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Abstract— Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simula-
tions pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale
volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework.
Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU
accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strat-
egy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction,
analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible
to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is
evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.

Index Terms—GPU / CUDA, multiscale, tensor reconstruction, interactive volume visualization, multiresolution rendering

1 INTRODUCTION

The continuing advances in 3D imaging technologies, such as the im-
provements of phase contrast synchrotron and micro-computed X-ray
tomography, as well as the ever higher resolution of numerical simu-
lations brought up by high performance computing, are leading to the
generation of large scale and structurally complex volume datasets.
These large 3D data volumes not only represent an immense amount
of information, but also exhibit an increasing level of detail of internal
structure in space (and possibly time), resulting in a high degree of
complexity at different scales. The visualization challenge is to create
new methods that allow analysts to visually examine and understand
these datasets of overwhelming size and complexity.

Direct volume rendering (DVR) is the technique of choice for inter-
active data visualization and exploration, since it supports the repre-
sentation of the full dataset in a single image using a variety of semi-
transparent mappings. In the last few years, improvements in pro-
grammability and performance of GPUs have made GPU solutions the
main option for real-time rendering on desktop platforms [9]. How-
ever, the sheer size of nowadays large datasets requires the integration
of adaptive data reduction methods based on levels of detail (LOD),
together with out-of-core memory management techniques, since full
datasets typically do not fit in the available GPU memory (nor main
memory), and, even if they could, traversing all data voxels for com-
puting volume integrals remains too costly for real-time rendering.
The key point is to define a suitable multiresolution model, an approx-
imation hierarchy over the volume that can be traversed at run-time
to adaptively select a LOD, which satisfies a certain visual quality or
rendering performance threshold for every displayed frame.

In recent years, much effort has been put into the development of
mathematical representations that can approximate complex data. A
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widespread approach is to find a limited set of numerical bases to-
gether with a corresponding set of coefficients whose weighted linear
combination is a close approximation of the original data. Decompo-
sition of large datasets into bases has two main objectives: (1) save
memory and bandwidth to accelerate rendering tasks, and (2) extract
and represent relevant features, where relevance is defined by the sci-
entific questions asked during the dataset visualization. The potential
of these methods for simultaneous bandwidth reduction and feature
extraction is largely unexplored. Accordingly, the goal is to search for
feature-specific bases that reflect statistical (spatial) properties of the
features to be extracted rather than to use a-priori bases.

Tensor approximation (TA) frameworks, as summarized in [15],
are an extension of standard matrix data approximation tools, such as
SVD, to higher-orders and provide such bases for a compact linear data
representation (see Appendix A). There are two parts to tensor approx-
imation: (1) tensor decomposition, usually an offline process, to com-
pute the bases and coefficients, and (2) tensor reconstruction from the
previously computed bases, which should be a fast online process in
an interactive visualization application. Suter et al. [23] have recently
presented preliminary results on small datasets, which indicate that TA
promises to be a viable alternative to more traditional approaches like,
e.g., wavelets, for creating compact feature-preserving volume repre-
sentations. The efficiency of TA for interactive DVR, associated to
real-time tensor reconstruction, is currently mostly unexplored, as is
the applicability of such methods to large datasets.

Contributions: In this paper, we advance the state-of-the-art by
introducing the first GPU accelerated integration of multiscale vol-
ume tensor reconstruction within a real-time single-pass multiresolu-
tion volume ray-casting framework. Our specific contributions are:

• we introduce and analyze an end-to-end system based on
a bricked tensor decomposition, which is capable of pre-
processing and rendering in real-time multi-gigabyte datasets us-
ing a limited memory footprint;

• we introduce and describe a CUDA TA reconstruction process
with a computational complexity growing only linearly with the
reduced tensor rank and with an implementation exploiting the
parallelism and memory hierarchy of GPGPU platforms;

• we introduce and evaluate a tensor specific quantization scheme,
which reduces the out-of-core memory footprint as well as disk
to CPU to GPU data transfer bandwidth;

• we provide an experimental analysis of the impact of the above
contributions on massive volume datasets (17GB).
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2 RELATED WORK

LOD based rendering using hierarchical volume representations as
well as multiresolution out-of-core models are standard techniques to
achieve interactive visualization performance for large scale volume
data [9]. Most modern techniques perform full ray traversal on the
GPU. In this context, large volume data is handled by compressing it
using adaptive texturing schemes to fit entire datasets into GPU mem-
ory [25], or by using flat [17] or hierarchical [12, 5, 14] multiresolution
structures in conjunction with adaptive loaders to deal with datasets of
potentially unlimited size. In this context, our contribution is the first
integration of a GPU accelerated tensor reconstruction of multiscale
volume data into a real-time and out-of-core LOD based volume ren-
derer (i.e., MOVR [12, 14]).

Data reduction, in this context, is of great importance to save stor-
age space at all stages of the processing and rendering pipelines, as
well as to reduce time and cost of transmission between the lay-
ers of the memory hierarchy. Since lossless schemes typically pro-
vide limited gains [11], many of the efforts are concentrated around
lossy approximation methods, combining various forms of data trans-
formation and quantization. Fout and Ma [11] emphasize that com-
pression and decompression processes have to be highly asymmetric:
with todays GPU rendering capabilities, we can afford a slow (offline)
compression, while, in contrast, decompression needs to be fast and
spatially independent to enable real-time rendering. This fact rules
out techniques for achieving higher compression ratios (e.g., com-
plex variable-length entropy coders), but having detrimental effects
on GPU decompression speeds.

Compact mathematical representations of volume datasets can be
based on predefined or data-specific bases decompositions. Meth-
ods using predefined basis are often computationally cheaper, while
methods using data-specific bases require more precomputing time (to
compute the bases), but are potentially able to remove more redun-
dancy from a dataset. Today, predefined methods like Fourier trans-
form [4], wavelet transform (e.g., [21, 13, 11]), and discrete cosine
transform [28], as well as data-specific bases like vector quantiza-
tion [22, 11, 20] are well-known approaches for volume data repre-
sentations. In particular, wavelet transform and vector quantization,
often combined together, are standard tools for compression domain
volume rendering. Wavelets are especially convenient for compressed
LOD DVR since they define a multiresolution hierarchy of coeffi-
cients, where each coefficient improves the approximation – higher-
level coefficients are more important and small coefficients may be
thresholded. Similary, there exist hierarchical vector quantizers [22],
where the focus lies on finding an optimal decoding scheme for a real-
time and simultaneous GPU reconstruction.

