by which it is to be substituted. As vertices are sorted according 
to their resolution, only the vertex reference needs to actually be 
stored, since the vertex resolution is implicit in the vertex index. 
The minimal vertex resolution of a triangle, i.e. the vertex resolu- 
tion at which a triangle is removed from the mesh because of the 
contraction of one of its edges does not need to be stored, as it can 
be retrieved in a short time by traversing the substitution chains of 
its vertices. 
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To render a mesh with a specified number of triangles n, we first 
determine the minimal vertex resolution of triangle number n, then 
traverse the first n triangles following the vertex chains until the ac- 
tive vertices are reached. The lengths of these chains are limited and 
relatively independent from the model size. In any case the depth at 
full resolution is always so that triangle traversal at full resolution 
is strictly linear. When resolution decreases, the traversal rate also 
decreases but slowly, because vertex substitution cannot, by defini- 
tion, create too long chains for all the vertices. In fact, each vertex 
substitution 01 + v2 increments by one the depth of all the vertex 
chains containing vertex V I  but also keeps unchanged the length of 
all chains containing vertex VZ. With this representation, the space 
overhead over a single-resolution mesh representation is equal to 
just one vertex index per vertex. For a typical mesh of Nt = 2N,  
triangles, considering to use a single word to represent both a ver- 
tex index and a floating point number, the overhead associated to 
the above structure is of about 8% of the single full resolution mesh 
memory footprint when only position and normal are associated to 
vertices and becomes smaller if other attributes such as colors and 
texture coordinates are present. 

Description Cost model coeff. 
Initialization/finalization F s e t u P )  + F h n a l )  

Triangle draw T(") 
Pixel fill T ( P l X )  

Material setup T(lnllf) 

7 Implementation and results 

Value 
1 3 8 8 9 ~ s  

1.35psltr-i 
0 . 0 6 , ~ ~  f p i x  
232ps lobj  

An experimental software library supporting the time-critical mul- 
tiresolution scene rendering algorithm described in this paper has 
been implemented and tested on Silicon Graphics IRIX and Win- 
dows NT machines. The results presented here were obtained on 
a Silicon Graphics 320 PC running Windows NT 4.0 and config- 
ured with a single 500 MHz Pentium 111 processor with 512 Kb L2 
cache, 256 Mb RAM, and a Cobalt graphics chipset. 

To test the behavior of our algorithm, we have written a sim- 
ple walkthrough application on top of our multiresolution model- 
ing and time-critical rendering libraries. In this application, the 
culling phase uses a simple bounding box test, the optimization 
phase uses the algorithm presented in this paper, and rendering is 
performed in OpenGL, with one positional light, one material per 
object, Gouraud shading, and one normal per vertex. The appli- 
cation is single-threaded and the high resolution QueryPer f o r -  
mancecounter API is used for all timing measures. 

- 

7.1 Cost model coefficients 
The cost model coefficients corresponding to the rendering environ- 
ment used in the benchmark application where determined exper- 
imentally by rendering sample objects with a variety of sizes and 
LODs. Table 1 summarizes the values used for the tests. 

7.2 Test environment 

We have recorded various parameters during the walkthrough of a 
test scene containing 166 objects for a total of 1,393,072 polygons 

Figure 3: Scene walkthrough environment. Test scene at full res- 
olution contains 166 objects for a total of 1,393,072 triangles. The 
path of the camera is defined by the segments [A,B,C,D] 

(see figure 3 as well as figure 6 in color plates). Images were dis- 
played on a 512x512 window. 

The camera path has been established so as to include various 
extreme viewing configurations. All polygons are initially visi- 
ble from Point A and are progressively exiting from the viewing 
frustum until point C is reached. After Point C, as the camera is 
suddenly changing orientation, a large number of objects becomes 
immediately visible. 

Without resolution adaptation, rendering times on the machine 
used for the tests varies from 50 to 1950 milliseconds per frame 
depending on the number of visible objects. 

