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1 Introduction

1.1 Purpose

We want to investigate how our hierarchical higher order vector radiosity system radiator [8][3]
behaves in terms of time and memory requirements under various conditions.
The tests were aimed to verify that our software has the following properties:

i. Vector irradiance is more effective than scalar radiosity when the environments to solve have
an illumination detail coarser than geometric detail;

ii. Higher order bases significantly reduce the number of energy transfer links to compute;
iii. Shooting saves memory, for the decreasing number of links after a few iterations;

iv. It is possible to solve and display glossy enviroments at interactive frame rates.

1.2 Method

In order to have environments with illumination less complex than geometry we built a few test
scenes using mainly non-planar objects each made up of hundreds of thousands connected trian-
gles. For properties (i) and (iii) we compared our method against the volume clustering [6][7]
scalar radiosity method as implemented in the public Renderpark[5] package. To verify property
(iii) the comparison was only meant to show the difference in number of links with respect to the
gathering method. For the last property, we associated a glossy material to some of the objects
making up the test scenes and we built a multithreaded program running the higher-order solver
in parallel with a viewer exploiting recent programmable graphics hardware in order to shade the
polygons using non-constant bases for irradiance and full BRDF.

For an easy reproduction of our tests, we used publicly available complex objects[2] and Greg
Ward’s MGF format to compose the scenes.

To study geometric scalability, we prepared different versions of the same complex scene, each one
with a different polygon count.

Together with geometric complexity, the parameters we changed in the simulations were the error
threshold and irradiance basis order.

In the next section we detail the test framework. In Section 3 we show the various results obtained
with radiator compared, where possible, to renderpark. In the same section we visually compare
radiator’s solutions to renderpark’s. The conclusions follow in Section 4.

2 Test framework

2.1 Introduction

Our tests aimed to investigate time and memory performance of the hierarchical higher order
vector radiosity system we have implemented for processing realistic illuminated indoor scenes
containing highly tessellated objects. The measures interesting to us are time, number of energy
transfer links, memory usage, number of solution leaf elements and overall capabilities with glossy
scenes. We also wanted to grasp the performance of different orders of irradiance basis and to
stress the importance of the decouple-light-from-geometry approach by comparison with an older
standard method (we chose volume clustered Galerkin radiosity as implemented in the Renderpark
software).

With the above goals in mind we varied some of the possible input parameters, namely:



e Geometric complexity. This is represented by the number of input primitives (triangles or
quads) in each scene. The details for each scene are in section 2.2. The same scenes were
tried with renderpark, although we interpolated some results for intermediate complexity
scenes in order to speed the comparison process.

e Relative error threshold. It is the fraction of the total emitted power in the scene. The
values we used are 10~*,107°,10~%. With Renderpark we tried only a subset of the possible
scene /threshold combinations.

e Order of irradiance basis. In our software, the tests were run using constant, linear, quadratic
and cubic bases for the vector irradiance distribution while we left the standard scalar
radiosity settings in renderpark.

Table 1 lists the type of experiments we made. With radiator, the order of radiosity basis was
constant in all runs while irradiance was approximated with constant, linear, quadratic and cubic
bases. In renderpark, we left the default linear basis. Beacuse of the coupling between visibility
samples and kernel integration in radiator, we also ran some tests disabling visibility queries in
order to emphasize the performance of higher order bases. We did not analyse other input factors
such as number of light sources, number of complex objects and reflectance.

We chose to compare our solver with renderpark’s volume clustered scalar Galerkin radiosity
for its wide diffusion and to emphasize the efficiency of a higher-order vector irradiance approach
to the global illumination problem. The measures compared are time and number of energy trans-
fers. The comparison is not particularly fair because of the intrinsic difference in the methods
and because the two packages do not share the same code basis (e.g. the visibility queries are
computed using two completely different methods).

To quantify the efficiency of our refiner, we analyzed the number of energy transfers and the
number of leaf elements in a solution hierarchy of illuminated patches. For a given error threshold,
a small number of transfers and leaves is obviously desired, meaning that no over-refinement
happened.

