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ABSTRACT

The Multi Triangulation framework (MT) is a very general ap-
proach for managing adaptive resolution in triangle meshes. The
key idea is arranging mesh fragments at different resolution in a
Directed Acyclic Graph (DAG) which encodes the dependencies
between fragments, thereby encompassing a wide class of multires-
olution approaches that use hierarchies or DAGs with predefined
topology. On current architectures, the classic MT is however unfit
for real-time rendering, since DAG traversal costs vastly dominate
raw rendering costs. In this paper, we redesign the MT framework
in a GPU friendly fashion, moving its granularity from triangles to
precomputed optimized triangle patches. The patches can be con-
veniently tri-stripped and stored in secondary memory to be loaded
on demand, ready to be sent to the GPU using preferential paths. In
this manner, central memory only contains the DAG structure and
CPU workload becomes negligible. The major contributions of this
work are: a new out-of-core multiresolution framework, that, just
like the MT, encompasses a wide class of multiresolution structures;
a robust and elegant way to build a well conditioned MT DAG by
introducing the concept of V -partitions, that can encompass var-
ious state of the art multiresolution algorithms; an efficient multi-
threaded rendering engine and a general subsystem for the external
memory processing and simplification of huge meshes.

1 INTRODUCTION

In recent years, the large entertainment and gaming market has
resulted in major investments in commodity graphics chip tech-
nology, leading to state-of-the-art programmable graphics units
(GPUs) with greater complexity and computational density than
current CPUs. Despite the already impressive performance of cur-
rent graphics chips, both architectural considerations and the inher-
ently parallel nature of graphics operations, suggest that this trend
will not change, and GPU performance increase will continue to
outpace CPU performance increase.

However, our ability to generate models that vastly exceed the
peak memory and processing capabilities of even the most powerful
hardware is a constant in a number of application domains (see,
e.g., 3D scanning [14], geometric modeling [24], and numerical
simulation [18]), imposing the need for adaptive techniques.

An important class of large scale 3D models is characterized by
an extremely dense sampling, with lots of fine geometric details,
accompanied by a moderate depth complexity.

The amount of data contained in these models does not allow
us neither to render them directly nor to keep them in the main
memory. So we need both a level-of-detail strategy, to filter out as
efficiently as possible the data that is not contributing to a partic-
ular image, and an out-of-core strategy, to supply efficiently to the
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insufficient amount of main memory.
These models require both multiresolution techniques, because

the graphics architecture cannot sustain such amount of data, and
out-of-core techniques, because

the combination of out-of-core data management techniques, for
handling datasets larger than main memory, with level-of-detail al-
gorithms based on multiresolution structures, to filter out as effi-
ciently as possible the data that is not contributing to a particular
image.

Typical examples of these kind of datasets are terrains and
scanned models.

Up until recently, the vast majority of view-dependent level-
of-detail methods were based on multiresolution structures taking
decisions at the triangle/vertex primitive level. This kind of ap-
proaches involves a constant CPU workload for each triangle that
with current GPU evolution makes the CPU the bottleneck of the
whole rendering process. In other words classical multiresolution
approaches are not able to choose what has to be rendered fast
enough. Given the current hardware trends, this performance bot-
tleneck is doomed to become more and more evident.

To overcome this bottleneck and to fully exploit the capabili-
ties of current graphics hardware is therefore necessary to select
and send batches of geometric primitives to be rendered with just
a few CPU instructions. Following this approach, various GPU
oriented multiresolution structures have been recently proposed,
based on the idea of moving the granularity of the representation
from triangles to triangle patches [1, 3, 25]. The benefit of these
approaches is that the needed per-triangle workload to extract a
multiresolution model reduces by orders of magnitude, the small
patches can be preprocessed and optimized off line for a more ef-
ficient rendering and highly efficient retained mode graphics calls
can be exploited for caching the current adaptive model in AGP or
video memory. Recent work has shown that the vast performance
increase in CPU/GPU communication results in greatly improved
frame rates [1, 3, 25].

It must be said that changing multiresolution granularity reduces
the model flexibility: In general, more triangles than necessary will
rendered to achieve a given accuracy. On the other hand, the render-
ing time does not depends linearly on the triangle count anymore.
Instead, it is strongly influenced by how the triangles are organized
in memory and sent to the graphics card.

With this paper we generalize previous recent approaches by
proposing a batched multiresolution framework based on the Multi-
Triangulation (MT) [22]. The MT is a very general framework that
encompasses a wide class of multiresolution algorithms, but, like
the techniques proposed in the 90’s, it was originally designed to
minimize the number of triangles to be rendered, at the expense of
CPU time.

