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Abstract

We present a practical acquisition and processing pipeline to characterize the surface structure of cultural heritage objects.

Using a free-form Reflectance Transformation Imaging (RTI) approach, we acquire multiple digital photographs of the stud-

ied object shot from a stationary camera. In each photograph, a light is freely positioned around the object in order to cover

a wide variety of illumination directions. Multiple reflective spheres and white Lambertian surfaces are added to the scene

to automatically recover light positions and to compensate for non-uniform illumination. An estimation of geometry and re-

flectance parameters (e.g., albedo, normals, polynomial texture maps coefficients) is then performed to locally characterize

surface properties. The resulting object description is stable and representative enough of surface features to reliably provide

a characterization of measured surfaces. We validate our approach by comparing RTI-acquired data with data acquired with a

high-resolution microprofilometer.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image processing and Computer Vision]: Digitization and
Image Capture—Imaging Geometry

1. Introduction

The study of materials used in cultural objects is of extreme impor-
tance for the understanding and preservation of Cultural Heritage
(CH). Curators, restorers, conservators and conservation scientists
routinely exploit information on materials to have the proper in-
sights about the time and way an artwork has been made, the tech-
niques used, the environmental conditions of preservation, the pre-
vious conservation interventions, as well as to gather indications
for planning future interventions. Materials in CH are studied un-
der many different angles, ranging from the acquisition of basic
information, such as surface average color and roughness, to the
analysis of their molecular and elemental components. State-of-
the-art study and conservation practices thus combine a wide va-
riety of measurement probes and analytical techniques. Moreover,
in order to study dynamic processes, such as the effects of aging,
weathering, and restoration treatments, laboratory studies are often
performed on appropriately prepared samples and mock-ups.

Among the different material characterizations, the study of sur-
face appearance, in terms of reflectance and geometric meso- and
micro-structure is of particular importance, since the vast majority
of the cultural information is conveyed through optical signals from
the viewed artwork to the human vision system. Characterizing sur-
face structure and appearance is thus paramount for a variety of CH
applications, from the assessment of the visual effects of restora-

tion treatments, to the high-fidelity virtual and physical replication
of cultural objects trough graphics and fabrication means.

Reflectance Transformation Imaging (RTI) [Woo78, MGW01,
MVSL05], which derives material and geometry information from
photographs of a fixed object under fixed camera position with
varying lighting conditions, are nowadays a de-facto standard in ap-
pearance and geometry acquisition, due to their cost-effectiveness
and flexibility. Light lies at the core of the artistic process, and illu-
mination under multiple light conditions and directions is known to
have been used by artists throughout time in order to obtain a more
holistic representation when depicting a composition [PCC∗10].
Correspondingly, in order to decipher an artistic technique or to
understand the underlying information about an artifact, multi-light
imaging at raking angles [JMS∗14] provides a fair solution for the
documentation, recording and decoding of CH objects [MMSL06].

Using RTI for surface characterization requires, however, to go
beyond purely qualitative measurements. While completely cali-
brated setups, based on fixed domes, do exist, they have consider-
able costs and limitations in terms of scalability to multiple object
sizes and achievable illumination configurations. The most practi-
cal and flexible techniques are based, instead, on the combination
of freely moving lights with calibration objects to recover illumina-
tion directions (see Sec. 2). However, due to the lack of uniformity
in illumination intensity and direction, the results obtained with this
simple setup may vary widely between acquisitions, and may be not
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suitable for quantitative analyses, which include normal estimation,
roughness or material segmentation/classification, and monitoring
over time. Exploitation of RTI data is thus limited.

Our approach. We introduce a simple and effective pipeline for the
acquisition of geometry or visual appearance of cultural heritage
objects in the case of near-light condition and spatially varying illu-
mination. Our setup consists of a DSLR camera, a hand held light,
and several calibration target, i.e., a set of glossy dark spheres and a
white background (see Sec. 3). The algorithm takes an image stack
containing multiple photos taken while light is projected from dif-
ferent directions. In the calibration step the images are undistorted.
Then, the pipeline exploits sphere targets to cope with a near-light
condition, where the parallel ray assumption is violated and a per-
pixel light direction is estimated. The white target helps to deal with
a non-point and non-uniform light, by balancing the scene irradi-
ance without explicitly requiring the light source position in space
to correct the light intensity as a function of the inverse squared
distance, not to mention its more complex form factor (see Sec. 3).
After that a corrected scene radiance is taken per-pixel in the form
of an appearance profile [KN06]. An estimation of geometry and
eventually reflectance parameters (e.g., albedo, normals, polyno-
mial texture maps coefficients) is then performed to locally charac-
terize surface and appearance properties. The setup and approach
have been validated by comparing our results with those obtained
with a high-resolution laser microprofilometer.

