Supporting Interactive Animation Using
Multi-way Constraints

Jean-Francis Balaguer and Enrico Gobbetti

CRS4
Center for Advanced Studies, Research and Development in Sardinia
Scientific Visualization Group
Via Sauro 10
09123 Cagliari, Italy

E-mail: balaguer@crs4.it, gobbetti@crs4.it

To appear in

Proc. Eurographics Workshop on Programming Paradigm for Graphics (1995)
Veltkamp R and Blake E, Editors, Springer-Verlag, Vienna.

Abstract This paper presents how the animation subsystem of an inter-
active environment for the visual construction of 3D animations has been
modeled on top of an object-oriented constraint imperative architecture.
In our architecture, there is no intrinsic difference between user-interface
and application objects. Multi-way dataflow constraints provide the neces-
sary tight coupling among components that makes it possible to seamlessly
compose animated and interactive behaviors. Indirect paths allow an ef-
fective use of the constraint model in the context of dynamic applications.
The ability of the underlying constraint solver to deal with hierarchies
of multi-way, multi-output dataflow constraints, together with the ability
of the central state manager to handle indirect constraints are exploited
to define most of the behaviors of the modeling and animation compo-
nents in a declarative way. The ease of integration between all system’s
components opens the door to novel interactive solution to modeling and
animation problems. By recording the effects of the user’s manipulations
on the models, all the expressive power of the 3D user interface is exploited
when defining animations. This performance-based approach complements
standard key-framing systems by providing the ability to create animations
with straight-ahead actions. At the end of the recording session, animation
tracks are automatically updated to integrate the new piece of animation.
Animation components can be easily synchronized using constrained ma-
nipulation during playback. The systemn demonstrates that, although they
are limited to expressing acyclic conflict-free graphs, multi-way dataflow
constraints are general enough to model a large variety of behaviors while
remaining efficient enough to ensure the responsiveness of large interactive
3D graphics applications.



1 Introduction

Modern 3D graphics systems allow a rapidly growing user community to cre-
ate and animate increasingly sophisticated worlds. Despite their inherent three-
dimensionality, these systems are still largely controlled by 2D WIMP! user-
interfaces. The inadequacy of user-interfaces based on 2D input devices and
mindsets becomes particularly evident in the realm of interactive 3D animation.
In this case, the low-bandwidth communication between user-interface and ap-
plication and the restrictions in interactive 3D motion specification capabilities
make it very difficult to define animations with straight-ahead actions. This in-
ability to interactively specify the animation timing is a major obstacle in all
cases where the spontaneity of the animated object’s behavior is important [1][9].

To explore the enormous potential of 3D interactive techniques for provid-
ing solutions to modeling and animation problems, we have developed Viriual
Studio, an integrated 3D animation environment where all interaction is done
in three dimensions and where multi-track animations are defined by record-
ing users’ manipulations on 3D models. This way, we bring the expressiveness
of real-time motion capture systems into a general-purpose multi-track system
running on a graphics workstation. 3D devices allow the specification of com-
plex 3D motion, while virtual tools are visible mediators that provide interaction
metaphors to control application objects. Effective editing of recorded manipu-
lations is made possible by compacting a continuous parameter evolution with
an incremental data-reduction algorithm, able to compute spline representations
that preserve both geometry and timing.

In this paper, we concentrate on how we modeled the animation subsystem
of Virtual Studio. First, we present the object model and describe the class hier-
archy of the animation subsystem. Then, we show how the animation behavior is
obtained using hierarchical data-flow constraints. Other aspects of Virtual Stu-
dio are presented elsewhere: references [13][14] presents the underlying graphics
architecture (named VB2), references [1][2][15] provides a general overview of
the animation system, and references [1][3] detail the data reduction algorithm.

2 Object Model

2.1 Primitive Elements

In Virtual Studio, there is no intrinsic difference between user interface and
application objects. The tight integration between all the components of an
animated environment (i.e. interaction, application, and animation objects)
is obtained by the means of a constraint-imperative object-oriented (OOCIP)
architecture [11]. In our architecture, the state of the system, the long-lived
relations between state components, and the sequencing relations between states
are represented by different primitive elements: active variables, hierarchical
constraints, and daemons.

LWIMP stands for Window, Icon, Menu, Pointing device.



Active variables and information modules. An active variable main-
tains its value and keeps track of state changes by recording its value every time
it is modified. The history of the values of each variable is limited by the user
(by default, each active variable maintains only one value). All VB2 objects are
instances of classes in which dynamically changing information is defined with
active variables related through hierarchical constraints. Grouping active vari-
ables and constraints in classes permits the definition of information modules
that provide levels of abstraction that can be composed to build more sophisti-
cated behavior.