In what follows we describe in greater detail the composition of the scenes and how the test
were performed.

vs— Geometric complexity Error threshold Iteration Compared to Renderpark (volume clustering)
Time with and w/out visibility yes yes vs error thresh; vs geometric complexity
Energy transfers yes yes small/medium /large error threshold geometric complexity
Memory yes yes yes
Leaf elements yes yes yes
Glossy scenes - - - qualitative

Table 1: The experiments made. Radiator was run with constant, linear, quadratic, cubic vector
irradiance basis for 10 iterations.

2.2 Test scenes

The scenes we tested are nine different versions of a museum scene similar to Willmott’s[10]. Our
museum contains three complex scanned models, one curvy pedestal and one planar light source
in the middle of the ceiling. The scene is shown in Figure 1. The various scenes differ in the
number of faces only, roughly ranging from 164000 to 1500000. All the scanned models are freely
available[2] and the scenes are written in the standard MGF format. In Table 3 the contents of
each scene are listed.



Building the scenes

Figure 1: The museum scene used in the tests.

The scene with id=n has approximately n - 164000 faces. The models in

the various scenes were obtained one by one from the full resolution mesh using Garland’s gslim[4]
simplification tool with explicit number of target faces, compactness ratio 1 and default values
for the other parameters. The memory footprint of a scene is the storage reserved to geometry,
materials and pointers to nodes for the whole set of hierarchical surfaces in the scene. Note that
the museum walls are not given as highly tessellated objects, they are refined as needed at runtime.

Materials

The materials used for the three statues also have directional reflectance, which is

taken into account by our solver and displayed using hardware programmable shading facilities.

pq = .5,ps = .15, roughness = .2 pg = .25 pg = .75 (grey), .4 (green),
.14 (red)

Scene Buddha Isis Igea Pedestal Walls and Total input faces Memory Footprint
1D source total faces [KB]
1 100000 37500 26800 510 7 164816 55691
2 200000 75000 53600 1020 7 329624 111382
3 300000 112500 80400 1530 7 494431 167073
4 400000 150000 107200 2040 7 659237 222765
5 500000 187500 134000 2550 7 824027 278451
6 600000 225000 160000 3060 7 988009 333863
7 700000 262500 187000 3570 7 1153009 389620
8 800000 300000 214000 4080 7 1317975 445366
9 900000 337000 241200 4590 7 1482474 500955

Table 3: Composition of the test scenes. Diffuse and specular reflectances are indicated above
the object name. The light source emits 20000 cd. (A face is a triangle or a rectangle, KB=1000

bytes).




2.3 Runtime settings

In Table 4 are listed some of the world parameters after loading. Before running the tests, we
ensured that these parameters were the same in our software and in renderpark. The average
reflectance in the scenes is 0.67 and the total emitted power is 109.25 W.

Scene ID | Total area | Estimated Avg. Radiance [W/m? /sr]
1 148.161 0.718309
2 148.200 0.718365
3 148.234 0.718766
4 148.243 0.719497
5 148.206 0.721137
6 147.998 0.723780
7 148.014 0.727345
8 147.699 0.719352
9 146.720 0.733591

Table 4: World statistics after loading. In renderpark the values are the same.

2.3.1 Radiator settings

The input parameters interesting to us were given as command line options. The settings common
to all the radiator runs are listed below:

e (Scalar) Radiosity basis order = constant
e Maximum iteration = 10
e Minimum residual ratio = 0

The minimum residual ratio was set to zero to run exactly ten iterations in each test. The follow-
ing is an example of radiator invocation:

radiator --solver-radiosity-basis constant --solver-irradiance-basis linear
--solver-relative-transport-error-threshold 0.00001 --solver-maximum-iteration 10

--solver-minimum-residual-ratio O --output-radiosity-statistics-file scene_id_stat.txt

scene_id.mgf

The input parameters explored with radiator are shown in Table 5. In the following we will
indicate as “default test set” the tests described by the first row of the table.

Scene ID | Relative error threshold Order of vector irradiance basis With visibility
1+9 10-%,1075,10~* constant, linear, quadratic, cubic yes
1+9 107° constant, linear, quadratic, cubic no

Table 5: The space of input parameters spanned by radiator experiments. The first row indicates
the “default test set”.