In this paper, we redesign the MT in a GPU friendly fashion, by
moving the granularity from triangles to optimized triangle patches,
and by redefining the construction and rendering algorithm to work
on external memory. As a result, we provide a new out-of-core mul-
tiresolution scheme that, just like the MT, encompasses a wide class
of construction and view-dependent extraction algorithms and that
enables the interactive rendering of massive meshes on commod-
ity platforms. Moreover, we introduce a novel robust technique to
build a well conditioned multiresolution data structure, based on
V -Partitions sequences.



The original contribution of this is twofold: 1) a general mul-
tiresolution framework (Sec. 3 4) capable of rendering large meshes
at interactive rate that fully exploit GPU capabilities and encom-
passes existing approaches (Section 5) 2) A general subsystem for
handling and modifying massive meshes in external memory, (Sec-
tion 6) the system can be used for the out-of-core construction of
the MT, for the efficient rendering of our multiresolution model, but
also usable for general purposes mesh healing and processing.

2 RELATED WORK

In this section, we briefly survey some of the extensive previous
work on the general subjects of mesh simplification, multiresolu-
tion models, and selective refinement; we focus mainly on the as-
pects most closely related to our work: being able to manage large
meshes in external memory and trying to group primitives together.

A common characteristic of most adaptive mesh generation tech-
niques is that they spend a great deal of the rendering time to com-
pute the view-dependent triangulation and to communicate the up-
dates to the graphics board. For this reason, many authors have
proposed techniques to alleviate popping effects due to small trian-
gle counts [4, 11] or to amortize construction costs over multiple
frames [6, 10, 15], improving feedback frequency at the expense of
a (much) higher latency.

Our technique reduces instead the per-triangle workload by com-
posing at run-time pre-assembled optimized surface patches, mak-
ing it possible to employ the retained-mode rendering model in-
stead of the less efficient direct rendering approach. The idea
of grouping together sets of triangles in order to alleviate the
CPU/GPU bottleneck has already been the focus of a number of
approaches.

HLOD [7] improves the classic LOD scene graph by providing
multiple precomputed levels of details not only for each model but
also for entire subtrees. In this approach, conformality of the tri-
angulations between elements of the partition at different resolu-
tions can be guaranteed only by leaving some of the boundaries
unsimplified, with obvious scalability and quality problems. Some
approaches simply avoid dealing with this kind of problem, limit-
ing themselves to filling the resulting cracks between patches with
ad hoc geometry [9], or moving to a complete mesh-less struc-
ture [8, 23]

The first methods capable to producing adaptive conforming sur-
faces by composing precomputed patches were designed for terrain
rendering. RUSTIC [21] and CABTT [13] are extensions of the
ROAM [6] algorithm, in which subtrees of the ROAM bintree are
cached and reused during rendering. A similar technique is also
presented in [5] for generic meshes. BDAM [1] constructs a for-
est of hierarchies of right triangles, in which each node is a general
triangulation of a small surface region. These methods are efficient
and crack-free, but are limited to 2.5D datasets.

The first approach able to guarantee an adaptive conforming sur-
face for a massive mesh with an arbitrary topology has been pre-
sented in the Adaptive TetraPuzzles approach [3] where, by exploit-
ing a 3D tetrahedral embedding of the well-known right triangle
hierarchy, the authors extend the results of the BDAM approach
to general 3D meshes. A related approach has been presented in
the QuickVDR system [25]: the original massive model is parti-
tioned in a hierarchical set of small patches (called clusters) that
are independently converted into progressive meshes and merged
bottom-up. Additional logic in the management of boundaries be-
tween clusters is used to allow the simplification of some cluster
boundaries while enforcing the conformality of the resulting mesh.
It should be noted that this approach generates a DAG of dependen-
cies between clusters, and thus the whole structure can be consid-
ered a particular case of the our batched MT framework. Similarly,
TetraPuzzles can also be considered a particular case of the MT

Figure 1: An example of the MT DAG that shows the one-to-one correspon-
dence between the valid subsequences and the valid cuts. Note that the cut
C2 (rendered in red) is not valid because two arc of the cut, a01 and a13, are
in the same path from the source to the sink.

framework, in which all dependencies are implicitly encoded in the
tetrahedral hierarchy.

3 RE-DESIGNING THE MT FOR MASSIVE MESHES

The Multi Triangulation framework (MT)[22] was designed as a
general way to formalize and implement multiresolution models
based on simplicial complexes, but its basic concepts hold in a more
general context. In the following description we summarize the MT
framework abstracting from the way the domain is represented and
we give conditions that should be satisfied for generating MT whose
DAG is not ill-conditioned and can guarantee good performances
and flexible adaptivity during extraction.