Using predefined or data-specific bases should be seen as two alter-
natives with both assets and drawbacks. Wavelets correspond to spatial
averaging and the wavelet coefficients are derived from the convolu-
tion of applying one-dimensional filters along the spatial axes. That
makes it difficult to compactly represent unaligned three-dimensional
features [23]. There has been much work on developing more power-
ful oriented wavelet bases for multi-dimensional spaces [7, 8]. How-
ever, such bases are still data-independent prescribed filters, and the
gained compression efficiency over axis-aligned bases is limited [27].

We would like to have a fresh look at the problem by learning pref-
erential bases directly from the data, thus removing a bias in the ap-
proximation process. This, so far, has been done in DVR using learned
codebooks combined with vector quantization [22, 11, 20], which re-
quire, however, large dictionaries if low distortion is desired. While
computational aspects and rendering performance of base decompo-
sition methods have been studied extensively, these methods are only
beginning to be used for feature extraction. Our choice of approach
was, however, to find bases, which simultaneously reduce datasets and
represent features.

The most common tools for data approximation with computed
bases are the singular value decomposition (SVD) and the principal
component analysis (PCA). Both approaches work on 2D matrix data
and exploit the fact that the dataset can be represented with a few
highly significant coefficients and corresponding reconstruction vec-

tors (based on the matrix rank reduction concept). The extension of
rank-reduced data approximation to higher-order is not unique and
can be grouped into two main so called tensor approximation (TA) ap-
proaches: the Tucker model and the Candecomp/Parafac (CP) model,
which were recently reviewed in [15].

Recently, tensor approximation has been demonstrated to be a valid
alternative 3D spatial volume compression method [24, 27, 23]. Our
work builds on the approaches of Wu et al. [27] and Suter et al. [23],
where tensor approximation is used as an approach to reduce and visu-
alize volume data with a mathematical representation. Specifically, we
use a Tucker model for which a short summary is given in Appendix
A. Properties of the Tucker model and common notations, which we
follow in this work, are elaborated in [15]. It should be noted that the
TA approach has the advantage that the ranks of the factor matrices
(and in turn the size of the core tensor) can be conveniently reduced
without destroying cache coherence and without data repacking.

Our idea was to extend and improve the offline TA method used
in [23] to a real-time interactive system and verify it with large
datasets. We extended the previous work [23] with a bricked TA im-
plementation, we evaluated and defined a Tucker-specific quantization
scheme and we provided a real-time tensor decomposition reconstruc-
tion on the GPU. As in other works, out-of-core [26] and hierarchi-
cal [27] data management techniques were applied to our approach.

A complete hierarchical multiscale TA system has been proposed
in [27]. Their data hierarchy consists of tensor decomposed subvol-
umes with each level having a progressively decreasing rank-reduction
level. All subvolumes or (volume) bricks – as they are called – on one
hierarchy level, representing the residual to the parent level, are treated
as a tensor ensemble. As a result, each hierarchy level consists of one
single rank-reduced core tensor and multiple factor matrices. How-
ever, for interactive reconstruction and visualization many temporary
results must be cached in the hierarchy at run-time. Instead, we build
a multiresolution TA octree where each lower resolution brick is an
autonomous tensor decomposition that can independently be recon-
structed and rendered on demand, attaining interactive speed.

The reconstruction process from our chosen tensor decomposition
is, in principle, straightforward, and can be optimized by a careful re-
ordering of operations (Appendix A.2). Nevertheless, reconstruction
time can be critical for real-time visualization and therefore needs to be
given attention in our system. For the first time, we address GPGPU-
based tensor reconstruction and therefore the reconstruction concepts
should fit parallel computing concepts. E.g., while thresholding of ten-
sor coefficients [27] may reduce the amount of data, the reconstruction
process can be more tedious for parallel computing since complex de-
coding algorithms have to be used. Moreover, the reconstruction is
affected by the format and representation of the coefficients.

For compact data representation, the encoding of numerical values
is fundamental and hence an appropriate quantization must be devised.
We refrain from variable-length coding at this point to avoid the cor-
responding costly decompression. Fixed linear quantization for the
factor matrices (8-bit) and core tensor (8-20-bit) has been proposed
in [27]. We investigate more tensor-specific linear as well as non-
linear quantizations, suitable for fast reconstruction implementation
on the GPU. In particular, the distribution of the core tensor coeffi-
cients can benefit from logarithmic quantization, and we analyze the
error rate of different quantization strategies.

There exist only a few commonly available TA implementations:
e.g, there is a comprehensive MatLab toolbox [2] , and for C++ there
is a tensor framework for 3D datasets available with the VMMLib [1],
which was extended for this project and used for the preprocessing part
on the CPU. However, no hardware accelerated implementations have
been proposed so far. In this paper, we present the first CUDA [18,
19] based GPU accelerated implementation of a reduced complexity
Tucker volume tensor reconstruction algorithm.

3 BRICKED MULTIRESOLUTION TA
Large volumes cannot be processed/rendered as a monolithic block,
since not only their size exceeds available working memory, but spatial
adaptation is paramount for implementing fast renderers. Therefore, a



data management system that divides the data into blocks is an impor-
tant basis both to process and to visualize large datasets. Our method
is based on the offline decomposition of the original volumetric dataset
into small cubical bricks (subvolumes), i.e., third-order tensors, which
are approximated, quantized and organized into an octree structure
maintained out-of-core. The octree contains data bricks at different
resolutions, where each resolution of the volume is represented as a
collection of bricks in the subsequent octree hierarchy level.