2.3.2 Renderpark settings

The settings common to all the renderpark runs are indicated below:
-radiance-method Galerkin
-gr-iteration-method Jacobi
-gr-hierarchical
-gr-link-error-threshold le-5
-gr-lazy-linking
-gr-clustering
-gr-link-error-threshold
-gr-no-importance

The above settings select the Galerkin scalar radiosity solver with volume clustering. Theoret-
ically this method is intrinsically less performant than ours in both space and time, because the
workload strongly depends on the input geometric complexity rather than on illumination gradi-
ents. We chose such settings to easily emphasize the efficiency of the face clustering approach. We
expect sub-quadratic performance from renderpark tests.

The parameters we changed with renderpark were the input scene and the error threshold
(Table 6). The combinations we chose are not intended for a comprehensive evaluation of ren-
derpark, but only to make some significative comparisons with our software.

Scene ID | Relative error threshold
1+9 10°°

Table 6: The space of input parameters spanned by the renderpark experiments. All the runs
were done with the default Galerkin radiosity settings. The results for scenes 6,7,8 were obtained
by interpolation.

2.4 Measurements

Radiator tests were all run for ten iterations, although we observed that the visual convergence is
usually reached before the sixth iteration. Renderpark tests were run for ten iterations too.
2.4.1 Time

The time measurements in radiator and renderpark refer to the total CPU time. For both pro-
grams, we report the cumulative time at the tenth iteration.

2.4.2 Energy transfers

Given a scene, we define number of energy transfers as the sum of the established links between
elements over ten iterations. This measure is compared to the cumulative number of interactions in
renderpark (i.e. the sum of interactions between volumetric clusters, between surfaces, surface to
cluster and cluster to surface). We want to check that the number of transfers our method generates
is not constant over the iterations and that is vanishes at the end of the lighting simulation.

2.4.3 Solution memory

To study memory usage, we consider the solution memory footprint. The memory footprint is the
amount! of storage needed to describe an irradiance distribution for all the distinct objects in the
scene. For each object we sum up the memory reserved to the following properties:

e hierarchical structure (tree of illuminated nodes)

In the graphs, KB stands for 1000 bytes.



e the vector irradiance distribution at the leaves of the tree
e AB and AB’ (current unshot radiosity, next iteration unshot radiosity)

o the lists of potentially occluded and unoccluded shooters

2.5 Leaf elements

The output of our hierarchical higher order solver is a hierarchy of illuminated patches[3]. Leaf
nodes in the hierarchy are different from inner ones in that they have associated irradiance vectors
representing the irradiance distribution. This distribution is represented with a number of samples
depending on the order of the approximating basis. Measuring such leaves gives information about
the quality of the solver oracle and expressive power of the chosen basis. We measure the total
number of leaf elements at each iteration.

2.6 Hardware and software platform

All the tests were performed on a dual AMD Athlon1900+ system running Redhat Linux 8 (kernel
2.4.18) equipped with 2GB of RAM and NVidia Geforce4 4600Ti 128MB graphics board.

3 Results

In this section we show and comment results about time, memory, energy transfer links, leaf
elements and glossy scenes. For our program radiator, we always show measurements obtained
using constant, linear, quadratic and cubic bases for vector irradiance. The various measures
are plotted against scene complexity, relative error threshold and iteration number. The error
thresholds used to test our software are listed in Table 5. Some radiator tests were done without
visibility queries, to stress the efficiency of the various bases.

Where meaningful, we made comparisons with renderpark: the performance of our method is
opposed to the default linear scalar radiosity approximation found in renderpark’s Galerkin solver
with volume clustering. For tractability, we used the scenes and the settings indicated in Table
6. All the experiments were run for ten iterations.

3.1 Time

A crucial measure for any radiosity solver is the running time of a simulation. With the large
scenes and cheap powerful graphics facilities available today, a naive solver could not handle such
complexity, otherwise the users could find the software pointless for interactive applications. In
our software, the visibility queries are coupled to the kernel integration, making the impact of vis-
ibility queries important, thus we also conducted the same experiments disabling visibility queries.

Geometric complexity. To see how our method depends on the geometric complexity of the
input scene, we ran the default test set. The tests with error threshold? 10~5 were used for the
graph in Figure 2 (left). The graph confirms that hierarchical vector radiosity is independent on
the geometric complexity of the input scene when this is detailed enough, as Willmott emphasized
in his work[10]. All the tested bases have very similar convergence rates, with constant basis a lit-
tle faster than the other bases. Quadratic and linear basis have present very similar running times.