Contribution. While not all the techniques presented in this work
are novel in themselves, their elaboration and combination provide
a significant step towards a practical quantitative analysis using
simple and low-cost uncalibrated acquisition strategies. We intro-
duce, in particular, a setup and processing strategy that can cope
with the effects of non-point lights, spatially varying illumination,
and variable light distance, and we demonstrate the effectiveness of
the approach even in challenging situations, such as damaged coins
and silver samples used for restoration studies.

Advantages and limitations. Our approach is designed with the
idea of being cost-effective, flexible, and simple to use. It offers a
better reliability than current free-form approaches, while not re-
quiring a fixed geometry, such as domes or robotic acquisitions,
and/or complex calibration procedures. Since a single movable
lamp is used, it is also easier and less costly than with multi-light
setups to extend it to a multi- or hyper-spectral capture, since this
could be achieved by just using narrow band illuminations or Liq-
uid Crystal Tunable Filters (LCTF) in front of a monochromatic
camera. The results presented here are currently limited to the cap-
ture of geometry and appearance by measuring low-frequency com-
ponents of BRDFs, and must me extended to fully recover appear-
ances of surfaces with complex reflectivity. This is, however, or-
thogonal to the approach presented in this paper.

2. Related work

Measurement of surface properties from multi-light imaging is a
wide research subject. In the following, we provide an analysis of
the most closely related approaches. For more details, we refer the
reader to established surveys in digital material modeling [DRS10]
and geometry and reflectance acquisition [AG15, WK15].

RTI setups. RTI transforms a high amount of visual information
(2D image sets) into 2.5D multi-layer representations [DJB13],
which include surface attributes such as gradient, local curvature,
normal, and albedo [Mac15]. A wide variety of RTI acquisition se-
tups exist, ranging from low-cost and transportable kits [CHI16],
to different sizes of fixed light domes [CHI16, SSWK13, Ham15].
Recently, some dome solutions have been presented that use both
visible and invisible light wavelengths [LG14, Leu15]. Our setup
is both low cost, simple to implement, and provides an easy cap-
ture procedure. It is not a fixed light setup and allows a more flex-
ible choice of number and position of the light sources, which is
very important when dealing with non-Lambertian, shiny materials.
Moreover, it is easy to extend the presented pipeline to the multi-
or hyper-spectral domain at a much lower cost than multiple-light
setups.

Coping with non-ideal lighting. While dome solutions allow for
pre-calibration, and thus more reliable data, the main problem in
classic RTI approaches with freely movable lights is that they gen-
erally rely on some simple and limiting assumptions about lighting
and materials. The most common assumption is a Lambertian ma-
terial under uniform lighting generated by an infinite distance light
source (parallel rays). The computation of surface attributes is then
prone to errors due to this simplistic model. For this reason, Xie
et al. [XDW15] proposed a photometric stereo method that uses lo-
cal/global mesh deformation approach to solve the non-linear prob-
lem of PS with near point lighting. Rather than computing only sur-
face orientation, they rely also on the computation of surface point
position, which is a well-known problem in the case of surface dis-
continuities or self and cast shadows. Moreover, although they take
into account the attenuation of luminance due to the distance be-
tween surface points and light source, they consider a Lambertian
material. Similarly, Ahmad et al. [ASSS14] developed a new pro-
cedure to allow dynamic calibration of per-pixel light vectors as
an object moves in the field of view. Unfortunately they also rely
on Lambertian diffused maxima region. A more controlled, general
calibration method that does not depend on Lambertian assump-
tion has been presented recently by Xie et al. [XSJ∗15]. They cal-
ibrate a LED-based system to take into account near-field light-
ing and the dependency of surface irradiance on the light distance.
They show acquisition of opaque and specular objects. However,
their approach is strongly dependent on the model of LED radi-
ance distribution, which is not uniform but isotropic. In a simi-
lar manner Ukida et al. [UTSY15] developed an hybrid method
(stereo plus photometric stereo) tailored on a illumination model
of a linear light source. Conversely, some other advanced meth-
ods were proposed by Mecca et al. [MRC15b, MRC15a]; they are
based on a more complex mathematical formulation that exploits
partial differential irradiance equation ratios to deal with all the
mentioned highly non-linear physical factors being involved in the
image acquisition process. They model the material as a combina-
tion of a diffuse Lambertian and a specular Blinn-Phong compo-
nents. However the deformation of their results are still large for
non-Lambertian objects and the computational time of that more
complex algorithm has been tested only with small images. Gi-
achetti et al. [GDR∗15], similarly to us, instead of tackling the
complex problem of recovering light positions and form factors,
directly reduce the inhomogeneity of lighting using a calibration
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Figure 1: Surface acquisition and characterization pipeline. Objects are acquired with a pre-calibrated camera and moving lights. Cal-