Each brick has a fixed width B with an overlap of two voxels at each
brick boundary for efficiently supporting runtime operations requiring
access to neighboring voxels (trilinear interpolation and gradient com-
putation). The width of the brick is flexible, but in this paper is set to
B = (28 + 2 + 2) = 32, i.e., one brick is 323, which has proved small
enough to guarantee LOD adaptivity, while coarse enough to permit
an effective brick encoding by the analysis of the local structure.

Each octree brick A ∈ R3 is tensor approximated using rank-
reduced Tucker decomposition. A Tucker decomposition (see Ap-
pendix A) is defined as Ã = B×1 U(1) ×2 U(2) ×3 U(3), where B
is the so called core tensor and U(n) are the factor matrices. A rank-
reduced TA along every mode of the dataset is written with the no-
tation: rank-(R1,R2,R3) TA. As illustrated in Fig. 1, we compute for
each brick of size B3 a rank-(R,R,R) TA, with R∈ [1..B−1]. Typically,
we use a rank reduction, where R = B/2, i.e., R = 16 for B = 32, fol-
lowing the rank reduction scheme used in other tensor approximation
works [27, 23]. The resulting rank-reduced decomposition is quan-
tized to further reduce memory usage (see Sec. 4) and stored in a
out-of-core brick database. With each brick, we store a 64-bit binary
histogram, which is used for transfer-function-based culling.

...

......

lowest resolution

highest resolution

B3 bricks

core tensor    and
basis matrices U

B

A

Fig. 1: Multiresolution octree tensor decomposition hierarchy with B3

sized bricks.

The whole preprocessing is performed in a low-memory setting us-
ing a bottom-up process on a brick-by-brick basis, which is repeated
until we reach the octree root. Leafs are constructed by sampling
the original dataset, while non-leaf bricks are constructed from their
previously constructed eight children, which are dequantized, recon-
structed, and spatially averaged.

At run-time, an adaptive loader updates a view- and transfer
function-dependent working set of bricks. The working set is incre-
mentally maintained on the CPU and GPU memory by asynchronously
fetching data from the out-of-core brick multiresolution TA structure.
Following the MOVR approach [12, 14], the working set is maintained
by an adaptive refinement method guided by the visibility information
fed back from the renderer. The adaptive loader maintains on GPU a
cache of recently used volume bricks, stored in a 3D texture. At each
frame, the loader constructs a spatial index for the current working set
in the form of an octree with neighbor pointers.

For rendering and visibility computation, the octree is traversed us-
ing a CUDA stack-less octree ray-caster, which employs preintegrated
scalar transfer functions to associate optical properties to scalar values,
and supports a variety of shading modes [14]. The ray-caster works on
reconstructed bricks, and reconstruction steps occur only upon GPU
cache misses. The quantized tensor decomposition is dequantized and

reconstructed on demand by the adaptive loader during the visualiza-
tion on the GPU (see Sec. 5).

In order to permit structural exploration of the datasets, the recon-
struction can consider only the K most significant ranks of the tensor
decomposition, where K ∈ [1..R] is chosen by the user. The recon-
struction rank K can be changed during the visualization process with
a rank slider. Lower-rank reductions give a faster outline of the visu-
alized dataset and can highlight structures at specific scales [23], see
also Sec.6. Higher K values add more details onto the dataset.

4 ENCODING OF COEFFICIENTS

As mentioned previously, the tensor and factor matrix coefficients take
up unnecessary space if maintained as floating point values, see also
storage cost analysis in Sec. 6.2. For compact representation of the ten-
sor decomposition and to reduce the disk to host to device bandwidth
during rendering, we apply a simple fixed bit length encoding based
on tensor-specific quantization. In particular, the factor matrices and
the core tensor of the Tucker model have a different distribution of co-
efficients and thus the quantization approach was selected accordingly,
as described below. A fixed bit length approach has been selected in
order to simplify parallel decoding on the GPU.

4.1 Factor Matrices and Core Tensor Coefficients
The coefficients of the basis factor matrices U(1...3) are normalized
and distributed between [−1,1], due to the orthonormality of factor
matrices in the Tucker model. Therefore, a uniform linear 8- or 16-bit
quantization as in Eq. 1 can effectively be applied. We use a single
min/max-pair to indicate the quantization range for all three factor
matrices to minimize the number of coefficients that need to be loaded
by the CUDA kernels.

x̃U = (2QU −1) · x− xmin

xmax− xmin
(1)

As per definition of the Tucker model, the core tensor B captures
the contribution of the linear bases combinations, i.e., the energy of
the data, in its coefficients. The distribution of the signed coefficients
is such that the first entry of the core tensor has an especially high
absolute value close to the volume’s norm, capturing most of the data
energy, while many other entries concentrate around zero. The prob-
ability distribution of the other values between the two extrema is de-
creasing with their absolute magnitude in a logarithmic fashion. Hence
we apply a logarithmic quantization scheme as in Eq. 2 for the core
tensor coefficients, using a separate sign-bit.

|x̃B |= (2QB −1) · log2(1+ |x|)
log2(1+ |xmax|) (2)

Special treatment is given to the one first high energy value men-
tioned before. It is known that this value, the hot-corner coefficient,
is always at position B(0,0,0). Since it is one value and in order to
give more space to the quantization range to the other coefficients, we
optionally do not quantize this value and store it separately.

Various quantization levels for the other coefficients, QU and QB ,
could be used and analyzed. In practice, we have chosen a byte-
aligned quantization of QU,B = 8- or 16-bit as a compromise between
the most effective quantization and efficient bit-processing. The ef-
fects of quantization as well as other tensor-specific optimizations are
reported in Sec. 6.2 where we analyze the quantization error.

4.2 Storage Requirements
The basic storage needed for a volume dataset A of size of I1× I2× I3,
is I1 · I2 · I3 ·Q, where Q is the number of bits (bytes) per scalar
value. A rank-(R1,R2,R3) tensor approximation, however, only re-
quires R1 ·R2 ·R3 ·QB +(I1 ·R1 + I2 ·R2 + I3 ·R3) ·QU, in addition to
three floating point numbers for the quantization ranges of the factor
matrices (min/max values) and core tensor (max quantization value),
and one floating point value for the hot-corner value. This first coef-
ficient of the core tensor is (optionally) encoded separately from the
remaining ones, leading to a reduced quantization range for Eq. 2.