3.1 The MT Framework on general domains

Let us consider a domain Ω as the subset of R3 corresponding to
the surface to be represented. With the general term description we
denote all the primitives that can be used to describe this domain,
e.g. triangulated surfaces, point sets, parametric surface etc..

Let Ω be our domain and D a description of Ω. The operation of
replacing a portion f of D with a new description g, provided that
both f and g describe the same part of the domain, is called pasting
and it is formally written as: D⊕ g = D \ f ∪ g where f is called
floor of g and g is called fragment.

A general simplification or refinement algorithm can be ex-
pressed as the iteration of the following steps, starting with D0 = D
and i = 0 :

• select a region fi+1 ⊆ Di ;

• construct a new fragment gi+1 s.t. Ω( fi+1) = Ω(gi+1);

• update: Di+1 = Di⊕gi+1

If the fragment gi+1 is a description more accurate than its floor,
then this is a refinement algorithm, otherwise it is a simplification
algorithm.

When speaking about descriptions represented by a triangulation
T we say that, after a pasting operation, T is conforming, or in other
words correct, if for any pair of triangles in T their intersection is



either empty or it is coincident with a vertex or an edge of both
triangles.

Note that gi+1 replaces its floor, which in turn could have been
introduced by previous pasting operations. Therefore the floor of
gi+1 will be, in general, distributed among several fragments pasted
before gi+1. Referring to Figure 1, the floor of g3 is distributed
among D0, g1 and g2 while the floor of g4 is all contained in g1.
We will refer to this property saying that a fragment gi depends
on the fragments intersecting its floor; e.g., referring to Fig. 1, g4
depends on g3 while g3 depends on g1, D0 and g2.

Now consider the whole sequence of pasting operations pro-
duced by the sequences of fragments S = (g1, . . . ,gn) and the corre-
sponding description Dn = (((D0⊕g1)⊕g2)⊕ . . .)⊕ gn. Observe
that a pasting Di⊕ gi+1 can be done if and only if Di contains the
floor of gi+1, in other words if S contains all fragments on which
gi+1 depends. This means that if we take a subsequence of S′ ⊆ S
such that for each fragment in S′ all the fragments on which it
depends are also in the subsequence (transitive closure of depen-
dency), then S′ is also a sequence of valid pasting that will produce
a new representation, possibly different from Di∀i = 1..n. In the ex-
ample D0⊕g2, D0⊕g1 and (D1⊕g1)⊕g4 are all valid descriptions
of the domain.

In the MT framework dependencies between fragments represent
a partial ordering and can be encoded in a directed acyclic graph
(DAG) where fragments are the nodes. A closed subset (with re-
spect to transitive closure of dependency) of the nodes of the DAG,
corresponds to a valid sequence, and it is conveniently encoded with
a cut on the DAG, i.e. the set of arcs leaving the specified portion
of the DAG.

Note that, for completeness, all the leaf nodes containing por-
tions that are not floor of any fragments are connected through an
arc to a dummy sink node, so there is no node without leaving arcs
except the dummy node, which is never included in a cut.

Let ai j be the intersection between the floor of g j and gi (see
Fig. 2). Then, for each arc (gi,g j), ai j represents the part of the
description that is replaced by pasting g j in a subsequence that con-
tains gi. This means that, given a cut on the DAG, ∪k∈cutak corre-
sponds to the result of pasting all the fragments in the correspond-
ing subsequence. This is decisive in terms of efficiency because it
means that we never need to actually compute all the pasting oper-
ations of a given subsequence, we can obtain the correct result by
simply combining together all the descriptions associated with the
arcs leaving the nodes included by the DAG.

Updating a Cut Once you have a valid cut, corresponding to a
description that fits your multiresolution needs, it is possible to up-
date the current representation by means of refinement/coarsening
operations over the cut itself. A refinement consists of replacing an
arc in the cut with the forward star of its head node. Consider the
cut represented in Figure 1 and suppose to execute Refine on the arc
a23. It means to replace it with the arcs in the forward star of g3.
Since g3 depends on g1 and g1 is outside the current cut, we need
to refine arc a01 as well. In other words the nodes in the backward
star of a newly inserted node are recursively visited to ensure that
they enter the subsequence. Similarly, coarsening an arc means to
replace the forward star of its tail node with its backward star. Note
that this operation is legal only if all the arcs in the forward star of
the tail node are also in the cut. Refinement/coarsening operations
allow to continuously adapt the representation error to the current
application needs.

