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(a) screen tolerance = 1 pixel, 128 texture tiles, 286
patches (253K triangles)

(b) screen tolerance = 1 pixel, 128 texture tiles, 286
patches (253K triangles)

(c) screen tolerance = 5 pixels, 71 texture tiles, 148
patches (131K triangles)

Figure 1: View of Mariner Valley and the Tharsis Volcanos, Mars. Snapshots from an interactive inspection session of a global recon-
struction of planet Mars created from Mars Orbiter Laser Altimeter 128 samples/degree data [Smith et al. 2002].

Abstract

We describe an efficient technique for out-of-core management
and interactive rendering of planet sized textured terrain surfaces.
The technique, called P-Batched Dynamic Adaptive Meshes (P-
BDAM), extends the BDAM approach by using as basic primitive
a general triangulation of points on a displaced triangle. The pro-
posed framework introduces several advances with respect to the
state of the art: thanks to a batched host-to-graphics communica-
tion model, we outperform current adaptive tessellation solutions
in terms of rendering speed; we guarantee overall geometric con-
tinuity, exploiting programmable graphics hardware to cope with
the accuracy issues introduced by single precision floating points;
we exploit a compressed out of core representation and speculative
prefetching for hiding disk latency during rendering of out-of-core
data; we efficiently construct high quality simplified representations
with a novel distributed out of core simplification algorithm work-
ing on a standard PC network.

CR Categories: K.6.1 [Computer Graphics]: Picture and Image
Generation—; K.7.m [Computer Graphics]: Three-Dimensional
Graphics and Realism—.
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1 Introduction

Interactive visualization of huge planet-sized textured terrain
datasets is a complex and challenging problem: the size of a high
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accuracy geometry and texture representation of an entire planet
sits in the scale of giga-triangle and giga-texel datasets. This kind
of datasets exceeds the capabilities of current hardware and existing
multiresolution algorithms.

Various dynamic multiresolution models have been proposed to
face the problem of efficient visualization of terrains, usually based
on the idea of constructing, on the fly, a coarser adaptively approxi-
mated representation to be rendered in place of the complete terrain
model. Unfortunately, current dynamic multiresolution solutions
are not suitable to handling planet-sized data for various reasons.
Most of the existing techniques are very processor intensive: the
extraction of an adequate terrain representation from a multiresolu-
tion model and its transmission to the graphics hardware is usually
the main bottleneck in terrain visualization. Nowadays, consumer
graphics hardware is able to sustain rendering rate of tens of mil-
lions of triangles per second, but most of current multiresolution
solutions fall short of reaching such performance. Moreover, ac-
curacy problems, due to the limited representation range of stan-
dard floats, arise when the size of the dataset becomes huge and
none of the existing solutions correctly handles this issue without
introducing discontinuities or large performance penalties. Lastly,
for planet sized dataset also the preprocessing steps for construct-
ing the required multiresolution structure can easily become totally
overwhelming, so a parallel scalable solution should be introduced.

The original contribution of this paper is to introduce a novel
solution for interactive and accurate visualization of huge textured
terrains that improves over current methods in the following areas:

e it manages and renders non flat huge datasets nearly one order
of magnitude faster than existing solutions thanks to a batched
host-to-graphics communication model;

e it guarantees overall geometric continuity, exploiting pro-
grammable graphics hardware to cope with the accuracy is-
sues introduced by single precision floating point numbers;

e it successfully exploits a compressed out of core representa-
tion and speculative prefetching for efficient rendering;

o it efficiently handles the construction of high quality simpli-
fied representations by using a novel distributed out of core
simplification algorithm.

As highlighted in the short overview of the current solutions for
interactive visualization of large terrains (Sec. 2), the techniques
based on the hierarchy of right triangles are the ones which ensure



maximum throughput, while TIN based multiresolution solutions
reach maximal accuracy for a given triangle count. In this paper
we introduce a new data structure that takes the best of the above
approaches. Moreover, our approach efficiently supports the com-
bination of high resolution elevation and texture data in the same
framework. Our approach adopts the philosophy of the BDAM
technique (Sec. 3), an efficient approach for the rendering of flat
large textured terrains. The new structure here proposed, called P-
BDAM, to succeed in efficiently rendering planet sized datasets is
described in Sec. 4. A distributed out-of-core technique has been
designed and tested for constructing P-BDAMSs using a generic high
quality simplification algorithm (Sec. 5). The efficiency of the P-
BDAM approach has been successfully evaluated by showing the
accurate interactive visualization of the whole planet Mars created
from Mars Orbiter Laser Altimeter data (Sec. 6).