The ratio of the achieved data reduction depends on the input size
and rank reduction of the TA. In Sec. 6.2, we analyze the amount of
storage needed for rank-reduced and quantized TA of complete data
volumes as well as bricked multiresolution volumes.

5 GPU TENSOR RECONSTRUCTION

For volume ray-casting one can consider either a per-voxel (e.g., for
random access during traversal) or per-brick reconstruction approach.
Using a per-brick solution permits us to optimize reconstruction by
refactoring computations in order to reduce computational costs and
to take advantage of the complex memory hierarchy of nowadays
GPGPU platform. As outlined in the previous section, we perform
a brick-wise reconstruction of the tensor from its decomposition ac-
cording to the multiresolution octree hierarchy. If not already cached
by the rendering system, a requested tensor brick is loaded and trans-
ferred to the GPU where the tensor reconstruction is performed. In the
following we analyze the basic tensor reconstruction strategy and its
implementation on the GPU using the CUDA framework.

5.1 CUDA Terminology

A CUDA kernel is a SIMD parallel program that is executed by an ar-
ray of threads (work-items),1 all running the same code. The threads
are organized in a grid of thread blocks, and each kernel is called with
a given grid size (NDRange) and a given blocks size (work groups).
Each thread owns some registers (private memory) and each thread
block has access to a limited amount of shared memory (local mem-
ory), which constitute the fastest data access paths. Additionally all
threads can concurrently access global memory, constant memory and
texture memory (global memory), where the memory latency increases
from constant and texture memory (read only and cached), to local and
global memory (read/write).

5.2 Reconstruction Strategy

First, we describe a simple but not optimized implementation to set
out a starting approach for the reconstruction problem. Later, we in-
troduce an optimized reconstruction based on the Tucker formulation
implemented as so called tensor times matrix (TTM) multiplications.
In both cases, the reconstruction on the GPU is parallelized such that
the voxels of each brick are reconstructed in parallel, i.e., one thread
of the GPU kernel computes one voxel. According to Eq. A.5 the sim-
ple reconstruction solution can be implemented with a single CUDA
kernel that sums over all core tensor coefficients, each multiplied with
the corresponding entries from the factor matrices. Despite the sim-
plicity of this implementation drawbacks arise as a consequence. First,
Eq. A.5 includes a triple-for-loop, which makes the computational cost
per reconstructed voxel and thread of cubic order R3, where R is the
number of reduced ranks. Second, to reconstruct a single voxel the
complete core tensor B needs to be available in each thread, which is
not memory efficient.

The computational complexity can significantly be reduced by se-
quentially applying the core tensor and factor matrix multiplications
using n-mode products as in Eq. A.6 and storing intermediate recon-
struction results. This reconstruction corresponds to the initial for-
mulation in Eq. A.3 and has been implemented as so called tensor
times matrix (TTM) multiplications. With this three step TTM volume
reconstruction, the computational complexity per reconstructed voxel
grows only linearly with R. Hence, we have to call three different
GPU TTM kernels successively and store the intermediate results in
between kernel calls. The CUDA implementation of this approach is
described in more detail below.

5.3 CUDA TTM Reconstruction

The tensor reconstruction in CUDA is implemented using three suc-
cessively applied TTM kernels. Each kernel corresponds to the appli-
cation of one n-mode product (as in Eq. A.6), hence TTM1, TTM2,
and TTM3. After applying TTM1 and then TTM2, we need each time

1Analogous OpenCL terms are mentioned in parenthesis.

to temporarily store a third-order tensor of size B×R2 and B2×R, re-
spectively. Eventually after applying TTM3 the final B3 sized volume
brick is reconstructed.

The implementation of TTMn: Y = X ×n U(n) is based on a
matrix-matrix multiplication as illustrated in Fig. 14. More pre-
cisely, the factor matrix U(n) is multiplied with each slice (matrix)
of the third-order tensor X , sliced according to the mode n (e.g.,
lateral, frontal, or horizontal slices). Hence the full reconstruction
Ã = B ×1 U(1) ×2 U(2) ×3 U(3) corresponds to successive matrix-
matrix multiplications, which can be optimized by following CUDA
implementation best practices [18].

The pseudo code implementation of the three CUDA kernels is
given in the Algs. 1–3. We use a thread block per decoded brick,
where each thread is responsible for computing one element of the
tensor-matrix multiplication. The grid-size for parallel execution is
determined by the number of bricks that need to be decoded in the
current frame (e.g., 8 bricks for the minimal octree refinement step).

For TTM1, we compute one slice of the intermediate tensor B′ on
one thread block. For one TTM1-block, we load the factor matrix U(1)

and one slice of B (slice is given by blockId). For reasons of memory
optimizations, we compute for TTM2 and TTM3 only half slice of
B′′ and half slice of Ã , respectively, on one thread block. For one
TTM2/TTM3-block, we load half of the factor matrix and one slice
of the intermediate data structures B′ and B′′. The memory usage
and performance optimizations of the CUDA TTM reconstruction are
explained next.

Algorithm 1 CUDA kernel for TTM1

1: load U(1) and tensor core B slices to GPU
2: CUDA kernel:
3: extract min/max values for dequantization
4: linearly dequantize one element of U(1)

5: log dequantize one element of B
6: each thread writes one element of U(1) to shared memory
7: each thread writes one element of the B slice to shared memory
8: synchthreads()
9: for each r1 in R1 do

10: voxel += U(1)(i1,r1) ·B(r1,r2,r3)
11: end for
12: store voxel to the intermediate B′(i1,r2,r3)

Algorithm 2 CUDA kernel for TTM2

1: load U(2) and half tensor B′ slices to GPU
2: CUDA kernel:
3: extract min/max values for dequantization
4: linearly dequantize one element of U(2)

5: each thread writes one element of U(2) to shared memory
6: each thread writes one element of the B′ slice to shared memory
7: synchthreads()
8: for each r2 in R2 do
9: voxel += U(2)(i2,r2) ·B′(i1,r2,r3)

10: end for
11: store voxel to the intermediate B′′(i1, i2,r3)

Algorithm 3 CUDA kernel for TTM3

1: load U(3) and half tensor B′′ slices to GPU
2: CUDA kernel:
3: extract min/max values for dequantization
4: linearly dequantize one element of U(3)

5: each thread writes one element of U(3) to shared memory
6: each thread writes one element of the B′′ slice to shared memory
7: synchthreads()
8: for each r3 in R3 do
9: voxel += U(3)(i3,r3) ·B′′(i1, i2,r3)

10: end for
11: add contribution of hot-corner core value to voxel
12: store voxel in decoding buffer for Ã (i1, i2, i3)



5.4 Performance Optimizations
In order to optimize the parallel execution on the GPU, we should
exploit data parallelism, optimize memory usage, take into account the
bandwidths to the various parts of the memory hierarchy, and optimize
instruction usage, thus increasing throughput.