In the original MT implementation, that uses edge contraction
as primitive operations, to move the cut forward a node, which re-
quires the execution of several instructions, merely means to re-
place 8–10 triangles, i.e., the region of influence of an edge. Our
goal is to spend this time for replacing order of thousands trian-
gles. This requires the definition of primitive operations that work
on larger mesh regions. These operations cannot be arbitrary, but

Figure 2: In a MT we associate to each arc (gi,g j) of the DAG the description
ai j replaced by pasting g j in a subsequence that contains gi.

have to fulfill a number of conditions in order to guarantee good
performance and local adaptivity during extraction.

3.2 Well behaving DAG’s

Selecting a new region f to be substituted in the MT building al-
gorithm, means to create a new node of the DAG and the set of
arcs corresponding to its backward star. So how we select such a
region strongly affects the topology of the DAG that influences the
efficiency of the process of extracting a description from the MT.

In the following we will show two worst case examples to ex-
plain the characteristic that the DAG should fulfill. In Figure 3 top,
a DAG is derived from a series of refinement steps where the floor
of the fragment gi+1 overlaps the fragment gi. As a result, if the
arc a4 is refined, in order to provide more detail in the region g4,
then all the other arcs have to be refined as well, even if they are
related to distant regions of the domain. In other words, the error
does not increase smoothly as the distance from g4 increase, but the
extracted representation is in fact all at the lowest error. A simi-
lar case happens if the floor of a fragment intersects too many other
fragments, i.e. if the backward star of a node is too big (see Figure 3
bottom).

The following two conditions ensure that a DAG is well condi-
tioned:

1) the length of a path connecting the root to any leaf is logarith-
mic in the number of nodes and

2) the diameter of a fragment decreases geometrically with the
distance of the corresponding node from the root of the DAG.

In the case of meshes the pasting operation implies that the old
region f and the new g must have the same boundary, so in the sim-
plification or refinement algorithm the boundary (closure(D− f )∩
f ) must be preserved. It is important to note that if many fragments
share the same boundary, there will be no simplification along this
border. We must then add a third condition:

3) a fragment should not share boundaries with all the fragments
intersecting its floor.

Various multiresolution schemes have been presented in litera-
ture that fulfills the above requirements, like for example the right
triangle hierarchies exploited in the BDAM approach [1]. In the
next section we propose a new general scheme for building MT with
well behaving DAG’s which satisfies the conditions stated above.

4 THE V -PARTITION MULTIRESOLUTION MODEL

The techniques presented in the previous sections allow us to man-
age and simplify a massive mesh with a patch-wise approach. In
this section we introduce V -Partitions, a general scheme for the
definition of a sequence of coarser and coarser partitions over a



Figure 3: Two examples of malconditioned DAGs.

Vi Vi+1 Vi+2

V ∗
i = Vi
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Vi+1 V ∗

i+1 = Vi+1
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Figure 4: Top: three consecutive partitions of a sequence, bottom: The two
set of patches used for the simplification step obtained by intersection of two
consecutive V -partitions V ∗

i ,V ∗
i+1

Figure 5: Two consecutive V -partitions V ∗
i ,V ∗

i+1 of the David mesh. The
enhanced lines show some of the borders of the partition Vi+1 that remains
unchanged between the two steps.

massive mesh that we will use to define sets of patches, that can be
simplified and merged together to form a well-behaving MT DAG.

Let Ψ be a partition of the space into k = |Ψ| disjoint regions
Ψ = {ψ1, . . . ,ψk}. Given a rule that uniquely assigns a triangle t to
a region of space, e.g. the one where the barycenter of t falls, it can
be applied to a mesh T to subdivide it into a set of k conforming
triangulations Ψ(T ) = {T Ψ

1 , . . . ,T Ψ
k }. Given two partitions Ψ =

{ψi},Φ = {φ j}, we denote with Ψ
N

Φ the partition resulting by
the crossing of the two partitions, defined as:

Ψ
O

Φ =
[

i=0..|Ψ|, j=0..|Φ|
{ψi∩φ j}

informally speaking Ψ
N

Φ is the partition that you obtain by over-
laying the two partitions.

Proposition 1 Consider a sequence of coarser and coarser parti-
tions Ψ0, . . . ,Ψn and the sequence of partitions obtained by cross-
ing them Ψ∗

i = Ψi
N

Ψi+1. You can assemble the elements of the
Ψk+1 partitions in two different ways by using either the elements
of Ψ∗

k or the elements of Ψ∗
k+1.

This property is the central point of our multiresolution approach:
coarser partitions corresponds to coarser mesh resolutions and we
use the elements of the various Ψ∗

i partitions to assemble conform-
ing triangulations with varying resolution according to the MT rules
explained in Sec. 3.