2 Related Work

Adaptive triangulations. Adaptive rendering of huge terrain
datasets has a long history, and a comprehensive overview of this
subject is beyond the scope of this paper. In the following, we will
discuss the approaches that are most closely related with our work.
Readers may refer to recent surveys [Lindstrom and Pascucci 2002;
Pajarola 2002] for further details.

Two main classes of techniques have been proposed to manage
and render continuous adaptive terrain representations: a) regular
hierarchical structures, b) more general unconstrained triangula-
tions. The first class is generally based on a particular regular re-
finement scheme called hierarchies of right triangles (HRT) [Evans
et al. 2001] or longest edge bisection [Lindstrom and Pascucci
2002], triangle bintree [Lindstrom et al. 1996; Duchaineau et al.
1997], restricted quadtree triangulation [Pajarola 1998; Samet
1990]. The second class of algorithms is based on less constrained
triangulations of the terrain (TINs) and includes multiresolution
data structures like multi-triangulations [Puppo 1996] adaptive
merge trees [Xia and Varshney 1996], hypertriangulations [Cignoni
et al. 1997], and the extension of progressive meshes [Hoppe 1997]
to the view-dependent management of terrains [Hoppe 1998]. As
pointed out and numerically evaluated in [Evans et al. 2001], TIN
outperform right triangles hierarchies in terms of number of trian-
gles / error counts, but are more complicated and hardly manage
large datasets in real-time. The two classes of methods also differ
in how they interact with texture management. Very few techniques
exist that full decouple texture and geometry LOD management. To
our knowledge, the only general approach is the SGI-specific clip-
mapping extension [Tanner et al. 1998] and 3DLabs Virtual Tex-
tures, which requires, however, special hardware. In general, large
scale textures are handled by explicitly partitioning them into tiles
and possibly arranging them in a pyramidal structure [Ddllner et al.
2000]. Clipping rendered geometry to texture tile domains imposes
severe limitations on the geometry refinement subsystem and TIN
approaches are more difficult to adapt to this context than HRTSs.

Our work aims at combining the benefits of TINS and HRT in
a single data structure for the efficient management of multireso-
lution textured terrain data, that is here extended to planet-sized
datasets. A first attempt toward this aim is the work of [Pajarola
et al. 2002], where a technique to build a HRT starting from a TIN
terrain is presented. The main idea is to adaptively build a HRT
following the TIN data distribution. Among the many other dif-
ferences, in our proposal the advantages of TINS are much better
exploited, because each patch is a completely general triangulation
of the corresponding domain.

Out-of-core simplification and rendering. Various techniques
have been presented to face the problem of huge mesh simplifica-

tion: with the exception of the clustering solutions based on the
Lindstrom approach [Lindstrom 2000; Lindstrom 2003], most of
these techniques, such as Hoppe’s hierarchical method for digital
terrain management [Hoppe 1998] and the octree based structure
OEMM [Cignoni et al. 2003a], are based on some kind of mesh par-
titioning and subsequent independent simplification. Hoppe hierar-
chically divides the mesh in blocks, simplifies each block by edge-
collapse (borders are constrained) and then traverses bottom-up the
hierarchical structure by merging sibling cells and again simplify-
ing. In this approach some of the borders remains not simplified un-
til the whole mesh can be loaded entirely in memory. The OEMM
avoids this kind of problem, but it does not build a multiresolution
structure. On the other hand, the BDAM approach [Cignoni et al.
2003b] allows both the correct independent processing of small
sub-portions of the whole mesh and the construction of a multireso-
lution structure; in this work, we exploit this independence property
to efficiently parallelize the simplification process in order to build
a multiresolution structure for arbitrarily large meshes.

With respect to the compressed storage of our geometric data, we
want to remark that our approach is aimed to obtain the highest de-
compression performance, rather than attaining high compression
ratios like for example [Isenburg and Gumhold 2003]. Moreover,
the uncompressed in-core representation, using baricentric coordi-
nates, implicit texture coordinates, interpolated normals, triangles
strips and short 16 bit data types is already quite compact. For this
reason we have chosen a rather simple approach for coding the ge-
ometry on the disk but that can be decompressed without slowing
down the rendering process.