In our approach, host-to-device data transfers are reduced by using
page-locked buffers. That is, before launching the kernel TTM1, we
transfer the factor matrices and the core tensor of one brick all at once
and in a quantized form to the global GPU memory. Our GPU TTM
reconstruction code (TTM kernels) uses intermediate data structures
(B′ and B′′), which allows us to make use of the on-chip memory.

The temporary data structures of the third-order tensors are stored
in the global memory, and slices of these third-order tensors are loaded
to the shared memory when requested. Threads within the same thread
block cooperate to load into shared memory the necessary elements of
U(1), U(2),U(3), B, B′ and B′′, by loading one single element per ten-
sor per thread. A syncthreads() barrier at the end of the loading phase
ensures that all the elements are up-to-date before performing calcula-
tions. In order to avoid bank conflicts in shared memory accesses, we
dequantize the factor matrices and core tensor to 32-bit floating point
words before we upload the data to shared memory. Thus, all accesses
are aligned on 32-bit words.

For TTM2 and TTM3, we split the matrix-matrix multiplication of
one slice into two blocks. In that way, we optimize the shared memory
usage and load only half of a factor matrix together with the full core
tensor (we thus compute only upper or lower half of a matrix with the
other matrix). With this scenario, we need for TTM1 (B ·R ·4+R ·R ·4)
bytes and for TTM2/TTM3 (B/2 ·R ·4+B ·R ·4) bytes of shared mem-
ory per block, which works with 32-cubed bricks for CUDA 1.x and
2.x. We have a maximum of 16 KB (CUDA 1.x) or 48 KB (CUDA
2.x) of shared memory available per multiprocessor, whereas one mul-
tiprocessor can have at maximum 8 blocks. Depending on how much
shared memory is used, fewer or more blocks are loaded per multi-
processor. To summarize, in our implementation, increasing the use
of shared memory has higher priority than maximizing the number of
blocks run per processor (for CUDA 1.x).

In addition, TTM3 separately handles the contribution of the hot-
corner coefficient, adding its contribution to the overall reconstruction
directly from the unquantized value of B(0,0,0). In order to simplify
decoding and avoid special case handling in the inner loop, we encode
a zero quantized coefficient at the corresponding core tensor position.

The final reconstruction Ã , is stored into an intermediate decoding
buffer in device linear memory. We perform for each decoded brick a
device-to-device copy in order to place the decoded brick in the correct
place in the GPU cache, which is maintained as a texture bound to a
CUDA array in order to maximize texture memory cache coherence.

6 EXPERIMENTAL RESULTS

We have implemented a library supporting the multiscale volume ten-
sor reconstruction and its integration with a GPU-accelerated out-
of-core multiresolution volume rendering framework using C++ and
CUDA 3.2. All performance tests have been carried out on an Intel
Core 2 E8500 3.2GHz Linux PC with 4GB RAM, and GeForce GTX
480 graphics with 1.5GB of memory. The multiresolution volume oc-
tree is stored in an out-of-core structure, based on the Berkeley DB,
with each 323 brick being stored as a quantized rank-(16,16,16) ten-
sor decomposition.

We discuss the performance results obtained based on the large
scale micro-CT veiled chameleon and great ape molar (tooth) datasets.
The chameleon (10242× 1080, 16-bit) is a micro-CT scan of the up-
per body, where each slice is 0.105mm thick with an inter-slice spac-
ing of 0.105mm and a field of reconstruction of 94.5mm. The tooth
(20483, 16-bit) is a 7mm3 block cut out of dental enamel, scanned
by phase-contrast synchrotron tomography at high resolution to re-
veal growth patterns of the dental enamel. Additionally, we use three
smaller datasets (2562×128) for the quantization error analysis.

Preprocessing consisted in the construction and storage of the mul-
tiresolution volume octree, including the computation of the tensor de-

composition for all bricks and the quantization of the coefficients. The
preprocessing time for the 2GB chameleon dataset was 25min15sec
and produced a 231M file. In the case of the 17GB tooth dataset the
preprocessing time was 8h45min and the resulting file was of 5.5GB.

6.1 Interactive Performance
We evaluated the rendering and tensor reconstruction performance on
the two large volumes (Figs. 2 and 3). The qualitative performance and
interactivity of our adaptive GPU ray-caster is demonstrated in an ac-
companying video, recorded using a window size of 1024×768 pixels
using a 1 voxel/pixel LOD rendering accuracy threshold. Our interac-
tive inspection sequences include overall views and extreme close-ups,
which stress our adaptive loader by incrementally requesting and re-
constructing a large number of bricks.

Fig. 2: Great ape molar (tooth), 7mm3 sampled at 20483, scanned with
phase-contrast synchrotron tomography.

Fig. 3: Full reconstruction of the chameleon.

Figs. 4 and 5 demonstrate the achieved performance. As we can see,
in any case an interactive rendering performance can be maintained,
with frame-rates higher than 12Hz even for the most demanding sit-
uations, and on average between 50Hz and 100Hz. In particular, the
timing reveals that our tensor reconstruction constitutes only a negli-
gible overhead with respect to the overall rendering cost. Rendering
time is in fact dominated by the ray-casting and data transfer times.
The most costly part of the (fast) tensor reconstruction process is the
final copy of the decoded bricks to texture cache.
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Fig. 4: Performance measured on the chameleon.