The key idea is that we perform the simplification process at dis-
crete steps: one for each Ψ∗

i partition. To ensure that we obtain
conforming triangulations we have to take some care: when simpli-
fying from step i to step i+1, first we assemble the patches of Ψ∗

i to
build patches of Ψi+1, then we simplify them without touching the
borders of Ψi+1 patches and finally we split the result of simplifica-
tion according to the Ψ∗

i+1 partition. Assuming that the partitions in
the sequence are coarser and coarser, we exploit the simplification
step to keep the density of triangles contained in each element of
the partition as close to constant as possible.

This approach is illustrated in Figure 4 top, that shows three con-
secutive partitions Vi,Vi+1,Vi+2, and figure 4 bottom, that shows
the two partitions V ∗

i ,V ∗
i+1 resulting, respectively, from V ∗

i =
Vi
N

Vi+1 and V ∗
i+1 = Vi+1

N
Vi+2.

As an example let us describe the i-th simplification step accord-
ing to figures 4: we start with our mesh that is partitioned according
to V ∗

i and we consider the all patches of V ∗
i corresponding to a sin-

gle region of Vi+1, i.e. the blue ones in Fig 4; this mesh portion is
independently simplified, keeping the blue border unchanged. At
the end of the simplification, we save this simplified mesh portion
(that corresponds to a blue patch) split according to the patches of
the new partition V ∗

i+1 (the red lines of Fig. 4). Informally speak-
ing patch borders with the same color always match. Once all the
regions of Vi have been processed, the mesh is partitioned accord-
ing to V ∗

i+1, and we can thus start the next simplification step by
processing all the Vi+2 regions.

4.1 Partition Sequences and MT

The simplification process sketched above can be directly inter-
preted in terms of local operations and fragments. In a simplifica-
tion step i we perform a set of |Vi+1| local actions substituting each
Vi+1 patch partitioned according to V ∗

i with the a patch with the
same border but a simplified interior and partitioned according to
V ∗

i+1. In terms of MT the Vi+1 patch, partitioned according V ∗
i+1, is

a fragment whose floor is the same patch but partitioned according
to V ∗

i .
A DAG built using a partition sequence where the number of

the elements in each partition decreases geometrically will satisfy



condition 1. To satisfy condition 2 we need that the partition el-
ements are distributed uniformly. In such a case the floor of each
fragment of Vi+1 intersects a roughly constant number of fragments
of Vi and therefore the size of the backward star of a node will be
roughly constant.

4.2 Building Partition Sequences using V -partitions

In practice we need to find an effective sequence of partitions that
we can use to build our patch based MT. The sequence of parti-
tions must be roughly uniform and coarser and coarser. It should be
noted that the sequence of partitions does not need to adapt to the
geometric characteristics of the mesh (like curvature or density). In
this approach the adaptivity is handled during the MT traversal. If
a portion of the mesh presents more feature its simplification will
yield an higher error and therefore during the MT traversal that por-
tion will be maintained at a finer resolution.

We propose to build the partitioning using a Voronoi like ap-
proach. Given a set of 3D points Q = {v0, . . . ,vk}, called seed
set, we define the V -partition of a mesh T into patches VQ =
{QT

0 , . . . ,QT
k } by defining QT

i as the patch composed by the faces
that are nearest to the seed point vi. Note that it is not required for
these patches to be composed of a single connected component.

To build the multiresolution model, we need a sequence of seed
sets Q0, . . .Qk, and the corresponding V -partitions V0 . . .Vk, of de-
creasing granularity.

We propose two approaches for building the sequence of seed
sets, the first one generates a regular partitioning while the second
one generates a sequence of irregular partitions.

4.2.1 Regular V -partitioning

A simple and effective method is to use a regular recursive seed
distribution scheme. Consider the two dimensional case, illustrated
in figure 6: we start by placing vertices on a regular grid, obtaining
a partition in squares, then we continue placing seeds on the mid-
point of the edges of these squares obtaining another finer partition
in squares (tilted 45 degree), and so on. With this approach the
V ∗

i partitions forms the well known triangle bintree hierarchy, and
the simplification strategy that we obtain is quite similar to the one
used by the BDAM approach [1]. This approach can directly be ex-
tended to the three-dimensional case by considering a regular grid
and placing seeds onto a) cube centers, b) face centers, c) edge cen-
ters. The sequence of partitions Vi that we obtain (where Voronoi
regions are cubes and octahedra) forms the same patterns of the di-
amonds of the Slow Growing Subdivision scheme [20] used also
in the recent TetraPuzzle[3] approach, but the sequence of crossed
partitions V ∗

i is not a simplicial complex, but it is formed by con-
vex cells built by adjacent tetrahedra. Many other recursive 2D
subdivision schemas can be obtained by regular seeds placement,
like for example hexagonal subdivisions [12] shown in Fig. 7 (also
described as dual

√
3 subdivisions in [19]).