ibration objects added to the scene to automatically recover light positions and to compensate for non-uniform illumination. The resulting

pipeline computes surface features usable for a variety of applications.

plane with constant reflectivity. Their work, however, is limited to
flattening the estimated lighting profile to emulate a purely direc-
tional lighting, while we extend the proposed light correction ap-
proach to a true per-pixel illumination correction accounting for
per-pixel light direction and intensity,

From image stacks to parametric representations, There are
various models for fitting the reflectance distribution data ob-
tained with RTI acquisition and this paper focuses on polynomial
based interpolation (such as the seminal work of Malzbender et
al. [MGW01]). As explained in Drew et al. [DHOMH12], polyno-
mial approximation improves Lambertian Photometric Stereo (PS)
by solving a higher order polynomial and, coupled with a dedi-
cated reflectance model, allows for more realistic reproduction of
the material’s radiance. The biquadratic function in typical poly-
nomial approximations can be solved with linear regression by
minimizing the least-squares error or obtaining more robust re-
sults by trimming the outliers with least median squares method
(LS) [RL05, ZD14, DHOMH12]. The regression outputs a set of 6
coefficients for each pixel in the image dataset, that can be treated
as six spatial maps with the same spatial resolution as the orig-
inal images, but with a reduced resolution in the angular space
due to the n image-to-6 approximation [Mac15]. Here we use a
trimmed LS [RL05] based on a simple and fast outlier diagnostic
strategy. It proves to be efficient even with the considerable amount
of black noise and highlights caused by very low diffuse albedo
and a high shininess of tested materials. A similar strategy can be
applied as well on other fitting functions like Hemispherical Har-
monics (HSH) or higher order polynomials [GKPB04, ZD14] that
could be easily added to our framework.

Material classification and descriptors Previous attempts have
been made in the direction of material classification based on the
fitted coefficients, e.g. HSH [WGSD09], PTM [GDR∗15] and PS
[TGVG12] coefficients. In cited papers, pointwise reflectance pa-
rameters are used to characterize the materials and segment differ-
ent regions of a planar surface by means of clustering algorithms.

This approach has clear limits due to the difficulty in light calibra-
tion, the dependency of the reflectance on local geometry, and other
complex factors Our idea is to try to overcome these limits using a
smart calibration approach.

3. Method

The basic idea behind the presented pipeline is to avoid the neces-
sity of using complex calibrated light setups to have a real control
of the reflectance estimation, and to avoid either the large errors in
the reflectance parameters estimation due to light inhomogeneity
typical of freehand/highlight RTI capture. This is obtained using a
capture setup with multiple reflective spheres and a planar white
Lambertian target. We propose to pre-calibrate the raw input data
before parameter fitting in order to treat each pixel as if we had an
ideal constant illumination intensity coming from a known ray di-
rection. We do so by interpolating the light direction over the whole
image and using white calibration patches to estimate local illumi-
nation intensity at each pixel location. The setup can be easily used
in lab environments to acquire a wide range of objects (paintings,
bas-reliefs, coins, etc.), but it could be even applied in outdoor ac-
quisitions provided the proper positioning of calibration targets.

An overview of the proposed acquisition and processing pipeline
is presented in Fig. 1. Before the acquisition, we have already (and
once) calibrated the internal characteristics of the camera, i.e., the
radiometric response and the lens parameters. The acquisition setup
includes some reflective spheres, a white planar frame as back-
ground, an hand-held light (freely moved by the user), and the ob-
ject being captured. The white planar frame can be substituted with
any kind of material with constant reflectance in the frequency band
used for illumination.