Impact of visibility. The graph in Figure 2 (right) confirms that the performance is
much better (about 10 times on average!) when ignoring inter-object occlusion. This result also
stresses the importance of higher order bases: without visibility queries in our scenes, quadratic
irradiance basis is more than two times faster than constant basis, while linear and cubic are still

2Looking at the images produced in the various experiments, we found that 106, 105, 10~ are respectively
high, medium and low precision relative error thresholds for our scenes.
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Figure 2: Time. The running time of the solver is independent on geometric complexity. Left:
with visibility queries; right: without visibility.

significantly slower than quadratic. The fact that higher order bases are faster without visibility
sampling is explained noting that in our system, the number of visibility samples is coupled to
kernel integration.

Accuracy. The dependence of time on relative error threshold is shown in Figure 3. We ran
scene 5 with the different irradiance bases and three relative error thresholds. The results show
that the three bases perform in the same way. It is also clear that a threshold ten times smaller
requires a time about 10 times longer. Higher order bases appear slightly slower for very small
thresholds. Obviously, in choosing an approximating basis, it is important to also consider the
rate of qualitative convergence, as shown in Section 3.5.

Time trend during a simulation. Radiosity solvers have a workload proportional to the
number of links to evaluate. The number of links in turn grows with the geometric configurations
of the (potentially) involved patches and with the energy exchanged over the links. Our system
uses a shooting approach, thus we expect a bigger amount of work during the first iterations,
for the shooted energy decreasing between successive iterations. This behaviour is confirmed by
Figure 4, where the slowest iteration is the second, with any basis. Higher order bases are a bit
slower than lower order.



Cumulated Time, Scene 5
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Figure 4: Time. As expected, the shooting approach spends more time at the beginning of the
simulations.

Comparison with renderpark. The comparison with renderpark’s volume clustering was
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Figure 5: Time. Comparison with volume clustering. Volume clustering strongly depends on input
geometric complexity.

made running all the scenes with error threshold 10~5. The results are shown in Figure 5. We
compared the cumulated time after ten iterations of our solver to ten iterations of renderpark.
Renderpark presents a noticeable linear dependence on the scene complexity. From the graph,
it is evident that even the solution of the simplest scene is one order of magnitude slower than
radiator. Volume clustering takes from 6000 to 57000s for solving the museum scene at various
resolutions, while radiator solves any scene in less than 180s. The constant irradiance basis is the
fastest, taking 144s instead of the 177s needed by the cubic basis. Linear and quadratic basis are
in between.

3.2 Energy transfers

Probably the most important quantity when solving a scene with given precision constraints is
the number of links over which energy is exchanged and evaluated. Time and memory actually
are strongly dependent on this key measure. Moreover, the energy transfers help to judge the
efficiency of the refiner and approximation bases. In what follows we describe our experiments
related to energy transfers.

Geometric complexity. The default test set with error threshold 10~° was used to obtain
the results plotted in Figure 6. The cumulative number of transfers is shown against the number
of input primitives, exhibiting again a constant trend over the whole range of scenes. The best
performing irradiance basis order is quadratic, closely followed by linear and cubic basis. The
most expensive basis is constant, with an average overhead of about 20% transfers with respect
to quadratic.
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Energy transfers, Relative Error Threshold 1e-5
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Figure 6: Energy transfers. The number is independent on geometric complexity.

Accuracy. The graph shown in Figure 7 shows how the order of irradiance basis influences
the number of links in Scene 5. The number of transfers is plotted against three error thresholds,
giving a good overview. Over the whole range of thresholds, quadratic linear basis gives the small-
est number of transfers, closely followed by linear and cubic. Constant basis is significantly more
expensive (about 20% more than quadratic with any threshold). Such savings are independent on
scene complexity, as seen in Figure 6.
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Energy transfers, Scene 5
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Figure 7: Energy transfers. Comparison between basis: as expected simpler bases generate more
energy transfer links.