The number of rendered bricks per frame varies depending on the
zoom factor, and is always maintained below 7000 by our adaptive
renderer. Brick dequantization and reconstruction occurs only upon
cache misses, which attributes to the low tensor reconstruction cost.
But even under the most stressful situations where the number of ren-
dered bricks changes rapidly, the dynamic update process is largely
dominated by the brick data uploading time from CPU to GPU and
not by the tensor reconstruction.

Given the high tensor reconstruction performance, we see as an in-
teresting avenue for future work the possibility to further reduce de-
vice memory occupation by removing the uncompressed brick cache
and decoding bricks on-demand at each frame. This would allow to
display even larger amounts of volume data in each rendered image.

6.2 Data Reduction
The quantization of the tensor coefficients helps to keep the critical
CPU-to-GPU data transfer and disk storage low. In this section, we
analyze the error due to quantization and how the storage size is thus
affected. We considered quantization approaches that use the same
bit-length (from 8-bit to 16-bit) for all values within a coefficient type,
the factor matrices U(n) and the core tensor B.

6.2.1 Storage Cost
The storage cost for different quantization approaches is indicated in
Fig. 6, where U and B indicate factor matrices or core tensor settings,
respectively, and klin/log indicates linear or logarithmic quantization
to QU,B = k bits according to Eqs. 1 and 2. The left-most value
A:16 represents the size of a 20483 16-bit input volume dataset A ,
and U:32 B:32 a 32-bit floating point representation of the reference
rank-(1024,1024,1024) reduced tensor approximation of Ã . The data
reduction follows the storage requirements outlined in Sec. 4.2.

We can see in Fig. 6 that the proposed quantization (U:8 B:8 to
U:16 B:16) has a additional storage reduction effect, compared to the
floating point tensor (U:32 B:32) and original volume (A:16) data
representation. Furthermore, for the quantized 323-bricked multires-
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Fig. 5: Performance measured on the great ape molar (tooth).

olution octree hierarchy the storage consumption is minimally differ-
ent from the non-bricked quantized format. Only the non-quantized
bricked floating-point representation has an adverse space cost behav-
ior due to its many coefficients that have to be stored. The approxi-
mation quality of the different quantization levels is analyzed below.
From the storage cost results we can conclude that it is preferable to
spend 16-bits on the factor matrix entries rather than on the core ten-
sor, as the factor matrices U(n), being quadratic, affect the total storage
marginally compared to the core tensor B, being cubic (see Sec. 4.2).

6.2.2 Quantization Error
To evaluate the approximation quality of a rank-reduced and quan-
tized tensor decomposition we use the signal-to-noise ratio (SNR)
to express the error in relation to the data’s signal strength. We de-
fine the signal strength of a volume A as the averaged Frobenius

norm ‖A ‖F̄ =
√

1
N ∑a2

i1,i2,i3 , and the approximation and quantization

noise of the reconstructed volume Ã as the root-mean-squared error

(RMSE) ε
Ã

=
√

1
N ∑(ai1,i2,i3 − ãi1,i2,i3)2. Hence the SNR is defined

as σ
Ã

= 20 · log10 ‖A ‖F̄
ε
Ã

.
As base reference to evaluate quantization effects, we compare to

the error which was introduced by a reduced rank-(R1,R2,R3) ten-
sor approximation Ã of the original volume A ∈ RI1×I2×I3 , where
Rk = Ik

2 (following the rank scheme used in [27, 23]). Due to limits in
processing time, the costly approximation error analysis was not per-
formed on the full size 20483 tooth volume, but on a representative
2562× 128 subvolume, and put in comparison to the approximation
quality achieved for the well known bonsai tree and engine datasets of
the same resolution. The triple-bars in Fig. 7 are organized in the indi-
cated dataset order and bright-dark-medium-luminance color coded.
The reference floating-point tensor decomposition (U:32 B:32) is
shown to isolate and evaluate the quantization effect.

Tucker TA-specific Quantization: We analyzed the quantization
approaches outlined in Sec. 4.1, applying linear and logarithmic quan-



!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

()
'%
"

*)
+#
",)
+#
"

*)
&",
)&"

*)
&",
)'!
"

*)
&",
)'#
"

*)
&",
)'%
"

*)
'%
",)
&"

*)
'%
",)
'!
"

*)
'%
",)
'#
"

*)
'%
",)
'%
"

*)
+#
",)
+#
-.
/01
23
4"

*)
&",
)&-
./
012
34
"

*)
'%
",)
&-
./
012
34
"

GB

Fig. 6: Storage needed (in GB) for the various quantization ap-
proaches. U stands for the factor matrices, B for the core tensor. The
number after B and U gives the number of bits used for the respective
coefficient type.

!"
#"
$!"
$#"
%!"
%#"
&!"
&#"
'!"
'#"

()
&%
"*)
&%
"

()
+"*
)+,
-."

()
$/
"*)
+,-
."

()
+"*
)$/
,-.
"

()
$/
"*)
$/
,-.
"

()
+"*
)+,
01
"

()
$/
"*)
+,0
1"

()
+"*
)$!
,01
"

()
$/
"*)
$!
,01
"

()
+"*
)$%
,01
"

()
$/
"*)
$%
,01
"

()
+"*
)+,
01
2"

()
$/
"*)
+,0
12
"

()
&%
"*)
&%
34
5-6
78
9"

()
+"*
)+,
01
34
5-6
78
9"

()
$/
"*)
+,0
134
5-6
78
9"

*0.:;-" <.1-.8" =00>?"

SNR

!"
#"
$!"
$#"
%!"
%#"
&!"
&#"
'!"
'#"

()
&%
"*)
&%
"

()
+"*
)+,
-."

()
$/
"*)
+,-
."

()
+"*
)$/
,-.
"

()
$/
"*)
$/
,-.
"

()
+"*
)+,
01
"

()
$/
"*)
+,0
1"

()
+"*
)$!
,01
"

()
$/
"*)
$!
,01
"

()
+"*
)$%
,01
"

()
$/
"*)
$%
,01
"

()
+"*
)+,
01
2"

()
$/
"*)
+,0
12
"

()
&%
"*)
&%
34
5-6
78
9"

()
+"*
)+,
01
34
5-6
78
9"

()
$/
"*)
+,0
134
5-6
78
9"

*0.:;-" <.1-.8" =00>?"