The capture process outputs an image stack, which is semi-
automatically annotated to find the position of the spheres and to
segment the white background parts not cluttered by the object.
These three inputs (camera internal parameters, image stack, and
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(a) Setup (b) Scene (c) Annotation

Figure 2: Acquisition and annotation. (a) The acquisition setup composed of the stationary DSLR digital camera, the hand-held light source

and the CH targets arranged horizontally on a white background together with the four black reflective spheres. (b) Acquired scene. (c) User

interface for the annotation of reflective spheres and frame regions.

annotation) are used by the algorithm to perform a series of fine
calibrations on images, light and camera. After that, each pixel is
associated with a calibrated reflectance profile, coupled with cal-
ibrated light parameters; those are used to perform a reflectance
function fitting in order to extract an objective lower dimensional
representation described by a small number of coefficients. These
feature maps might be employed in a variety of applications, such
as surface reconstruction, object classification and recognition, vir-
tual rendering/re-lighting, 3D printing and so forth. In the follow-
ing, we describe in more details the various pipeline steps.

3.1. Camera calibration

Reflectance Transformation Imaging uses measurements of irradi-
ance on the camera sensor to extract photometric and geometric
information about the viewed scene. For this reason, we calibrate
the camera both in terms of radiometric response and geometrical
behavior. The radiometric calibration aims at coping with the non-
ideal, non-linear response of the camera sensor, and is obtained by
photographing a target under different exposures and computing
parameters that transform the irradiance signal so that the measured
brightness value will be linearly proportional to the amount of pho-
tons hitting the sensor [GN04, Yor16]. We also take into account
the geometrical behavior of the lens by calibrating the intrinsic pa-
rameters of the camera [GoCMM16]. This will be used to remove
the radial distortion from the input image stack.

3.2. Acquisition

The acquisition setup consists in a camera, a hand-held light, some
calibration targets (a white planar frame and four glossy spheres)
and the object under study, which is assumed to be approximately
flat. In fig. 2(b) we present the scene viewed by the camera, which
contains four dark glossy spheres and a white diffuse planar target,
on which we positioned six metallic objects being acquired. Dur-
ing the acquisition, for each image the user changes the position of
the light, and he tries to uniformly sample the direction across the
hemisphere above the scene 2(a). A uniform sampling will assure a
well mathematically conditioned light matrix and reduce the com-
putation errors during the reflectance function fitting [KH14]. Apart

from that, we don’t have any particular constraints on the light form
factor (we do not rely on a point light source approximation), nor
we force the user to strictly remain at the same distance from the
scene to avoid variation of light intensity. Moreover, since we avoid
the common parallel rays assumption (or, far light condition), the
user can remain close to the object; this will increase the average
scene irradiance, decrease the exposure time per image, and then
speed-up the entire capturing process. Without loss of generality,
in all our experiments the ambient light is completely negligible.
If that is not the case, many methods can robustly deal with the
presence of ambient light, even if its intensity is many times the
illuminance of the directional light component [AP14].

3.3. Annotation and calibration

We propose a semi-automatic, simple, and fast calibration pipeline,
in order to extract reliable object surface information. It consists in
two main steps, i.e., light direction and intensity calibration. Us-
ing a custom software, we are able to estimate the light direction
from the sphere highlight positions, and we assume that the light
direction at each object point is well approximated by a linear inter-
polation of the estimated values, as shown in [GDR∗15]. The user
annotates the region of interest (ROI) of each sphere (see fig. 2(c).
Then the ball position, the highlight position and the derived light
direction associated to the centers of the spheres are estimated. The
light direction for each pixel is computed by linear interpolation of
those known directions. Now that we have the light direction for
each pixel, we need to compute and calibrate the spatially vary-
ing light intensity. We exploit the white planar target, since we can
make some reliable assumptions about its Bidirectional Reflectance
Distribution Function (BRDF), albedo (ρ) and normal (n) values in
the viewer-oriented coordinate system. First of all, it is a Lamber-
tian diffuser, so the reflected radiance will be:

Lr =
ρ

π

∫
ω

Li (θi,φi)cosθidωi (1)

Whatever is the nature of our light source, the previous calibration
of light directions allows us to consider a per-pixel collimated illu-
mination, and the resulting simplified double-delta representation
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(a) Original (b) Calibrated (c) Interpolated γ−1

(d) Original vs. Calibrated Profile

Figure 3: Light intensity calibration. In the top row, the original

image corresponding to light #6, its calibrated version and the in-

terpolated correction factor. In the bottom, two original (orange)

and calibrated (blue) appearance profiles of the pixels indicated by

the red and green crosses in the top image. Images sorted by angle

with the white calibration plane normal.

of the source incoming radiance [HS79]:

Li (θi,φi) = E0δ(cosθi − cosθ0)δ(φi −φ0) (2)