4.2.2 Irregular V -partitioning

Beside the above technique here we present a simple approach for
finding a sequence of seed sets by an I/O efficient sampling the
original surface able to manage huge surfaces. We assume that the
number of seeds is much smaller that the original surface and can
reasonably be kept in core. Note that assuming patches of ≈ 1k
triangles, this means that massive meshes of more than one giga
triangles can reasonably be managed.

We start by choosing a average radius of the patch r and then
we sequentially scan the surface triangles, adding the barycenter of
the triangle t to the seed set Q every time a triangle t of the stream
is farther than r from all the other points of Q. Then, in a second

Vi−1 Vi Vi+1

V ∗
i V ∗

i+1 composed

Figure 6: The sequence of partions obtained placing seeds on centers and
corners of a square grid generate the well known bintree hierarchy used for
2d terrain multiresolution models.

Figure 7: The sequence of partitions obtained recursively placing seeds on
vertexes of a hexagonal grid.

sequential scan, we remove small patches and we apply a step of
Lloyd’s Voronoi relaxation [16] by moving the seeds towards the
barycenter of their region. A sequence of coarser and coarser parti-
tions can be obtained by simply choosing a sequence of increasing
radii r0, ...ri. Since the process of scanning the whole mesh is the
dominant one the creation of all the various seed sets Qi can be done
in parallel during the same mesh scan.

At the end of this process we have a sequence of seed sets Qi that
subdivide the original surface into coarser and coarser partitions Vi
where cells, within each partition, have approximatively the same
number of triangles. This is done by decreasing the triangle count,
from a level to the next, by the same ratio as the number of seeds.
These partitions will be used, as described above, to build the V ∗

i
partitions that identify the patches at the basis of our multiresolution
approach.

5 OUT OF CORE, TIME CRITICAL RENDERING

For the sake of interactivity the multiresolution extraction process
should be able to support a constant frame rate, given the available
time and memory resources. This means that the algorithm must
be able to fulfill its task within a predetermined budget of time and
memory resources, always ending with a consistent result, or in
other words, it must be interruptible.

Our extraction algorithm uses two threads: ExtractRender and
PatchServer. The ExtractRender thread is responsible for finding
the correct cut in the DAG and for filling a OperationList; this
list contains the needed coarsening/refinements of the cut, e.g. the
patches that must be removed/inserted from the current description.
The PatchServer thread is responsible for loading in main memory
the needed patches without blocking the ExtractRender thread.

The Extraction thread keeps updated the current cut by means
of refinement and coarsening operations; For this purpose we store
the set of operations that are feasible given the available budget and
compatible with the current cut, in two heaps: the CoarseningHeap



Figure 8: Example of cut and corresponding heaps.

and the RefinementHeap.
The priority in the heaps is given by the screen space error asso-

ciated with the operation: the first operation in the RefinementHeap
is the feasible refinement with the largest screen space error, while
the first in the CoarseningHeap is the coarsening with the small-
est error that can be done on the current cut while maintaining the
desired screen space error.

The algorithm performs refinement operations until possible, and
coarsening operations otherwise. Whenever an operation is done,
new operations will possibly be inserted in the heaps.

Figure 8 shows a cut example and the corresponding heaps. For
example, if operation C4 (move the cut before the node g4) is per-
formed C1 is inserted in the RefinementHeap and R8 is invalidated,
since is no more feasible. Note that the inverse operation R4 would
now be feasible, but it would never been chosen and hence is not
even inserted.

Figure 9 shows the the algorithm ExtractRender thread. The ba-
sic block of the algorithm is the estimation of the time needed to
perform an operation, implemented in the function CheckBudget.

The time for the ExtractRender thread is the time for rendering,
which is estimated as linearly proportional to the number of ren-
dered triangles. Thus, for each operation (Pout ,Pin), we update the
number of rendered triangles RT with RT = RT + |Pin|− |Pout | . If
RT exceeds the maximum number of triangles the operation cannot
be done.

Similarly, the PatchServer thread time is dominated by the time
needed to load the patches from the disc. In the worst case, loading
time is dominated by disk seek latency, that we assume bounded by
a constant found by experiment.