Fig. 7: Quantization error as SNR for various quantization approaches.
The triple-bars are organized in the indicated dataset order and bright-
dark-medium-luminance color coded. U stands for the factor matrices,
B for the core tensor. The number after B and U gives the number of
bits used for the respective coefficient type.

tization to both the factor matrices and core tensor as well. The effects
on approximation error were analyzed for entire as well as bricked
volume Tucker decompositions. Fig. 7 shows the analysis of the ap-
proximation quality in terms of the SNR σ

Ã
for different linear and

logarithmic quantizations.
Except for the 8-bit linear core quantization (B:8lin), it is clear from

Fig. 7 that for the factor matrices a significant improvement in SNR,
and hence lower approximation error, can be achieved when using 16-
bit (U:16) instead of 8-bit (U:8) quantization. Though the bonsai tree
dataset does not benefit as strongly from this as the other volumes.

With respect to the core tensor quantization, it can be seen that the
logarithmic is superior to the linear quantization, reaching comparable
SNR values using much fewer bits, i.e. B:8log achieving almost the
same quality as B:16lin for the same factor matrices quantization. It
can be seen that increasing the quantization resolution from 8 to 12-bit
only minimally improves the SNR, with the latter (B:12log) basically
matching the more costly linear quantization.

We evaluated the separate floating point representation of the hot-
corner core tensor coefficient (B:8log+ in Fig. 7), which otherwise
potentially wastes quantization resolution better spent on the remain-
ing core tensor coefficients. The SNR can so be increased slightly at
the expense of only 4 extra bytes.

Taking the results from the storage cost study into account, the op-
timally compact quantization can be achieved using 16-bit linear fac-
tor matrix and 8-bit logarithmic core tensor quantization with separate
hot-corner (U:16 B:8log+).

Bricked TA Quantization: In a bricked multiresolution octree
setting the quantization quality differs only so slightly as shown in
Fig. 7 (U:.. B:..-bricked), sometimes even being better. This could be
explained by the fact that the bricked representation uses more coeffi-

cients in total over all bricks for the same volume dataset, consuming
a little bit more space (Fig. 6). The preferable optimal quantization
setting is thus the same as above also for the bricked TA.

Additionally, for the structural tooth dataset we performed a quan-
tization error analysis on a larger 10243-cubed volume. The reference
SNR of 37.16 for U:32 B:32 compares well with the SNR of 37.09
for U:16 B:8log-bricked, which matches well with the SNR study for
the smaller tooth subvolume in Fig. 7. The SNR over individual bricks
varies from 35.11 to 40.94 with an average of 37.16. Note that the
U:16 B:8log-bricked representation differs from the original 16-bit
input volume only by a very low (normalized) RMSE of 0.007.

6.3 Visual Results
In order to give insight into the capability of multiscale tensor approx-
imation for DVR, we show visual results from the veiled chameleon
and the great ape molar.

Approximative Visualization: The veiled chameleon dataset as
shown in Fig. 8 is visualized with the out-of-core multiresolution vol-
ume renderer based on tensor reconstructed bricks. It can be seen that
even with a lower rank tensor approximation, i.e., by using less storage
and bandwidth, the essential parts as well as details of a certain feature
size can be visualized. Small scale features are effectively removed
from the visible bone structures, in a different way than by reducing
the rendering LOD which typically results in a more blurred volume
close up. Fig. 9 shows the effects of rank reduction on gradient quality.
As we can see, block boundaries become apparent only at low ranks.
Such artifacts are inherent to all brick-based lossy compression meth-
ods, and can be alleviated, at the cost of higher rendering time, by
interblock interpolation through sampling neighboring bricks [16, 3]
or by using deferred filtering approaches [10, 11]. This is orthogonal
to the presented research.

Fig. 8: Comparison of a rank-(16,16,16) and a rank-(8,8,8) TA.

Fig. 9: Comparison of various rank-(R,R,R) TAs using the gradient
vector of the skin isosurface mapped to RGB color.

Structural Features: As an application, we look at dental inter-
nal structures of a great ape molar. The relevant growth structures are
found in the tooth enamel, which has a microstructure that is roughly
comparable to densely packed fibers (so called prims). During dental
enamel formation, each enamel prism elongates in centrifugal direc-
tion through the daily apposition of a small segment of enamel. In
other words, the prisms grow along all three spatial dimensions and
are in particular not axis-aligned, but of curved shape. Examples of
such enamel growth patterns can be found in Suter et al. [23] and in the



accompanying video. Those prisms represent important growth struc-
tures, but are difficult to visualize since the scanned high-resolution
dataset includes spatial information of growth patterns that are of mul-
tiple scales (daily appositions form prisms).

In our experiments, we observed the effect of different rank-reduced
and tensor-approximated dental growth structures in the great ape mo-
lar. We noticed that by using lower-rank TA, dental structures like
growth prisms become highlighted as illustrated in an example close-
up in Fig. 10. In Fig. 11 a horizontal cut orthogonal to the growth
prisms (yellow dots) is shown. The image of the base reference at
a rank-(16,16,16) TA shows the prisms irregular spatial distribution,
which makes the identification of individual prisms more difficult. The
lower-scale rank-(8,8,8) reconstruction clears out the fuzziness and
reveals the layered periodic and parallel arrangement of the prisms.
From these experiments, we conclude that the effect of rank-reduced
TA supports counting or analyzing layer formations.

Fig. 10: Dental growth structures (prisms), highlighted with a reduced
rank-(4,4,4) reconstruction. Taken from a frontal projection to an area
below the enamel surface (see Fig. 2).

Fig. 11: Dental growth structures (prisms), highlighted with a reduced
rank-(8,8,8) reconstruction. Taken from a horizontal cut through an
area below the enamel surface (see Fig. 2).