E0 is the irradiance produced by a collimated source on a surface
oriented orthogonally to the direction (θ0,φ0), and (θ0,φ0) is the
per-pixel known calibrated light direction. E0 must be constant and
equal to a reference white value (ρ ≤ 1) for all the pixels in the
white diffuse target. However, this is not true due to the spatially
varying nature of the light. For this reason, given a pixel (u,v) in
the diffuse target, and L̃r (u,v) the corresponding real measured ra-
diance, the value of E0 will be:

E0 (u,v) =
πL̃r (u,v)

ρcosθ0
(3)

Note that we know the value of cosθ0 since we know the illumina-
tion direction computed by interpolation from the directions recov-
ered from sphere highlights, and we can recover the true white pla-
nar target normal, which is approximately collinear with the view-
ing direction, i.e., n = (0,0,1)T , from the known spherical target
sizes and positions in the image. At this point, we can easily find
the new calibrated pixel value Lr (u,v) for the white target region
by computing L̃r (u,v)γ(u,v), where γ(u,v) = E0 (u,v)

−1. Using
this value instead of the original one for each of the acquired im-
ages produces a calibrated appearance profile that is independent of
effects such as near-light and non-uniformity of lamp illumination.

Now that we are able to retrieve the calibrated pixel value for the
white region, we need to find a procedure to apply the same process

to the rest of the image, and in particular to the objects of interest.
Given a sparse sampling of light intensity, we assume that its vari-
ation in the image space is not a high frequency signal, but it can
be well approximated by smooth function. Moreover, we assume
that objects are thin and flat, thus approximately at a small distance
from the plane defined by the white diffuse target. This makes a cu-
bic, plane-based fitted signal still valid for the object points. From
a practical point of view, we need to segment and consider the set
of pixels in the white region that are not in shadow, which are used
to compute the known values of γ. Then, in a completely automatic
way, the algorithm computes the values of γ for the unknown pixels
by fitting a cubic polynomial. The final pixel values are obtained by
pixel-wise multiplication of the γ(u,v) field by the measured image
L̃r (u,v). Fig. 3 shows the effect of light intensity calibration on one
of the original image in the input stack. We obtained the calibrated
image (Fig. 3(b)) by multiplying the original image (Fig. 3(a) with
the interpolated γ function rescaled to the unit interval to make it
more readable (Fig. 3(c)). The effect of light intensity correction
is pretty evident across all the image, and, in particular, it is very
clear in the upper left corner. There the original image is very dark
mostly due to the combination of spatially-varying light (spot ef-
fect), and the distance from the light source (near- and point-light
effect). Since for each acquisition the light is in a different position
with respect to the scene, deviations across images with respect to
the constant illumination assumption can be dramatic.

Since this calibration takes into account radiometric nature of
both the image-forming system and the known targets, the calibra-
tion of light intensity compensates the spatially varying behavior
keeping reflectance values photometrically consistent across all the
input image stack. The result of the entire calibration procedure is
a set of corrected reflectance appearance profiles (calibrated im-
age stack), and a set of light coefficients to retrieve the per-image
and per-pixel light directions. The effect of calibration is evident
in Fig. 3(d), where we present the appearance profile data of the
two pixels marked with the red (white target) and green (sample)
crosses in Fig. 3(a) and Fig. 3(b). We can see that uncalibrated ap-
pearance profiles look extremely jaggy due to unwanted lighting
effects, and would lead to noticeable difficulties and errors in sur-
face and reflectance parameters estimation.

Figure 4: Enhancement. We compare the original picture (left)

with two different kinds of enhanced visualization of the captured

model, i.e., unsharp masking applied to the normal field (center)

and to the full set of PTM coefficients (right). Note how enhance-

ment makes severely degraded details readable.
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3.4. Surface characterization

The calibrated appearance profiles can be used for extracting stable
parameters characterizing the object surface. Quantitatively speak-
ing, the profile signal is a sum of several contributions, ranging
from the diffuse behavior of the material to its specular component.
In this paper, instead of modeling the high frequency modeling of
the material Bidirectional Reflectance Distribution Function, we
explore the possibility of extracting meaningful information from
the low frequency part, which consists in all the Lambertian and
non-Lambertian diffuse components [IA14].As discussed in Sec. 4,
this part of the signal is reliable enough even in the case of highly
specular metallic objects. The low frequency assumption allows us
to approximate per-pixel reflectance profiles by low-degree poly-
nomial interpolation [MGW01]. We employ the polynomial repre-
sentation presented by Drew et al. [DHOMH12], which uses 6 co-
efficients (a,b,c,d,e, f ) to relate the light direction (lx, ly, lz) with
the measured, calibrated reflectance Lr:

Lr = [a,b,c,d,e, f ]
[

lx, ly, lz, l
2
x , lxly,1

]T

(4)

The first three coefficients (a,b,c) model the pure Lambertian part
of the reflectance, the coefficient f models the ambient light term,
while the two coefficients (d,e) take into account other diffuse and
low-frequency non-diffuse surface behavior (e.g., non-Lambertian
diffuse signals or interreflections).