The extraction algorithm always tries to apply the refinement
with the lowest error within the current budget; when the budget
does not allows it, it tries to apply the coarsening with the great-
est error. The function AddToOperationsList inserts the operation
passed as argument in OperationList, which will be read by the
PatchServer. Once Extraction is ended, OperationsList contains
the list of operations that can be done. The procedure Apply sim-
ply runs through this list and performs the operations. To perform
an operation means to free the memory allocated for the patches
to be removed and to have the patches to be sent to the GPU in
main memory, which can require a loading from disk if they are
not already present. If the budget time ends before the whole list is
scanned, which may happen if the time estimation was optimistic,
then the algorithm returns and is guaranteed that the representation
is conformal even if not to the required accuracy.

ExtractRender() {
Extract();
Apply();
Prefetch();

}

Extract() {
do {

op = null;
if( CheckBudget(RefinementHeap.root ) )

op =pop(RefinementHeap.root);
else

if( CheckBudget( CoarseningHeap.root ) )
op =pop(CoarseningHeap.root);

if(op!=null){
AddToOperationsList(op);
UpdateBudgets(op);
}

}
while( ( render_budget > 0 ) &&

(load_budget > 0) && (op!=null))
}

Apply() {
while((clock() < endFrame) && (!OperationsList.empty() ) ) {
op = RemoveFirst(OperationsList);
Perform(op);
}

}

Prefetch(){
if ( clock() < endFrame ) {

execute Perform on the operations in the heaps
RefinementHeap and CoarseningHeap

}
}

Figure 9: Interruptible rendering cycle.

If there is still time after the execution of Apply, the remaining
time is used for pre-fetching the patches that will be probably used
in the next frame. At this stage, the pre-fetching strategy is very
simple and it consists of loading in memory the patches around the
current cut, which is easily achieved by applying all the operations
in the heaps.

5.1 View space and object space errors

In order to obtain a view-dependent multiresolution representation
where the mesh resolution adapts with current viewing needs, we
need a view-dependent measure of the error. The screen space er-
ror associated with a patch is derived at run time in a way sim-
ilar to [1] using an object-space view-independent error measure
and the bounding sphere of each patch. This object-space view-
independent value is projected in screen space to obtain the error us-
ing the bounding sphere. The relation between the error of the arcs
of the graph is preserved by imposing that each bounding sphere
encloses the bounding sphere of all the arcs in the subgraph.

Common measures used to quantify the error of a single patch
are based on the Hausdorff distance between simplified and orig-
inal mesh [1, 25, 3]. We have chosen a simpler strategy: we just
use the average edge length of the triangle of the patch. We made
this choice on the basis of the following considerations: the initial
meshes are dense and we use an highly accurate simplification al-
gorithm which produce roughly uniform meshes; this means that
the average edge length is monotonic along the levels of the DAG,
as opposed to the Hausdorff distance based error which often needs
to be corrected in order to respect the partial order among the node
of the DAG: transform the average length of a triangle edge view
space (in pixels units) and, given the fine tessellations created, the
visual fidelity is no more dominate by the geometric error but by the
surface shading, as observed in [17]. These considerations were
confirmed using the geometric error computed during simplifica-
tion with no noticeable difference.



Model triangle time size size
number ply MT

Lucy 28,055,742 54m 520 854
David 1mm 56,230,343 97m 1,154 1,640
S.Matthew 0.25mm 372,767,445 357m 7,611 11,600

Table 1: Numerical results for the construction of the MT (in minutes) the
time are relative to a small cluster of 4 pc’s.

6 A SUBSYSTEM TO HANDLE MASSIVE MESHES

Our framework requires an out-of-core mesh manager that allows
us to handle massive meshes patch by patch, reflecting the MT con-
cept of local modification in terms of patches instead of triangles.
The steps for the construction of the MT are: select a set of patches
(the floor of a local modification e.g. all the patches composing an
element of the partition), load and modify the triangle mesh associ-
ated with the patches, change the patch structure defining a new set
of patches, and then save them.

Therefore we store the whole mesh as a collection of indepen-
dent sub-meshes called patches. Each disk-stored patch contains an
indexed representation of a small portion of the mesh with a copy
of all the referenced vertices. Boundary vertices, that are shared be-
tween patches, are replicated but identified for easier patch process-
ing. For each patch p we maintain the list L of all the vertices that
have external dependencies. L entries are triplets (vp,q,vq), denot-
ing, for each vertex vp in p, the patch q that refers to it and its
position vq inside q.