Trend of transfers during a simulation. This experiment points out how the number of
energy transfer links changes during a simulation. We tried various basis orders and two error
thresholds (medium and high precision) with Scene 5 (no other scenes need to be studied for the
independence of transfers on scene complexity). The graphs in Figure 8 show the number of
transfers plotted against the iteration. Both runs have similar behaviour: the number of trans-
fers grows, reaching the maximum value at the second iteration, and then diminishes to a positive
minimum. As expected, the maximum number of links depends on the error threshold: the precise
threshold generates a peak number of transfers about 7 times bigger than the medium precision
threshold. The minimum value of links reached in the final iterations is a fraction of the squared
number of root patches in the scene, which in turn depends on the average degree of occlusion
between the objects. In these experiments, quadratic, linear and cubic bases perform in the same
way, generating significantly less links than constant basis. In the example shown in Figure 8,
quadratic basis saves about 20% of the constant basis transfers, with both thresholds.
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Energy transfers, Scene 5, Relative Error Threshold 1e-6
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small (left) and

medium (right) error threshold. In both experiments, quadratic irradiance basis saves about 20%
of the total number of transfers generated by the constant basis.

Comparison with renderpark. To see how many transfers are avoided with respect to
volume clustering, we used Scene 3 and threshold 10~%,10~* to make the comparison. Figure 9
shows that our method takes significantly less transfers, namely one order of magnitude less than
renderpark. Again, this is due to the very different approaches of the methods.

Energy transfers, Scene 3
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Figure 9: Energy transfers. Comparison with renderpark’s volume clustering with changing target

precision.
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3.3 Solution memory

Because of the heavy storage needs of higher order approaches[9], we wanted to be sure about a
careful handling of the memory used in our system. In the following we show results about the
memory needs for the irradiance distribution on the objects. (The solution memory is defined in
section 2.4.3).

Geometric complexity. To see memory usage we tried radiator on the standard test set.
The solution memory footprint at convergence with error threshold 107° is presented in Figure
10. Storage needs for the solution is independent on the input geometric complexity and it is
always a small fraction of the input memory footprint. The different bases require significantly
different amounts of memory: constant irradiance obviously wins, while linear, quadratic, cubic
bases require two, four and eight times the amount needed by constant basis, respectively. In our
scenes the storage needs are always sorted like the order of the correspondent irradiance basis.
Other authors[1] found different results with different scenes.

Solution Memory, Relative Error Threshold 1e-5
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Figure 10: Solution memry. Storage needs are independent on scene complexity.

Accuracy. When changing the target precision, the differences in memory needs are signifi-
cant. Plotting the results for Scene 5 in Figure 11, we notice that higher order bases are a concern
for high precision simulations, suggesting to use quadratic or linear basis for small thresholds.
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Solution Memory, Scene 5
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Figure 11: Solution memory. Trade-off for the various bases with respect to target precision.

Memory trend during a simulation. The use of memory during the iterations of the solver
is shown in Figure 12. In our scenes, the used memory grows in the first two iterations, becoming
constant from the second iteration on, where no more refinement happens. Similar behaviours are
present in all the test scenes and with different thresholds. The early convergence is due to the
shooting nature of our solver and obviously on the characteristics of our scene.
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Solution Memory, Scene 5, Relative Error Threshold 1e-5
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Figure 12: Solution memory. After the first iterations, the used storage stops growing.

3.4 Leaf elements

A measure of quality for the solver oracle and for the different bases is the number of leaf elements
at convergence time. A good solver should solve a scene with a reduced number of leaves, for their
impact on storage and time. (The leaf elements were described in section 2.5).

Dependence on geometric complexity. Running the default tests with error threshold
1075, we produced Figure 13. Again we are glad to see independence on number of input el-
ements. The most efficient basis is quadratic, very closely followed by the other bases. The
difference is not dramatic (because the irradiance patterns are smooth in our museum), but the
number of leaves is really low when compared to the geometric complexity (the simplest scene has
a number of primitives about 26 times the number of leaves generated by the constant solver, with

the indicated error threshold).
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Solution leaf elements, Relative Error Threshold 1e-5
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Figure 13: Solution leaf elements. Also this measure is independent on scene complexity.
Quadratic is the cheapest.

Accuracy. It is interesting to see how the number of leaves changes with the target precision.
Such dependence is shown in Figure 14: the number of leaves grows from about 2000 to about
6000 and then reaches 20000 with threshold 1074,1075,10~¢ respectively. The various bases per-
form similarly over the whole range of thresholds. In our scenes, higher order bases appear more
efficient for error thresholds smaller than 1075,
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Solution leaf elements, Scene 5
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Figure 14: Leaf elements. The dependence on the error threshold is shown. The total number of
solution leaves is always a fraction of the input triangle count. Quadratic basis wins.