Given a profile, in order to remove outliers due to shad-
ows and high-frequency reflections, we apply Trimmed Least
Squares [RL05]) to fit the data with the equation 4. For each pixel,
we estimate the 6-dimensional vector of polynomial coefficients,
which we consider our lower dimensional representation of the ap-
pearance profile. This way to express per-pixel data is very useful
for different kind of applications, e.g., it is possible to directly use
the coefficients as a 6D texture, and to compute descriptors from
it for classification and recognition purposes [BCDG13,GDR∗15].
Here we focus on the reconstruction of normal and albedo of the
surface from the coefficients. The first three coefficients (a,b,c)
represents the albedo-scaled normal vector, so its magnitude is the
albedo, while the direction is the normal. Computing the normals
with a polynomial interpolation rather than the classic photometric
stereo 3-dimensional model takes into account not only the Lam-
bertian component of the material but a more wide diffuse non-
Lambertian behavior, resulting in a more relaxed set of assump-
tions [IA14]. Moreover, having a precise and reliable estimation of
those surface attributes is extremely important to obtain informa-
tion about surface behavior (e.g., roughness [Kay15]), and, by in-
tegrating normals, to compute a 3D model as well [BB15]. We will
show in the section 4 how the proposed, simple calibration pipeline
provides more stable quantitative results with respect to standard
free-form RTI approaches, by producing repeatable and reliable
outcomes that are comparable with other common and established
measuring systems (i.e., the optical microprofilometer). Moreover,
by suitably processing the coefficients, it is possible to render the
objects in order to enhance particular aspects of them, making them
more readable. An example is presented in Fig. 4, where a severely
damaged coin is made more readable by enhancing local variations.
Note how, by unsharp masking the full PTM coefficients, we obtain
a more readable result than just unsharp masking the normal.

(a) It. Bronzital 10c (b) It. Copper 10c (c) Roman Quad.

(d) Silver sample #15

(e) Silver sample #22

(f) Silver sample #28

(g) Silver sample #30

Figure 5: Samples. Photos of the metallic samples used to test the

proposed approach: (a) an Italian Bronzital 10c coin; (b) a severely

degraded Italian copper 10c coin; (c) a bronze roman coin; one

polished silver with a partial coating treatment(d); three chiseled

silver plates, i.e., #22(e), #28(f) and #30(g).

4. Results

The pipeline described in this paper has been implemented using
widely available devices, including a LED lamp and a DSLR cam-
era. We present in this work the results obtained in the reconstruc-
tion and analysis of some metallic samples, which, due to their
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sometimes very high reflectivity and low diffusivity, present a dif-
ficult test case for RTI approaches.

4.1. Samples

We tested our system on a variety of samples and cultural objects.
We present in this paper results obtained on laboratory-created
metallic plates, as well as on ancient and antique coins (see Fig. 5).

The plates, custom made to study metal and metal treatment be-
havior, are made of 95% silver and 5% copper. They have a thick-
ness of 1mm and a size of 7cm by 2.5cm. Three of the tested sam-
ples (sample 22, 28, 30) were chiseled, in order to emulate the ap-
pearance of cultural objects, while the fourth one (sample 15) is
polished and partially coated with nitrocellulose and wax. The chis-
eled samples are used in this paper to test the geometric accuracy
and repeatability of our pipeline, while the polished one is used to
test the repeatability of surface characterization.

The coins are a small bronze roman coin (quadrans) dated 9 BC.
and damaged by scratches, and two 10 cent Italian coins. One ex-
emplar, dated 1931 is made of copper and is severely degraded,
while the second exemplar, dated 1939, is made of a special alloy
with nickel called Bronzital, which has been used to improve cor-
rosion resistance.