Accuracy of the representation. Numerical accuracy issues
are one of the most neglected aspects in the management of huge
datasets. Sending positions to the graphics hardware pipeline needs
particular care, given that the highest precision data-type is the
IEEE floating point, whose 23 bit mantissa leads to noticeable ver-
tex coalescing problem for metric datasets on the Earth and to cam-
era jitter problems in the general case [Reddy et al. 1999]. Typical
solutions (e.g. [Lindstrom et al. 1997; Reddy et al. 1999]) are to
partition the dataset into multiple tiles, each of them with an asso-
ciated local, possibly hierarchical, coordinate system, and then use
single precision floating points for representing vertex positions in
the local reference. At rendering time, tiles are separately rendered
in their local rendering systems, performing matrix transformations
on the host in double precision to reduce roundoff errors. This solu-
tion, however, leads to discontinuity problems at tile borders. Our
solution solves the accuracy problem using patch parametric coor-
dinates, exploiting the programmability features of modern GPUs
to ensure overall continuity.

Efficient host-to-graphics communication. A common point
of all adaptive mesh generation techniques is that they spend a great
deal of the rendering time to compute the view-dependent trian-
gulation. For this reason, many authors have proposed techniques
to alleviate popping effects due to small triangle counts [Cohen-
Or and Levanoni 1996; Hoppe 1998] or to amortize construction
costs over multiple frames [Lindstrom et al. 1996; Duchaineau et al.
1997; Hoppe 1997]. We have recently proposed, instead, to reduce
the per-triangle workload by composing at run-time pre-assembled
surface patches [Cignoni et al. 2003b]. The idea of grouping to-
gether sets of triangles in order to alleviate the CPU/GPU bottle-
neck was presented also in the RUSTIC [Pomeranz 2000] and in the
CABTT [Levenberg 2002] data structures. The RUSTIC method
is a extension of the ROAM algorithm in which subtrees of the
ROAM bintree are, in a preprocessing phase, statically frozen and
saved. The CABTT approach is very similar to RUSTIC, but clus-
ters are dynamically created, cached and reused during rendering.
With respect to both methods, our BDAM structure [Cignoni et al.



2003b], among other differences, explicitates the simple edge er-
ror property needed for cluster consistency, exploits high quality,
fully adaptive triangulation of clusters, cache coherent tri-stripping
of clusters for efficient rendering, and multiresolution texturing; fi-
nally, it supports out-of-core rendering and construction of huge
datasets. In this work, we extend this approach to the efficient ren-
dering of curvilinear patches.

3 Batched Dynamic Adaptive Meshes

As explained in the previous section, most of current multireso-
lution algorithms are designed to use the triangle as the smallest
primitive entity. The main idea behind the Batched Dynamic Adap-
tive Meshes (BDAM) approach is to adopt a more complex primi-
tive: small surface patches composed of a batch of a few hundreds
of triangles. The benefits of this approach are that the per-triangle
workload to extract a multiresolution model is highly reduced and
the small patches can be preprocessed and optimized off-line for
a more efficient rendering. We summarize here the main concepts
behind BDAM. Please refer to the original paper for further de-
tails [Cignoni et al. 2003b].

In BDAM, the small patches form a hierarchy of right triangles
(HRT) that is coded as a binary tree. This representation can be
used to easily extract a consistent set of contiguous triangles which
cover a particular region with given error thresholds. These small
triangular patches can be batched (hence the name) to the graphics
hardware in the most efficient way. Therefore, each bintree node
contains a small chunk of contiguous well packed tri-stripped tri-
angles. To ensure the correct matching between triangular patches,
BDAM exploits the right triangle hierarchy property that each tri-
angle can correctly connect to: triangles of its same level; triangles
of the next coarser level through the longest edge; and triangles of
the next finer level through the two shortest edges.
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Figure 2: An example of a BDAM: each triangle represents a ter-
rain patch composed by many triangles. Colors correspond to dif-
ferent errors; the blending of the color inside each triangle corre-
sponds to the smooth error variation inside each patch.

To guarantee the correct connectivity along borders of different
simplification levels, triangular patches are built so that the error is
distributed as shown in figure 2: each triangle of the bintree rep-
resents a small mesh patch with error e, inside and error g, , (the
error corresponding to the next more refined level in the bintree)
along the two shortest edges. In this way, each mesh composed by
a collection of small patches arranged as a correct bintree triangu-
lation still generates a globally correct triangulation. This simple
edge error property is exploited, as explained in section 5, to de-
sign a distributed out-of-core high quality simplification algorithm

that concurrently builds all patches. Figure 2 illustrates these prop-
erties. In the upper part of the figure we show the various levels
of a HRT and each triangle represents a terrain patch composed by
many graphics primitives. Colors correspond to different errors;
the blending of the colors inside each triangular patch corresponds
to the smooth error variation inside each patch. When composing
these triangular patches using the HRT consistency rules, the color
variation is always smooth: the triangulation of adjacent patches
correctly matches.