Solution leaves to input triangle count ratio.

To help understanding how efficient the refinement oracle is, we consider the ratio between the
input triangles count and the solution leaf count. In Figure 15 the results for all the scenes are
shown, with three different error thresholds using the quadratic irradiance basis. The three curves
all show a clear linear growth, because as seen in the previous sections, the number of final leaves
depends solely on the error threshold. Fixing the threshold generates a number of solution leaves
independent on the scene resolution, thus giving the linear trend over the whole range of scenes.
The ratios range from 100:1 (threshold=107%) to about 850:1 (threshold=10"*) with the chosen
basis. At the moment we do not know how good these figures are.
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Input triangle count to Solution leaf count ratio, Quadratic irradiance basis
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Figure 15: Solution leaf elements. The ratio between input triangle count and solution leaf count
is a measure of quality for the refinement oracle.

Leaf elements during a simulation. We expect the number of leaves to grow as solution
memory does, during the solution of a given scene. This trend is confirmed by Figure 16. As
for memory, the number of leaves reaches a steady maximum at the second iteration, stopping
to change when refinement ends. Similar behaviours are present in all the test scenes and with
different thresholds. The graph also shows that the difference in number of leaves among different
bases is less evident than the solution memory variation shown in Figure 12. Again, higher order
bases generate less leaves than constant, although the difference is not big.

3.5 Visual evaluation

In this section we show how the overall solution quality depends on the chosen irradiance basis
and error threshold and we also want to compare our solutions to those obtained with volume
clustering. Furthermore, we show some pictures exhibiting full BRDF (non-diffuse) reflections.
Radiator solutions are displayed using the irradiance distributions computed by the solver. Each
solution leaf face cluster has an associated distribution used to shade the input triangles forming
cluster. To obtain a correct display there is no need for an expensive final gather because the
irradiance values are interpolated and converted to radiosity on a per-vertex basis (using per-
vertex shader programs directly on the GPU)3. When full BRDF is enabled on the statues, the
vertex shader program takes it into account, yielding view dependent effects in real-time.

To grasp the behaviour of our method and explore the computed scenes we have built a renderer
program running in parallel with the solver. After loading and preprocessing the MGF scene,
various parameters are set (irradiance and radiosity basis, error threshold, residual ratio, etc.) and
then the solver is started. The display can be made with or without full BRDF or alternatively
just the face clusters are shown using random colors.

30nly one normal vector per triangle is used, because of the hypothesis of very small triangles.
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Solution leaf elements, Scene 5, Relative Error Threshold 1e-5
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Figure 16: Leaf elements during solution. After the first iterations, the number of leaf elements
becomes constant. No more new leaves are created when refinement ends.

All of the pictures were produced without tone mapping.

3.5.1 The museum scene

In Figure 17 is shown the museum scene solved with error threshold 10~°, constant radiosity and
linear irradiance basis. Three views are presented: face clusters without radiosity, diffuse BRDF
and full BRDF. We can make some qualitative remarks: the cluster view shows more refinement
for higher irradiance gradients; the radiosity view has smooth and realistic shadows together with
color bleeding. The full BRDF view adds more realism to the scene, giving a realistic feeling for
the shiny materials we chose for the statues. View-dependent color bleeding is highly noticeable
on Buddha’s pedestal.

3.5.2 Basis comparison

To understand how different bases approximate the same irradiance field, we solved the museum
scene keeping the same target precision and using different irradiance bases. The results for con-
stant, linear, quadratic and cubic bases are shown in Figure 18. The relative error threshold is
10~% and the radiosity basis is constant for all images. The corresponding clusters are shown in
Figure 19.

Radiosity. The constant irradiance makes the corresponding picture appearance blocky, be-
cause only one vector irradiance sample per cluster was used and for the lack of interpolation.
Strong discontinuities are visbile on Isis* abdomen and legs.

Linear irradiance gives the correct shading on Isis” abdomen and legs, while the shadow on the
wall behind Igea is still blocky.