Hierarchical constraints. The bi-directional information exchange be-
tween components required to integrate animated and interactive behaviors
[6][12][14][15] is obtained with hierarchical multi-way constraints [5] maintain-
ing long-lived relations between active variables. To support local propagation,
constraint objects are composed of a declarative part defining the type of rela-
tion that has to be maintained and the set of constrained variables, as well as
of an imperative part, the list of possible methods that could be selected by the
constraint solver to maintain the constraint. A priority level is associated with
each constraint to define the order in which constraints need to be satisfied in
case of conflicts [5]. This way, both required and preferred constraints can be
defined for the same active variable. Constraint methods can be general side-
effect free procedures that ensure the satisfaction of the constraint, after their
execution, by computing some of the constrained variables as a function of the
others. Constraints are maintained using an efficient local propagation algorithm
based on Skyblue [13][14][19], a domain-independent solver able to maintain a hi-
erarchy of multi-way, multi-output dataflow constraints. The main drawback of
such a local propagation algorithm is the limitation to acyclic onstraint graphs.
However, as noted by Sannella et al. [21], cyclic constraint networks are seldom
encountered in the construction of user interfaces, and limiting the constraint
solver to graphs without cycles gives enough efficiency and flexibility to create
highly responsive complex interactive systems. In VB2, introducing at runtime
a constraint that would create a cyclic graph causes an exception that can be
handled to remove the offending constraints?. The state manager behavior and
the constraint solving techniques are detailed in [13][14].

Daemons. Daemons are the imperative portion of VB2. Daemons register
themselves with a set of active variables and are activated each time their value
changes. They are executed in order of their activation time, which corresponds
to breadth-first traversal of the dependency graph. The action taken by a dae-
mon can be a procedure of any complexity that may create new objects, per-
form input/output operations, change active variables’ values, manipulate the
constraint graph, or activate and deactivate other daemons. The execution of
a daemon’s action is sequential and each manipulation of the constraint graph
(assignment, assertion and retraction of a constraint) advances the state man-
ager time for recording the variable’s history. State manager time and animation

2 VB2's current constraint solver [13][19] is unable to find acyclic solutions of potentially
cyclic constraint graphs. An algorithm that removes this limitation is presented in [22].



time are kept separate: state manager time always goes forward and is used to
keep track of the successive states of the system; animation time can instead be
controlled by the user, to move backwards and forwards in a sequence, and is
bound to real-time during animation recording and playback.

Variable paths. In VB2, daemons and constraints locate their variables
through indirect paths. An indirect path is an object able to compute the lo-
cation of a variable as well as the list of the intermediary variables that were
used to compute this variable. Active variables are viewed in this context as self-
referencing indirect paths using no intermediary variables. When a path is not
capable of locating the variable, it is said to be broken. A simple example of indi-
rect path is the symbolic path, which corresponds to Garnet’s pointer variable [23]
(an example is parent_global_transf := Current/”parent”/”global_transf”, where
?/” indicates indirection, and quoted names correspond to the names of active
variables in constraint modules). As stated by Vander Zanden et al. [23], the
use of indirect paths allows constraints to model a wide array of dynamic appli-
cation behaviors, and promotes a simpler, more effective style of programming
than conventional constraints. Indirect paths are implemented in VB2 by deac-
tivating and reactivating constraints and daemons as soon as an intermediary
variable used for computing one of their paths is modified [13], as in the user
interface toolkit Multi-Garnet [20]. Only daemons and constraints that do not
have any broken path are successfully activated. The others remain on wait until
active variable modifications allow their paths to locate all the variables.

VB2 and Virtual Studio are implemented in the object-oriented language
Eiffel [17]. All the primitive elements of VB2 are modeled using abstract classes
from which all the other components of the systems are derived. The class
C_MODULE represents a VB2 core object, composed of variables, constraints,
and daemons. Variables are represented as instances of C_'VARIABLE, daemons
as instances of DAEMON, and constraints of CONSTRAINT. Selective export
rules are used to solve one of the problems of the integration at the library
level of constraints with an object oriented framework [4][11]. In particular, only
constraint methods (instances of descendants of class C_ METHOD) have the
right to assign new values to active variables, and assertions control that these
assignments are done exclusively during constraint propagation.