Texture and geometry trees. To efficiently manage large tex-
tures, the BDAM approach partitions them into tiles before render-
ing and arranges them in a multiresolution structure as a tiled tex-
ture quadtree. Each texture quadtree element corresponds to a pair
of adjacent geometry bintree elements. The roots of the trees cover
the entire dataset, and both trees are maintained off-core using a
pointerless structure that is mapped at run time to a virtual mem-
ory address range. During rendering, the two trees are processed
together. Descending one level in the texture quadtree corresponds
to descending two levels in the associated pair of geometry bin-
trees. This correspondence can be exploited in the preprocessing
step to associate object-space representation errors to the quadtree
levels, and in the rendering step to implement view-dependent mul-
tiresolution texture and geometry extraction in a single top-down
refinement strategy.

Errors and bounding volumes. To easily maintain the trian-
gulation coherence BDAM exploits the concept of nested/saturated
errors, introduced by [Pajarola 1998], that supports the extraction
of a correct set of triangular patches with a simple stateless refine-
ment visit of the hierarchy, that starts at the top-level of the texture
and geometry trees and recursively visits the nodes until the screen
space texture error becomes acceptable. The object-space errors
of the patches are computed directly during the preprocessing con-
struction of the BDAM. Once these errors have been computed, a
hierarchy of errors that respect nesting conditions is constructed
bottom up. Texture errors are computed from texture features, and,
similarly, are embedded in a corresponding hierarchy. For the ren-
dering purpose, BDAM adopts a tree of nested volumes that is also
built during the preprocessing, with properties very similar to the
two error rules: 1) bounding volume of a patch include all chil-
dren bounding volumes; 2) two patches adjacent along hypotenuse
must share the same bounding volume which encloses both. These
bounding volumes are used to compute screen space errors and also
for view frustum culling.

4 Planet Sized Batched Dynamic Adaptive
Meshes (P-BDAM)

The P-BDAM approach exploits many the of ideas introduced in
BDAM, and improves the general framework in a number of ways,
allowing the correct management of non-flat planet-sized datasets,
handling floating point precision issues, and exploiting speculative
prefetching and a compressed on-disk representation.

4.1 Planet Partitioning

In order to handle the size and accuracy problems related to planet-
sized terrain management, we partition the surface of the planet in
a number of square tiles, therefore managing a forest of BDAM hi-
erarchies instead of a single tree. The tiles have an associated (u, V)
parameterization, which is used for texture coordinates and to con-
struct the geometry subdivision hierarchy (see figure 3). The num-
ber and size of the tiles is arbitrary and depends only on the size of
the original dataset. In particular, we make sure that the following



constraints are met: (a) a single precision floating point representa-
tion is accurate enough for representing local coordinates (i.e. there
are less than 223 texels/positions along each coordinate axis); (b)
the size of the generated multiresolution structure is within the data
size limitations imposed by the operating system (i.e. less than the
largest possible memory mapped segment, typically less than 3GB
because of memory segmentation). This effectively decomposes
the original dataset into terrain tiles. It should be noted, however,
that the tiles are only used to circumvent address space and float-
ing point accuracy limitations and do not affect other parts of the
system. In particular, errors and bounding volumes are propagated
to neighboring tiles through the common edges in order to ensure
continuity for the entire dataset.
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Figure 3: Data Tiling. To cope with accuracy and address space

limitations, large datasets are decomposed into tiles with a local
parameterization.

4.2 Parametric Patch Representation

Our solution to handling the global accuracy problem is based on
the approximation of each P-BDAM patch by a displaced triangle
and the use of the vertex programming capabilities of modern GPUs
to efficiently render the patches with the required accuracy, while
unconditionally maintaining geometric continuity.

We represent P-BDAM patches as arbitrary triangulations of
points on a displaced triangle. Each P-BDAM base corner vertex
contains a pair of texture coordinates T;, that correspond to the po-
sition of the vertex in (u, V) coordinates, as well as a planetocentric
position P; and a normal vector N;, that are computed from T; at
patch construction time as a function of the particular projection
used. The vertices Qj of the internal triangulation are stored by
specifying a barycentric coordinate and an offset along the interpo-
lated normal direction, and all the information required at rendering
time is linearly interpolated from the base corner vertex data (see
figure 4 left). As for BDAM, the interior of the patch is an arbitrary
triangulation of the vertices, that is represented by a cache-coherent
generalized triangle strip stored as a single ordered list of vertex
indices (see figure 4 right).