The quadratic basis smooths Igea ‘s shadow.

The cubic basis does not show strong differences when compared to quadratic.
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Figure 17: Museum scene. The museum is displayed using random colors face clusters (top),
diffuse BRDF only (center) and full BRDF (bottom). (Constant radiosity, linear irradiance, error
threshold=1075)
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Figure 18: Comparison of different bases. Top left: constant irradiance basis, top right: linear
irradiance basis, bottom left: quadratic irradiance basis, bottom right: cubic basis. (Constant
radiosity, error threshold=10"°, diffuse BRDF only)

The other visible discontinuities (Isis~ cheek and Igea’s mouth) will disappear with the smallest
threshold (see below).

Clusters. The clusters shown in the pictures of Figure 19 visualize how the refiner performs
with different bases. Constant irradiance obviously generates many small clusters, particularly
visible on the wall facing the camera.

Linear and quadratic bases reduce the number of face clusters but not as noticeably as the
cubic basis does.

3.5.3 Error thresholds comparison

In order to understand the behaviour of our method with respect to the desired precision, we
compare the results for the same scene with different relative error thresholds. The images (overall
scene and Buddha s detail) corresponding to thresholds 10=%,1073,10~* are shown in Figure 20.
Looking at the overall view obtained with the smallest threshold we do not notice big flaws: for
example the Buddha s shadow and Igea s face denote high quality appearance.

The medium precision threshold has coarser shadows. Discontinuities appear on Igea’s and Isis”
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Figure 19: Comparison of different bases (clusters shown). Top left: constant irradiance basis, top

right: linear irradiance basis, bottom left: quadratic irradiance basis, bottom right: cubic basis.
(Constant radiosity, error threshold=107%)
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face.

The lowest precision threshold generates pictures with general coarse appearance with blocky
shadows. Another visible symptom of low precision computation is the dark right side of Igea’s
face, receiving indirect light only: the large threshold makes the reduced power coming from the
walls towards Igea invisible to the refiner.

Looking at the zoomed Buddha in Figure 21, we notice an overall good appearance for high
precision version, while the medium and low precision reveal some noticeable shading flaws below
the neck, on the hands and on the garment covering the right thigh.

3.5.4 Comparison with volume clustering

Besides quantitative differences between our method and volume clustering we wanted to compare
their visual difference.

Looking at Figure 22 (bottom) the blocky nature of volume clustered scalar radiosity solution
is evident. Each volume cluster has only one associated radiosity value, leading to the wrong
homogeneous shading of the triangles contained in the cluster. The directional nature of the
irradiance map computed by face cluster hierarchical vector radiosity enables the correct scene
rendering without the need of a final gather, as Figure 22 (top) shows.

4 Conclusions

We have shown evidence that our hierarchical higher order radiosity method using vector irradi-
ance together with face clusters gives correct results within good time bounds when processing
highly tessellated scenes.

We can summarize the advantages of our method:

e Hierarchical vector radiosity better exploits the directional nature of the global illumination
problem, associating a distribution of vector irradiance to the objects while refining them
until convergence. The number of energy transfers, the running time and the memory
requirements are independent on the geometric complexity of the input scene, when the
scene is sufficiently tessellated.

e The objects in the scene and the irradiance distribution are represented hierarchically, mak-
ing possible during the solution process the choice of the most convenient level of detail for
the energy exchanges. The solution level of detail strongly depends on the error threshold
and slightly depends on the chosen basis, leading to good figures: for instance, in our sim-
plest test scene, the ratio of input triangles to solution leaves is about 26 to 1 with medium
precision error threshold and quadratic irradiance basis.

e A good range of glossy BRDFs can be simulated.

e No final gather is needed to display correctly shaded environments, beacause of the direc-
tional nature of vector irradiance.

e The vector irradiance maps output by our algorithm are easily implemented on recent pro-
grammable GPUs allowing a fast rendering of glossy environments.

In the following we detail the above advantages.