2.2 Modeling Subsystem

The central component of Virtual Studio’s modeling subsystem is the NODE_3D
class, whose instances, related in a hierarchical fashion, represent the transforma-
tion hierarchy. Position, orientation, shearing and scaling of the reference frame
are packaged in TRANSFORM_3D objects. Degrees of freedom can be attached
to a node in order to define additional constrained motion, as in articulated
structures. Instances of MATERIAL and TEXTURE are used to define the be-
havior of physical objects with respect to light. Placing instances of MATERIAL
and TEXTURE in a node allows instance inheritance through the hierarchy. In-
stances of LIGHT represents light sources whose color and intensity are defined
by instances of MATERIAL and TEXTURE. An instance of CAMERA repre-
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Fig. 1: Design notation and simplified modeling hierarchy.

sents a camera viewing the scene. It maintains information about its viewing
frustum and a possibly stereoscopic projection. Instances of SHAPE encapsu-
late the concept of physical objects having a geometry, material and texture in
the Cartesian space. More details on the class hierarchy of the modeling and
rendering clusters are presented in [13]. A simplified object-relation diagram of
the modeling subsystem as well as the design notation can be found in Figure 1.

2.3 Animation Subsystem

The animation is viewed as a time interval hierarchy where each level is repre-
sented by an instance of subclasses of the TIME_INTERVAL class. Its root is an
instance of the ANIM_MANAGER class representing the overall animation. This
object is responsible for maintaining the animation time (represented as active
variables), which can be controlled by the user to access different parts of a se-
quence, and is bound to real-time during animation playback. Animation time,
as opposed to the state manager time, is continuous, and frames in the animation
are sampled when needed. An instance of ANIM_MANAGER is composed by a
set of CONTROLLER instances. Controllers are objects allowing the animation
of the parameters of a Virtual Studio’s graphical object. They are composed of a
set of instances of TRACK, one for each animated parameters. The generic class
VALUE_INTERVAL defines the concept of interval of values. Through multi-
ple inheritance, the behaviors of TIME_INTERVAL and VALUE_INTERVAL
are composed to define the HISTORY class, where each value of the value in-
terval is put in correspondence with a time in the time interval. The subclass
TRACK represents a track of values as a function of animation time, and is
defined as a list of instances of subclasses of the BLOCK class. The subclass
CONTINUOUS_BLOCK defines a history of continuous values, represented us-
ing a parametric B-spline curve [10] (instances of P_SPLINE). The subclass
DISCRETE_BLOCK defines a history of discrete values represented as the suc-
cessive value changes in time. Discrete history values can be of any type, from
atomic types to aggregate objects. Finally, the subclass CONSTANT _BLOCK
defines a history with a constant value over the time interval. The controller uses
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Fig. 2: Class hierarchy and object-relation diagram of the animation subsystem.

SKETCHER and PHRASER objects to handle continuous tracks. SKETCHER
objects apply an incremental data reduction algorithm [1][3] to convert a series
of sampled values of a variable to a B-spline representation that is then stored in
instances of CONTINUOUS_BLOCK. PHRASER objects are used to blend an-
imations defined in adjacent blocks using Hermite spline segments that join the
blocks with C! continuity [1][10]. The class hierarchy and the relation between
instances of the animation subsystem are presented in Figure 2.

2.4 Controller-Model Protocol

Animation recording and playback is obtained by binding controllers to models.
When binding a model to a controller, the controller must first determine if it can
animate the given model, identifying on the model the set of public active vari-
ables requested to activate its binding constraints. Once the binding constraints
are activated, the model is ready to be animated. The binding constraints being
generally bi-directional, the controller is always informed of model’s information
changes even if it is modified by other objects, and conversely, during animation
playback, the state of the model is modified to reflect the tracks’ state changes.
Unbinding a model from a controller detaches it from the object it animates. The
effect is to deactivate the binding constraints in order to suppress dependencies
between controller’s and model’s active variables. Once the model is unbound,
it does not participate to the animation and its state remains unchanged dur-
ing playback. When the user manipulates the model, the constraint network is
oriented from the model to the tracks, while during animation playback it is
oriented in the opposite direction (from the tracks to the model). This behavior
is obtained by associating to interaction constraints a priority higher than that
of playback constraints.

Indirect constraints allow to define a controller’s binding mechanism entirely
in a declarative way. In Figure 3, the connector object defines the binding with
equality constraints between the camera’s and the controller’s state variables.
These variables are located with indirect paths that use the connector’s ports
as intermediary variables. Second-order control is used inside the connector to
ensure that all binding constraints are bound or unbound simultaneously [13].
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3 Animation

3.1 Maintaining the Temporal Coherence

All objects involved in the definition of the temporal subdivision of the animation
are instances of subclasses of the abstract class TIME_INTERVAL, which defines
the behaviors used to maintain a time interval. The start_time and end_time
active variables of TIME_INTERVAL instances store the lower and upper limits
of the interval, expressed in absolute animation time. The ¢ime and local_time
active variables stores the current time value expressed, respectively, in absolute
animation time and track local time.