7.3 Experimental results and discussion 

The number of potentially visible triangles at each frame, as well 
as the number of triangles actually rendered to meet a display time 
constraint of t(des'red) = IOOms is presented in figure 4. Figure 5 
shows frame time statistics for each observer viewpoint along the 
test path. The predicted frame time closely matches the actual mea- 
sured frame time, validating our cost model assumptions. 

The actual frame time is maintained below the desired time even 
in the presence of large variations in visual complexity. Even with a 
relatively large number of objects, we can see that the optimization 
time remains relatively small compared to the display time. The 
tests have been performed using a time constraint for the optimiza- 
tion step of dopi) = 20ms and a target quality accuracy of 5 %. 
For large portions of the path, this accuracy has been reached in a 
time sensibly inferior to the allocated limit, leaving more time for 
other system tasks. In a more elaborate implementation, a feedback 
algorithm could be used for the adaptation of dopt) .  

Figure 7 in the color plate section presents the scene from two 
viewpoints. In the first row, the objects are rendered in flat shading 
without any resolution adjustment. The middle row images have 
been recorded in flat shading using our resolution optimization al- 
gorithm. The last row of images has been recorded in the same 
conditions as the middle row, but depicts the resolution chosen for 
each object, darker shades of gray representing more detail. The 
mapping illustrates the effect of the benefit heuristic on the distri- 
bution of the polygon budget. 
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Figure 4: Visible vs. displayed polygons during the test scene 
walkthrough. All polygons are initially visible from Point A and 
are progressively exiting from the viewing frustum until point C is 
reached. After Point C, as the camera is suddenly changing orien- 
tation, a large number of objects becomes immediately visible. 

" .,1*-4 

Figure 5: Frame time statistics for each observer viewpoint 
along the test path. Predicted time closely matches the actual 
frame time, which is always maintained below the targeted 100ms. 

8 Conclusions and future work 

We have described a framework for time-critical rendering of 
graphics scenes with a complex geometric description. Our tech- 
nique relies upon a scene description in which objects are repre- 
sented as multiresolution meshes. We perform a constrained opti- 
mization at each frame to choose the resolution of each potentially 
visible object that generates the best quality image while meeting 
timing constraints. The technique provides smooth level-of-detail 
control and aims at guaranteeing a uniform, bounded frame rate 
even for widely changing viewing conditions. Furthermore, our 
algorithm provides for each image both a quality measure and a 
bound on the distance in quality from the optimal one. The typical 
accuracy of our solutions is less than 5%, which is an order of mag- 
nitude better than what can be guaranteed by current combinatorial 
optimization approaches. 

The optimization algorithm is independent from the particular 
data structure used to represent multiresolution meshes. The only 
requirements are the ability to represent a mesh with an arbitrary 
number of triangles and to traverse the structure at an arbitrary res- 
olution in a short predictable time. A data structure satisfying these 
criteria has been presented in section 6. 

Our experimental results demonstrate the feasibility of the dis- 
cussed optimization approach for time-critical rendering on a PC 
of scenes composed of hundreds of objects and millions of trian- 
gles. Our current work is concentrating on extending our approach 
to per-object view-dependent LODs using a two-step optimization 
process and on exploiting the possibilities offered by the general 
convex optimization framework for improving the benefit heuris- 
tics with the incorporation of a specific perceptual component. In 
parallel, we are exploring simpler and possibly faster optimization 
techniques that exploit the particular structure of the optimization 
problem associated with the current simplified heuristics. Finally, 
we plan to explore feedback techniques for dynamically allocating a 

time budget for the time-critical sequential optimization procedure. 
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Figure 6: [COLOR PLATE] Test scene at full resolution contains I66 objects for a total of 1,393,072 triangles. The path of the camera is 
defined by the segments [A,B,C,D] 

Figure 7 :  [COLOR PLATE] Images rendered from two points of view. Top images contain full resolution objects. Objects in middle rovv 
imagcs ha\ e adaptive rcsolution and are rendered in flat shading. The last row of images has been recorded in the same conditions as the 
nittidlc mu. hut depicts the resolution chosen for each object. darker shades of gray representing more detail. 
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