4.1 Time

Given a scene represented as a hierarchy of face clusters, the time performance of our solver is
independent on input scene complexity, when the geometric details are finer than the illumination
details. The target precision has a strong influence on the running time: a simulation with
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Figure 20: Comparison of different error thresholds (Overall scene). Error thresholds: 10=¢ (top),
10~5 (centre), 10~* (bottom). Linear irradiance was used for all the pictures.
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Figure 21: Comparison of different error thresholds (Buddha’s detail). Error thresholds: 10~°
(left), 1075 (centre), 10~ * (right). Linear irradiance was used for all the pictures.
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Figure 22: Visual comparison. Top: hierarchical higher order vector radiosity (constant radiosity,
linear irradiance, error threshold=107?). Bottom: volume clustering (same threshold).

precision ten times bigger runs about 10 times longer, with any basis. Our approach is faster than
volume clustering for the decoupling between light and geometry and for the reduced refinement
due to the greater descriptive power of higher order bases. The best performing basis is constant,
followed by linear and quadratic. The cubic basis is the slowest. Using medium precision, the
muesum scene used in our tests is solved in about 150s with small difference among the bases.
When we disable visibility queries (i.e. the shadows are fully ignored) the solution is about 10
times faster, with quadratic basis performing best and with a large (relative) difference among
the bases. This is due to the current implementation of the solver, where visibility sampling is
coupled to kernel integration.

4.2 Energy transfers

As the timings suggest, the number of energy transfer is independent on the input scene geometric

complexity. For our scene and thresholds, quadratic basis always performs best, followed by linear,

cubic and constant. The constant basis produces about 20% more transfers than quadratic basis.
The dependence on error threshold is strong. A precision ten times higher requires ten times

the transfers needed by the coarser approximation. With respect to the error threshold, quadratic

basis is again the best choice, particularly with small thresholds.

With respect to volume clustering, our method saves about 90% of the transfers.
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4.3 Memory

The memory requirements are independent on the geometric scene complexity. The required mem-
ory is always a small fraction of the input memory footprint. The use of memory is proportional
to the order of the chosen basis, thus suggesting to use linear or quadratic basis for precise simu-
lations to achieve a good quality-storage tradeoff. The memory required with the medium error
threshold varies from 0.87 MB using constant basis to 7.8 MB using cubic basis.

4.4 Solution leaves

The number of solution leaves does not depend on the input scene. The test scene at any resolution
is solved using about 6000 solution leaves. The irradiance bases we tested all generate a similar
number of leaves, probably because the irradiance patterns are quite smooth. Quadratic basis
saves a small amount with respect to linear, cubic and constant. The ratio of input triangles to
solution leaves seems large, but we do not have yet quantitative means to judge that.

4.5 Glossy BRDFs

Computing. The results of our benchmarks prove that a radiosity simulation is computed in
minutes for scenes containing complex objects and for a good range of glossy BRDFs. While the
displayed solution is not the result of a full global illumination simulation, since glossy reflections
are limited to the final stage of any illumination path, its visual quality is not very far from what
provided by ray-tracing post-processing algorithms commonly in use in state-of-the art architec-
tural lighting systems. We thus believe that our approach has great promise, since it can be used
to generate low to moderate quality solutions for glossy environments, that are suitable for inter-
active viewing.

Rendering. The computed scenes can be examined interactively exploitng the programming
capabilities of modern commodity graphics to render illuminated scenes with complex models di-
rectly from the vector irradiance map, using hardware acceleration for computing view dependent
illumination during the interactive walkthrough. At the moment the rendering is implemented
with hardware vertex programs, giving excellent rendering speed also with full BRDF but with
some artifacts visible when zooming on coarse models.

4.6 Visual quality

The appearance of the museum scene is generally good, presenting color bleeding and smooth
shadows. Striking effects appear using full BRDF. Medium and low precision thresholds reveal
some shading discontinuities due to the underestimated energy exchanges. A good tradeoff between
time and quality is linear or quadratic basis with medium precision error threshold.

4.7 Future work

We are going to decouple visibility from kernel integration, with an approach similar to shadow
masks and adaptive shadow masking.

A detailed analysis of the approximation error introduced by our method is an important area for
future research. The error analysis should lead to the design of a better refiner: for instance we
need to understand how good the oracle is at refining, a measure could be the solution leaves to
input triangles ratio.

Different scenes with different reflection and lighting properties need to be studied, it is very

likely that scenes with different irradiance patterns would emphasize the efficiency of higher order
bases even more.

29



We will use per-pixel harware programs to obtain smooth shading with any zoom factor and
size of triangles.
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