4.2. Camera calibration

The digital camera used for the experiment is a DSLR Nikon D810
with CMOS sensor (36x24mm, spatial resolution of 36MP for the
full format image area). The lens attached was a full resolution AF-
S FX Nikkor 50mm f/1.8G. The sensor of the digital camera was
checked for linearity, by taking images with different exposures,
from very dark to very bright and then plotting the brightness of the
images as a function of exposure. The camera was geometrically
calibrated by computing intrinsic parameters and undistorting the
images before feeding them to the RTI pipeline. We employed a
model with two radial and two tangential distortion coefficients.
We used the GML Camera Calibration Toolbox [Vel16], but any
other calibration tool can be used as well to perform this task.

4.3. Acquisition setup and protocol

The acquisition scene was set-up horizontally and the digital cam-
era was placed on top at a distance of approximately 95cm, on a
perpendicular direction to the image plane, as shown in Fig.2(a).
The Ground Sampling Distance when using the 50 mm lens was
0.009 cm/pixel. The metallic samples were arranged on a white
paper frame. Four reflective black spheres were included so as to
enable light direction estimation from the freely moved hand-held
light source. A Spectralon target was included in the scene as a per-
fect white diffuser. The light source used for the experiment was a
white LED (color temperature 6500K) for visible (VIS) photog-
raphy, with very limited emission in the infrared (IR). The digital
camera was remote controlled. The acquisition configuration was
set as follows: ISO 32, aperture f8, shutter speed 0.8s, custom white
balance and manual focus. The samples were acquired in two ses-
sions. During each acquisition, a virtual light dome was created
by manually moving the light source around the samples, from 12

azimuth locations with 4 corresponding elevation points and a fi-
nal acquisition from the top, giving a total of 49 images which can
translate into 49 light directions. All images were shot in RAW for-
mat.

(a) Italian Bronzital 10c coin

(b) Roman Quadrans

Figure 6: Normal deviation in two different acquisitions. For each

coin, the left image maps the angular deviation of normals recon-

structed from two different acquisitions without light calibration,

while the right image presents the result obtained when light direc-

tion and intensity are corrected per pixel.

(a) Without calibration

(b) With calibration

Figure 7: Unsupervised classification. Two class k-means cluster-

ing applied to two different acquisitions of the polished sample #15

(fig. 5(d)). The coated area is in red while the uncoated area is in

green. Without calibration we have 20% of classification similarity,

while we obtain a value of 99.5% by using the calibrated images.

This shows the drastically increased level of repeatability of the

proposed pipeline with respect to classic free-form RTI.

c© 2016 The Author(s)
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4.4. Repeatability and characterization

In order to test for repeatability, acquisitions of the same samples
were repeated multiple times, and the PTM coefficients were recon-
structed using a robust approach with trimming with and without
light intensity and direction calibration before parameter fitting.

As expected, light calibration sensibly improves acquisition,
making it more predictable. Fig. 6 shows, for the Roman and Italian
coin samples, the deviation in the reconstructed normals acquired
twice using the same number of lights and a similar illumination
pattern, controlled free hand. The median angular deviation of nor-
mals decreases, when using calibration, from 1.86 to 1.17 degrees
for the Bronzital 10c coin and from 2.69 to 1.41 degrees for the Ro-
man Quadrans. Much larger variations occur on the metallic plates,
which have a larger extent and, therefore, suffer more of light inho-
mogeneity.

The repeatability of the proposed approach is particularly impor-
tant to obtain a stable surface characterization. As a representative
example of material classification, we have performed two RTI ac-
quisitions of a polished silver sample partially covered by a coating,
see Fig. 5(d), and applied unsupervised classification to segment re-
gions with or without coating. For each RTI sample, we compute a
7-dimensional descriptor of a 30 pixels neighborhood. The descrip-
tor is the average albedo value, to account for material color, plus
the 6 standard deviations of the polynomial coefficients, to account
for the roughness of the sample surface.

Unsupervised classification is achieved by performing two-class
k-means clustering. We measure the similarity of the classification
outcomes obtained from the two different acquisitions, without and
with light calibration, see Fig. 7. The only difference between the
two acquisitions of the same sample is the different lighting pattern
caused by the free-form approach. The coated area is in red while
the uncoated area is in green. In the absence of light calibration,
the clustering outcome is unstable, as it has only a 20% overlap,
while, by performing light calibration, we improve it up to 99.5%
of pixels that have been assigned to the same class, showing that
with our approach free-form RTI can be used for characterization.