The only aspect that requires particular care is the computation
of planetocentric positions, since all other information is local to
the patch. We therefore store P; in double precision. At each
frame, we render all patches in camera coordinates, simply sub-
tracting the camera position O from P; on the host before converting
them to single precision for communicating it to the graphics hard-
ware. This way a single reference frame is used for each frame,
and positional accuracy decreases with the distance from the cam-
era, which is exactly what we want. In contrast to common lin-
ear transformation approaches [Lindstrom et al. 1997; Reddy et al.
1999], neighboring patches remain unconditionally connected be-
cause displaced vertex values only depend on the common base
corner vertices (along the edges, the weight for the opposite ver-
tex is null). The conversion cost (9 subtractions and 9 floating point
conversion) is negligible, since it is amortized over all the internal
triangles. Moreover, the transformation from barycentric to Carte-
sian/texture coordinates can be efficiently computed from corner
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Figure 4. P-BDAM patch. Left: P-BDAM patches are represented
as arbitrary triangulations of points on a displaced triangle. Right:
the memory layout is optimized for rendering using OpenGL vertex
array extensions.

data on the GPU, using a simple vertex program (see figure 5).
This has the important advantage that, since the the vertices of the
internal triangulation are invariant in barycentric coordinates, they
can be stored in a static vertex array directly in graphics memory,
and the rendering routine can fully benefit of the post-transform-
and-lighting cache of current graphics architectures, which is fully
exploited when drawing from the indexed representation. In partic-
ular, since the vertex program is executed only at cache misses, its
cost is amortized over multiple vertices. Figure 4 right illustrates
the memory layout employed, that is optimized for rendering using
OpenGL vertex array extensions. It is important to note that approx-

struct a2v {
float4 uvh: POSITION; // barycentric position and displacement

}s

struct v2f {
float4 hpos: HPOS; // view normalized position
float4 texO: TEXO; // texture coord. for mapping
float4 texl: TEX1; // texture coord. for bottom/left clipping
float4 tex2: TEX2; // texture coord. for top/right clipping

H

v2f vpl_displaced_tripatch(

a2v vertex,

uniform float4x4 pvm,

uniform float4 texture_border_width,

uniform float4 one_minus_two_texture_border_width,

uniform float4 PO, uniform float4 TO, uniform float4 NO,
uniform float4 POP1, uniform float4 TOT1, uniform float4 NON1,
uniform float4 POP2, uniform float4 TOT2, uniform float4 NON2) {
v2f result;

// Uncompress displacement (two shorts to a float)
float h = vertex.uvh[2]*327.67 + vertex.uvh[3]*0.01;

// Interpolate using barycentric coordinates

float4d N = NO + vertex.uvh[0]*NON1 + vertex.uvh[1]*NON2;
floatd P PO + vertex.uvh[0]*POP1 + vertex.uvh[1]*POP2 + hxN;
float4 T = TO + vertex.uvh[0]*TOT1 + vertex.uvh[1]*TOT2;

// Compute output position and texture coordinates

result.hpos = mul(pvm,P);

result.tex0 = texture_border_width +
T*one_minus_two_texture_border_width;

result.texl T;

result.tex2 = float4(1,1,1,1)-T;

return result;

}

Figure 5: Vertex program for rendering a P-BDAM patch. The
program performs both vertex unpacking and interpolation.

imating arbitrary map projections with displacements along inter-
polated normal directions introduces a representation error. How-
ever, this error can be fully taken into account by incorporating it



in the object-space representation error computed during simplifi-
cation. Moreover, this error rapidly converges to zero for arbitrary
map projections as geodetic lines converge to straight lines.

4.3 Adaptive rendering

Rendering a P-BDAM structure is similar to rendering a sequence
of BDAM trees. Before rendering, the vertex program of figure 5
is installed in the graphics hardware. For each of the partitions that
compose the planet, we map its data structure into the process ad-
dress space, render the structure using a stateless top-down refine-
ment procedure, then delete the mapping for the specified address
range. At the end, the vertex program is disabled and OpenGL ren-
dering can proceed as usual for non-terrain data. The refinement
procedure starts at the top level of the texture and geometry trees
of a given tile and recursively visits their nodes until the screen
space texture error becomes acceptable or the visited node bound-
ing sphere is proved off the viewing frustum. While descending
the texture quadtree, corresponding displaced triangle patches in
the two geometry bintree are identified and selected for processing.
Once the texture is considered detailed enough, texture refinement
stops. At this point, the texture is bound and the algorithm con-
tinues by refining the two geometry bintrees until the screen space
geometry error becomes acceptable or the visited node is culled out.
Patch rendering is done by converting the corner vertices to camera
coordinates and binding them along with associated normals and
texture coordinates to the appropriate uniform parameters, prior to
binding varying vertex data and drawing an indexed triangle strip.
The installed vertex program performs data unpacking and conver-
sion from barycentric to Cartesian/texture coordinated.