When a set of patches P is requested for being processed and
modified in-core, we exploit these lists to efficiently unify vertex
indexes and to mark the vertices that are referred by not loaded
patches. When the in-core mesh portion has to be written back,
the user can change the mesh partitioning scheme, defining a new
set of patches that covers the same mesh portion. In this case, we
also update the boundary lists of the patches that are not loaded but
referring to vertices in the current portion P.

Once you have a partition sequence, starting from the finer par-
tition we have to load patches in memory, to simplify them and ef-
fectively build the whole MT structure. Moreover with this scheme
it is rather simple to perform out of core mesh healing processes
like smoothing and small hole filling.

Note that this approach it is somewhat independent from how
patches are actually stored. This allow to use the same structure
also for rendering purposes, just changing the final format of stored
patches. In this case for sake of rendering efficiency we can store
patches as optimized triangle strips, with precomputed normals and
then individually compressed using a quick decompression algo-
rithm 1.

7 RESULTS AND DISCUSSION

The results presented in this section relate three dense meshes of
increasing size: the Lucy (28M tri), the Michelangelo’s David (56M
tri) and Michelangelo’s S.Matthew (370M tri), all of them coming
from the Stanford repository.

7.1 Preprocessing

The preprocessing was done on a cluster of PC’s on an Ethernet
10Mb and 100Mb moderately loaded. The network speed resulted
unimportant since the computation is dominated by the CPU time
to perform patch simplification, analogously to what reported by
QDVR and Tetrapuzzles.

1we used the minilzo compression library available at
http://www.oberhumer.com/.

Since the number of triangles is halved at each iteration the
number of triangles contained in the whole dataset is almost twice
than the number of original triangles, while, as can be seen in
Table 1, the disk occupation of the MT is roughly 40% percent
higher than the original dataset. This should not be surprising,
since the original mesh is in a raw format while all the MT patches
are stripified. These numbers are comparable to QVDR [25] which
requires 13.992GB for the same S.Matthew model, and Adaptive
Tetrapuzzles [3] (5.887 GB).

7.2 Rendering

The rendering performance was evaluated over several inspections,
rotating and abruptly zooming in and out the model. All the tests
were done with window size 800x600 on a Windows machine
equipped with an AMD Athlon 64, 2 GHz, 512 MB Ram, SCSI
hard disk, bus AGP 8x and graphics card GeForce 6800 GT. In all
cases the in core memory limit to store all the patches was set to
approx. 90 MB. In the case of the S.Matthew model, this is less
that 1% of the total data size, showing the effectiveness of the out
of core data management strategy.

Our algorithm is able to render around 4M triangles per frame at
35 fps with a pixel precision, computed as the average length of the
triangles projected onto the screen. The Adaptive Tetrapuzzles ap-
proach sustains an average rendering rate of 70 millions of triangles
per second on a Linux equipped pc with a GeForce FX 5800 Ultra
Graphics, which should produce results comparable to our method
on the same hardware setting. QVDR, instead, sustains 771k trian-
gles per frame at 17fps on a GeForce Ultra FX 5950 GPU, but also
implements occlusion culling which is not strictly necessary for the
kind of meshes discussed in the paper.

8 CONCLUSION AND FUTURE WORK

We have presented a GPU friendly multiresolution framework pro-
viding high visual quality as well as efficient rendering. The under-
lying idea of the proposed method is to depart from current point- or
triangle-based multiresolution models and adopt a patch-based data
structure, from which view-dependent conforming mesh represen-
tations are efficiently extracted and batched to the GPU by simply
combining precomputed patches.

Our main contributions are: a general framework for building
efficient out-of-core multiresolution models that fully exploit the
capabilities of current consumer graphics hardware; a general out-
of-core patch-based mesh management system on which the frame-
work can be efficiently implemented; a parallel out-of-core, high
quality, simplification algorithm; a proof-of-concept implementa-
tions of novel multiresolution models that produce well conditioned
multiresolution structures and fit in the above framework.

The implementation of the framework proves it comparable, in
terms of speed and data preservation, to the ad-hoc state-of-the-art
clustered multiresolution models it generalizes.

Figure 10: The Lucy model adaptively rendered with the batched MT.



Figure 11: The S. Matthew model adaptively rendered with the batched MT.

Although the current implementation gives satisfactory results,
there are still issues that will require further work. The first is the in-
corporation of an ad-hoc speculative pre-fetching of patches, while
at the present which patches are pre-fetched is not bound to the
camera movement. A second, more intriguing, goal is to efficiently
handle the color information. At the present state, color coordi-
nates can be assigned per-vertex basis and of course any technique
to preserve this information during the simplification process (for
example [2]) can be adopted. Nonetheless, it is foreseeable that an
ad hoc solution complying the characteristics of our framework is
needed.
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