4.5. Comparison with microprofilometer

In order to test the accuracy of shape capturing, we compared
our reconstruction with measures taken with an optical micropro-
filometer based on conoscopic holography [SP85], which is capa-
ble to take reliable and stable profilometric measurements down to
the scale of micron on different kinds of materials, reflective or dif-
fusive. The microprofilometer is based on an Optimet conoscopic
probe mounted on sub-micrometric linear stages in order to scan a
region up to 30x30cm2 in one session. Different acquisition setups
are used to adapt the working range of the system to the deforma-
tion of the various objects, with the surface data collected at dif-
ferent spatial grid. Silver samples, which are highly reflective and
”flat” surfaces (submillimetric deformation), were measured with a
transversal resolution (XY grid) of 50 microns with a repeatability
(Z heights) of 0.6 microns. Coins, which are less glossy surfaces
with deformation in the order of millimeters, were measured with a
transversal resolution (XY grid) of 50 microns with a repeatability
(Z heights) of 0.1 microns.

(a) Italian Bronzital 10c coin

(b) Italian Copper 10c coin

(c) Roman Quadrans

(d) sample 22

(e) sample 28

(f) sample 30

Figure 8: Registered normal maps. Color-coded normal maps ob-

tained with the RTI approach compared with microprofilometric

reference on the three coins surfaces and the three silver samples.

From left to right: uncalibrated RTI, calibrated RTI, ground truth

from microprofilometry.

For our comparison, we measured differences between normal
maps estimated from the RTI procedure with those derived by the
microprofilometric map. Since normals are very sensitive to high
frequency details, even the smallest errors are magnified, and nor-
mals are, therefore, a very good indicator. It should be noted that
the surface layers captured by different instrument may be slightly
different, and the direct comparison should be considered with care
due to the different levels of detail of the instruments and their dif-
ferent sensitivity with respect to materials. However, a qualitative
and quantitative comparison of the normals can give a reasonable

c© 2016 The Author(s)
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(a) Italian Bronzital 10c coin (b) sample 22

(c) Italian Copper 10c coin (d) sample 28

(e) Roman Quadrans (f) sample 30

Figure 9: Angular errors. Color-coded angular errors (degree) of

RTI estimated normals wrt ground truth from microprofilometry.

Left: non-calibrated results. Right: results with light calibration.

idea of the quality of our results. To obtain a normal map compa-
rable with ours from microprofilometer depth maps, we registered
the depth over the estimated RTI normal maps with a similarity
transform optimized to match the correspondence of manually se-
lected points (12 landmarks). This initial registration was refined
by locally optimizing mutual information in image space. In order
to reduce inaccuracies due to human intervention, we performed
the alignment procedure several times for each sample and kept the
best result. Very small differences among trials were measured.

Fig. 8 shows the normal maps of the objects in Fig. 5 mapped
in the same reference system: the left images are the RTI normals
obtained with original images, the center images are those obtained
with calibrated photos, while the right column shows the normals
estimated from microprofilometry. It is possible to see the good
quality of the reconstructed maps, even in the case of the severely
damaged and dark copper coin, where details are not easily visi-
ble in the images. Moreover, very good results are also obtained on
highly specular objects, such as the silver samples and the Bronzital
coin. From the quantitative point of view, light calibration sensibly
improves reconstruction quality, as reported in Table 1 and Fig. 9,
which illustrate the angular differences with respect to the micro-
profilometer obtained with and without calibration. The calibration
procedure reduces the median errors on average of 27 percent.

5. Conclusions

We presented a practical acquisition and processing pipeline based
on free-form Reflectance Transformation Imaging to characterize
the surface structure of cultural heritage objects. The basic idea be-
hind the presented pipeline is to simplify capture and increase its
flexibility by avoiding the necessity of using complex calibrated
light setups, while ensuring, at the same time, avoiding the large

Table 1: Median angular distances of the RTI estimated normals

from the reference microprofilometer normals. The calibration pro-

cedure reduces the errors on average of 27 percent.

Median angular distance (deg.)
Non-calibrated Calibrated

Bronzital 10c 6.69 4.51
Copper 10c 3.89 3.03
Quadrans 9.77 6.17
Sample #22 7.07 3.53
Sample #28 10.45 5.44
Sample #30 14.60 5.56

errors in the parameters estimation due to light inhomogeneity typ-
ical of freehand/highlight RTI capture. This is obtained by using a
capture setup with multiple reflective spheres and white Lamber-
tian surfaces from which to automatically recover light positions
and to compensate for non-uniform illumination. As demonstrated
in Section 4, the results are promising even for very difficult sur-
faces such as the metals tested in this work, since the measured
quantitative parameters are improved with respect to the current
non-corrected capture setups, the geometric surface characteristics
are in-line with those obtained with a micro-profilometer, and sim-
ple features derived from measurement lead to good discrimination
of surface conditions.
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