4.4 Memory management

Time-critical rendering large terrain datasets requires real-time
management of huge amounts of data. Moving data from the stor-
age unit to main memory and to the graphics board is often the
major bottleneck. As in BDAM, we use both a data layout aimed at
optimizing memory coherence and a cache managed using a LRU
strategy for caching the most recent textures and patches directly in
graphics memory (see [Cignoni et al. 2003b] for details). Since the
disk is, by far, the slowest component of the system, we have fur-
ther optimized the external memory management component with
mesh compression and speculative prefetching.

Patch Compression. Several clever schemes have been devel-
oped to concisely encode triangle strip connectivity, in as few as
1-2 bits per triangle (e.g. [Isenburg 2001]). As a result, the ma-
jor portion of a compressed BDAM patch goes to storing internal
mesh vertex barycentric positions and offsets. Standard mesh com-
pression solutions typically combine quantization, local prediction,
and variable-length delta encoding [Alliez and Desbrun 2001; Bajaj
et al. 1999; Chow 1997; Deering 1995]. In this work, we have cho-
sen a simple solution that favors mesh decompression speed over
compression ratio. We quantize the barycentric coordinates to 12
bits (sufficient to encode over 16M positions in a triangular patch),
reorder vertices in strip occurrence order, delta encode them, and
compress the result using the LZO lossless compression method?.
This typically achieves compresses data to less than 50% of origi-
nal size, while supporting a decompression rate of over 15M trian-
gles/second on typical PC hardware (see results section).

170 is a data compression library based on a Lempel Ziv variant which
is suitable for data decompression in real-time. The library source is avail-
able from http://www.oberhumer. com/opensource/1lzo/

Speculative prefetching. The external memory component of
P-BDAM, as for BDAM [Cignoni et al. 2003b] and SOAR [Lind-
strom and Pascucci 2002], is based on associating to each terrain
partition a file dynamically mapped to a read-only logical address
space, and on rearranging terrain data so that it can be accessed in a
memory coherent manner. Since in typical terrain exploration tasks
the viewer’s expected near future positions can be extrapolated with
good accuracy based on the last few positions, we can further hide
the disk latency by prefetching geometry and texture data that will
soon be accessed. The prefetching routine, that may be executed
in parallel to the rendering thread or sequentially as an idle task,
executes the same refinement algorithm as the adaptive rendering
code, taking as input the predicted camera position instead of the
current one. When the refinement terminates, instead of rendering
the patches or binding the textures, it simply checks whether the re-
quired graphics objects are in the cache. If not, it advises the operat-
ing system kernel that the pages containing their representation will
likely be accessed in the near future. On Linux, this is done by exe-
cuting the madvise system call, to instruct the kernel that it would
be advantageous to asynchronously read the indicated pages ahead
if they are not already in core. This technique blends well with the
virtual memory based external memory management subsystem. In
particular, the main rendering code doesn’t need to be aware of the
prefetching component, and we exploit the extensive performance
optimizations of the operating system’s virtual memory manager,
such as reordering of requests to reduce seek access time and over-
lapping of computation and disk access [Gorman 2003].

5 Building a P-BDAM

A P-BDAM structure is constructed starting from a generic height
field representing the surface of a planet. There are two main tasks
that have to be accomplished: preparing the input data in order to
build the lowest level of the P-BDAM hierarchy and performing the
bottom-up simplification that builds the patches of the upper levels.

Data preparation and resampling. Size and accuracy con-
straints impose a partitioning of the data, that must be done in a way
that no triangle crosses partition/texture borders. No resampling is
strictly necessary, since for all map projections it is possible to re-
arrange the original data samples in order to meet the constraints.
The most commonly used maps, however, do not evenly sample
the planet surface, and are often discontinuous at the poles. As a
first step, we thus in general prefer to resample data using a cubi-
cal map projection. Starting from the cubemap tile structure shown
in Fig. 3, we recursively subdivide each face. The new vertices
are placed onto the surface of the planet and recursive subdivision
stops when each patch is small enough to sample the original data
with the required precision. The final triangles are then grouped in
batches to form the leaves of the geometry bintrees.