Even if more experimentation is required on a large variety of real-
world datasets, our initial results seem to indicate that TA is able
to preserve important features using coarse ranks. We see tensor-
reconstructed volumes as an alternative to potentially help researchers
to visualize and explore particular features at different scales by play-
ing with tensor approximations of different ranks.

7 CONCLUSION

We have presented the first integration of a multiscale volume rep-
resentation based on tensor approximation within a GPU-accelerated
out-of-core multiresolution rendering framework. Our multiscale rep-
resentation allows for the extraction, analysis and display of structural
features at variable spatial scales, while adaptive level-of-detail ren-
dering methods make it possible to interactively explore large datasets

within a constrained memory footprint, allowing analysts to visually
examine and understand datasets of overwhelming size and complex-
ity. We have shown that tensor approximation offers good compres-
sion, and, by reducing the reconstruction rank, permits the highlight-
ing of structural features. Thus, TA is a powerful approach to represent
microstructural volume datasets at high data reduction ratios, and si-
multaneously highlighting relevant features at different spatial scales
but high display resolution. Our system allows this exploration to oc-
cur for massive volumes and in real time.

Our future work will concentrate on further improving the perfor-
mance and capabilities of our system by removing the need for an un-
compressed brick cache, further reducing GPU memory needs. More-
over, we plan to improve our representation by using a per-brick adap-
tion of the approximation rank, non-uniform quantization of coeffi-
cients, as well as thresholding of insignificant core tensor coefficients
(sparse tensors) to further reduce memory needs. However, we would
need to evaluate such a scenario with respect to the decoding and re-
construction times on the GPU.
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APPENDIX A TENSOR APPROXIMATION (TA)

In tensor approximation (TA) approaches, an multi-dimensional input
dataset in array form, i.e., a tensor, is factorized into a sum of rank-one
tensors or into a product of a core tensor and matrices, i.e., one for each
dimension. This factorization process is generally known as tensor
decomposition, while the reverse process of the decomposition is the
tensor reconstruction. In the following sections, we give an overview
of these two processes. In order to obtain a data reduction, which is
an approximation of the input data, an additional process has to be
introduced: the tensor rank-reduction. The concepts presented in the
following subsections hold for general higher-order tensors. However,
we restrict ourselves to third-order tensor as this is more intuitive and
this represents the datasets used in Direct Volume Rendering (DVR).

A.1 Tensor Decomposition

Let A be a third-order tensor in RI1×I2×I3 with elements aiii2i3 . The
Tucker model is a common approach for tensor decompositions. There
the third-order tensor is approximated by a product of a core tensor B
and three factor matrices U(n)

Ã = B×1 U(1)×2 U(2)×3 U(3), (A.3)

where the products ×n denote the n-mode product between the tensor
and the matrices (see [15] and Fig.12). The Tucker decomposition of
a tensor, which is a higher-order form of a matrix SVD or a PCA (ex-
tension of matrix rank concept), can be obtained from an higher-order
SVD (HOSVD) algorithm (computed by a matrix SVD along every
data mode). Other successful factorization methods are TUCKALS3
(an ALS approach for Tucker decompositions in three dimensions) and
its generalized version, the higher-order orthogonal iteration (HOOI)
(details see [15]).

U(3)U(1) U(2)I1 I2I1

I2 I3

I3

R1 R2 R3

R1

R2
R3

B�A

Fig. 12: Tensor decomposition

After a HOSVD the core tensor B has the same size as the original
input dataset A and all the factor matrices are quadratic. However, we
are more interested in light-weight, approximative Tucker decompo-
sitions, where B is element of RR1×R2×R3 with R1 < I1, R2 < I2 and
R3 < I3. Using the HOOI algorithm one can directly obtain a reduced-
rank Tucker decomposition, whereas the rank reduction. Alternatively
one can truncate the result obtained from HOSVD which is according
to Bader and Kolda [15] not optimal in terms of difference between
approximated and original data.

A.2 Tensor Reconstruction
The tensor reconstruction of a reduced-rank Tucker decomposition
can be achieved in different ways. One alternative, is a progressive re-
construction: Each entry in the core tensor B is considered as weight
for the outer product between the corresponding column vectors in the
factor matrices

Ã = ∑
r1

∑
r2

∑
r3

br1r2r3 ·u(1)
r1 ·u(2)

r2 ·u(3)
r3 . (A.4)

The sum of all theses weighted “subtensors” forms the approxima-
tion Ã of the original data A (see Fig. 13).

+ ...= ... +

I3I2

I1
br1r2r3

u(1)
r1

u(2)
r2

u(3)
r3

�A

Fig. 13: Tensor reconstruction from Eq. A.4 visualized.

Another approach, is to reconstruct each element of the approxi-
mated dataset individually, which we call voxel-wise reconstruction
approach. Each element ãi1i2i3 is reconstructed as shown in Eq. A.5,
i.e., sum up all core coefficients multiplied with the corresponding co-
efficients in the factor matrices (weighted product).

ãi1i2i3 = ∑
r1

∑
r2

∑
r3

br1r2r3 ·u(1)
i1r1
·u(2)

i2r2
·u(3)

i3r3
(A.5)

A third reconstruction approach is to build the n-mode products
along every mode [15] (notation: B×n U(n)), which leads to a ten-
sor times matrix (TTM) multiplication for each mode, i.e., dimension.
This is analogous to the Tucker model given by Eq. A.3. The n-mode
product between a tensor and a matrix is equivalent to a matrix prod-
uct as it can be seen from Eq. A.6. In Fig. 14 we visualize the TTM
approach using n-mode products.

Y = X ×n U⇔ Y(n) = UX(n), (A.6)

where X(n) represents the mode-n unfolded tensor, i.e., a matrix.
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Fig. 14: TTM: tensor times matrix along the 3 modes (n-mode prod-
ucts). Backward cyclic reconstruction after Lathauwer et al. [6].

Given the fixed cost of generating an I1× I2× I3 grid, the computa-
tional overhead factor varies from cubic rank complexity R1 ·R2 ·R3 in
the case of the progressive reconstruction (Eq. A.4) to a linear rank
complexity R1 for the TTM or the n-mode product reconstruction
(Eq. A.5). (For R = 16, the improvement to R3 = 4′096 is 256-fold.)