Out-of-core Geometric Simplification. Once all the leaves of
all the bintrees have been generated, we perform a bottom-up sim-
plification to build the patches of the higher levels. The construc-
tion of our multiresolution model is carried out as an iterated se-
quence of mark, distribute, independent simplify and patch merg-
ing steps. During the mark phases, we constrain the vertices on
the longest edges of the patches to remain unmodified during the
subsequent simplification step. In order to maintain geometric con-
tinuity, planet partitions are considered as a single surface. This
marking subdivides the surface in independent blocks, each one
formed by four triangular patches, possibly from different planet
partitions, joined by their short edges. This allows to simplify all
the blocks in parallel. The simplification is targeted to halve the
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Figure 6: Construction of a BDAM through a sequence of simplification and marking steps. Each triangle represents a terrain patch composed

by many triangles. Colors correspond to different errors as in Fig 2.

number of vertices inside the block, so, once simplified, the trian-
gles of a block can be partitioned in two patches which respect the
patch size constraint. The simplification process takes into account
that the two resulting patches must have no triangle crossing the
borders, so the vertices on the diagonal are forced to remain on it.
Figure 6 illustrates this process: each triangle color corresponds to
an increasing approximation error. With bold gray lines we show
the mesh portion marked as un-modifiable (that is a local portion of
the mesh that remains unaffected by the subsequent simplification
step). Note that each triangular patch has the longest edge of the er-
ror (color) of the previous level, hence the error distribution of each
patch, shown in figure 2, is respected. The whole simplification pro-
cess is inherently parallel, because the grain of the individual tasks
is very fine and synchronization is required only at the completion
of each bintree level. This is very important, because the high qual-
ity simplification of gigatriangles meshes is a very time consuming
task, that would require days to be completed on a single machine.
Individual patch pairs are seimplified using greedy edge collapse
driven by the quadric error metric [Garland and Heckbert 1997].
Then, the error of the simplified mesh is taken as the maximum
difference with the original one in planetocentric reference system
(normal to the planet surface). To perform this computation quickly
by exploiting graphics hardware, we render the original and sim-
plified meshes under a perspective projection originating from the
center of the planet and we evaluate the difference among the corre-
sponding depth buffers. In the preprocessing step, textures are also
sampled and converted into a hierarchical structure by a bottom-up
filtering process followed by a compression to the DXT1 format.
As for geometry, error nesting is ensured by a final bottom-up pass
that combines all object space errors of neighboring and descen-
dant tiles. Further details on the construction process can be found
in [Cignoni et al. 2003b].

6 Results

An experimental software library and a planet rendering applica-
tion supporting the P-BDAM technique has been implemented and
tested on Linux and Windows NT machines.

The test case discussed in this paper is the interactive exploration
of a near-global topographic map of planet Mars created from Mars
Orbiter Laser Altimeter data. The dataset covers latitudes from 88
North to 88 South and the full longitude range at 128 samples per
degree [Smith et al. 2002]. The original maps are provided in sim-

ple cylindrical projection. To avoid discontinuity problems at the
Poles, we reprojected the maps using a cubical projection, main-
taining roughly the same number of points. The resulting dataset
is composed of 6 tiles of 133132 sample points, for a total of over
1G vertices and 2G triangles. The terrain was textured using six
163842 shaded relief textures, for a total of over 1.5G RGB texels.

6.1 Preprocessing

The dataset was partitioned into six partitions (corresponding to the
six faces of the cubical projection map). The resampling step took
about one hour for the texture and 36 min for the geometry. The
preprocessing time for geometry is largely dominated by the sim-
plification task, that was for this reason parallelized. Thanks to the
asynchronous nature of our parallel simplification algorithm we are
able to successfully run the process with no constraint on the per-
formance of PC and/or network connection. The equipment used
for the experiments was just a standard PC network composed by
the author’s workstations: five 1.6GHz PCs connected by a 10Mb
Ethernet network.

For geometry, we generated 12 bintrees, with leaf nodes contain-
ing triangular patches of 26x26 vertex side at full resolution and in-
terior nodes with a constant vertex count of 512. The simplification
process built the multiresolution structure starting from the leaves
of the bintrees in 6h10min (wall clock time). Each bintree occupied
at the end of the process 737 Mb for a total 8.63 GB needed to store
the whole geometry on disk before patch compression. From some
experiments on smaller sized datasets we can estimate the speed
up obtained by our parallel pre-processing to be about 3.9 on the
five PC network. The compression of the geometry bintrees took
only 20 minutes (executed in parallel) and reduced dataset size to
roughly 4.5 GB. For textures, we used a tile size of 256x256 texels,
which produced six 7 level quadtrees and compressed colors using
the DXT1 format. Texture preprocessing, including error propaga-
tion, took roughly one hour per tile on a single processor and pro-
duced a structure occupying 1.2 GB on disk for the entire dataset.
Processing time is largely dominated by texture compression.

6.2 View-dependent Refinement

We evaluated the rendering performance of the P-BDAM technique
on a number of flythrough sequences. The quantitative results pre-
sented here were collected during a 58 seconds high speed fly se-



(a) Frame 100: Approaching Mars

(b) Frame 1240: Inside Mariner Valley

(c) Frame 2780: Arriving at the Olympus Mons

Figure 7: Selected flythrough frames. Screen space error tolerance set to 3 pixels.
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Figure 8: Performance Evaluation. To fully test our out-of-core data management components, all benchmarks were started with all data

off core and disk buffers flushed.

guence that included an approach to the planet, a low-altitude fly-
over of the Mariner Valley and the Tharsis volcano region and a
simulated landing on top of Olympus Mons. The average speed of
the flight exceeds Mach 700. The flight, performed using a window
size of 640x480 pixels and a screen tolerance of 3 pixels, was de-
signed to heavily stress the system, as it includes abrupt rotations
and changes from overall views to close-ups. The results were col-
lected on a Linux 2.4 PC with two AMD Athlon MP 1600MHz pro-
cessors, 2GB RAM, a NVIDIA GeForce4 Ti4600 graphics board,
and a MAXTOR 6L060J3 60GB IDE disk. The qualitative perfor-
mance of our adaptive renderer is further illustrated in an accompa-
nying video, that shows live recordings of the analyzed flythrough
sequence (Fig. 7). To fully test our out-of-core data management
components, the benchmarks were started with all data off core and
disk buffers flushed. During the entire walkthrough, the resident
set size of the application is maintained at roughly 98 MB, i.e. less
than 2% of data size (5.7 GB), demostrating the effectiveness of
out-of-core data management.

Figure 8(a) illustrates the rendering performance of the appli-
cation, both with and without speculative prefetching. The spec-
ulative prefetching version executed an additional refinement step
per frame to prefetch pages that are likely to be accessed in the
near future, using a linear prediction of camera position with a half
a second look-ahead. The prefetching version is much smoother,
due to the success of prefetching in hiding the latency due to page
faults. The only noticeable jitters with the prefetching version (vis-
ible in the graph near second 12) correspond to rapid rotations and
accelerations of the path. By contrast, the non prefetching version
has a much lower average performance and frequently stalls dur-
ing rendering due to paging latency. In the prefetching version, we
were able to sustain an average rendering rate of roughly 16 mil-

lions of textured triangles per second, with peaks exceeding 18.5
millions. By comparison, on the same machine, SOAR [Lind-
strom and Pascucci 2002] peak performance for a 4Kx4K sub-
set of dataset was measured at roughly 3.3 millions of triangles
per second, even though SOAR was using a smaller single resolu-
tion texture of 2Kx2K texels and did not handle surface curvature.
The increased performance of the P-BDAM approach is due to the
larger granularity of the structure, that amortizes structure traver-
sal costs over many graphics primitives, reduces AGP data trans-
fers through on-board memory management and fully exploits the
post-transform-and-lighting cache with optimized indexed triangle
strips, reducing the overhead due to the vertex program.

The time overhead of P-BDAM structure traversal, measured by
repeating the test without executing OpenGL calls, is only about
22% of total frame time (Fig. 8(c)), demonstrating that we are GPU
bound even for handling extremely large out-of-core data sets. Ren-
dered scene granularity is illustrated in figure 8(b): even though the
peak complexity of the rendered scenes exceeds 240K triangles and
8.5M texels per frame, the number of rendered graphics primitives
per frame remains relatively small, never exceeding 280 patches
and 130 texture blocks per frame. Since we are able to render such
complex scenes at high frame rates, it is possible to use very small
pixel thresholds, virtually eliminating popping artifacts, without the
need to resort to costly geomorphing features.

7 Conclusions

We have presented an efficient technique for out-of-core manage-
ment and interactive rendering of planet sized textured terrain sur-
faces. The proposed framework introduces several advances with



respect to the state of the art: thanks to a batched host-to-graphics
communication model, we outperform current adaptive tessellation
solutions in terms of rendering speed; we guarantee overall geo-
metric continuity, exploiting programmable graphics hardware to
cope with the accuracy issues introduced by single precision float-
ing point representations; we successfully exploit a compressed out
of core representation and speculative prefetching for hiding disk
latency during rendering of out-of-core data; we efficiently handle
the construction of high quality simplified representations by using
a novel distributed out of core simplification algorithm working on
a standard PC network.
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