Daemons depending on the stari_time and end_time variables of each time
interval object, are responsible for the propagation of timing modifications be-
tween the levels of the hierarchy, so as to permanently maintain the temporal
coherence between the hierarchy levels. That way, the animation timing can be
manipulated globally or locally. For example, changing the duration of a single
track will propagate up in the hierarchy so as to modify the total duration of the
animation. Conversely, changing the duration of the overall animation will prop-
agate down in the hierarchy and apply a scale factor to subdividing intervals.
Modifying an intermediate level will propagate down to scale its subdividing
intervals and up to update the total duration of the animation. Figure 4 shows
the constraint network formed by two levels of the time interval hierarchy.

Since the temporal coherence of the time interval hierarchy is being perma-
nently maintained, it is possible to declaratively specify synchronizations be-
tween tracks by introducing constraints between their timing variables. When
tracks are made visible, the start and end time variables can be manipulated
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through the associated binders. Figure 7 (see color plates) shows an animated
camera tool together with the camera position track. Synchronizations between
the evolution of different parameters may be obtained by interactively connect-
ing together time binders of the associated tracks. In the figure, the start binder
is represented by the 3D widget on the left, which has a value of 0. 6, while the
end binder is on the right and has a value of 4.0. Start and end times can be
interactively controlled by selecting one of these widgets with the 3D cursor and
dragging a line to a time binder of the object with which we want to synchronize
the animation. Internally, this operation enforces an equality constraint between
the active variables controlled by the binders.

3.2 Playing the Animation

One of the basic features of an interactive animation system is to provide real-
time interactive animation playback. This is obtained by evaluating all animation
tracks at the desired time, updating the scene’s state and rendering the frame.
The following frame time is computed by taking into account the time needed to
generate the previous frame in the animation. Animation can thus be played in
real-time and synchronized with external data sources. This is possible because
the animation time is continuous and frames appear only as a result of sam-
pling operations. Animation playback is obtained by having the values of the
animation time control the sampling time of each of the tracks in the system.
The beginning and end of the animation playback are indicated by modifying
the value of a Boolean variable in the animation manager. This triggers the
activation or deactivation of a constraint between the system’s time and the
animation manager’s time. Once the constraint is activated, time changes prop-
agate through the time interval hierarchy triggering the tracks’ evaluation and
the models’ update (see Figure 5).

Evaluating a continuous parameter track involves determining which block
is active at the current time and asking its value. If the current time falls into
the transition period between two successive blocks, then the value is computed



by a phraser object whose behavior is to blend the value of successive blocks in
order to ensure a smooth transition. Discrete tracks are defined by the successive
transitory values together with the times at which the value change events occur.
The value of the track is the value of the event coming before the time at which
the track is evaluated. To allow track evaluation at any time, evaluation requests
at times before the track’s start time or after the track’s end time return the
value at, respectively, start and end time.

3.3 Recording the Animation

In Virtual Studio, animation is specified with a performance-based approach by
recording the effects over time of the user’s manipulation on the models. A 3D
cursor, controlled by a Spaceball, is used to select and manipulate objects of the
synthetic world. Direct manipulation and virtual tools are the two techniques
used to input information. Both techniques involve using mediator objects that
transform cursor’s movements into modifications of manipulated objects. Virtual
tools are visible first class objects that lie in the same 3D space as application
objects and offer the interaction metaphor to control them. Their visual appear-
ance is determined by a modeling hierarchy, while their behavior is controlled
by an internal constraint network [14]. As in the real world, the user configures
its workspace by selecting tools, positioning and orienting them in space, and
binding them to application objects. At the moment of binding, the tool’s and
the application object’s constraint networks become connected, so as to ensure
information propagation. When bound, the tool changes its visual appearance to
a shape that provides information about its behavior and offers semantic feed-
back. Multiple tools can be active simultaneously in the same 3D environment
in order to control all its aspects. The environment’s consistency is continuously
ensured by the underlying constraint solver. The bi-directionality of the rela-
tionships between user-interface and application objects makes it possible to use
virtual tools to interact with a dynamic environment, opening the door to the
integration of animation and interaction techniques.

During manipulation, the internal constraint networks of the user-interface
mediator object are connected to the 3D cursor and to the manipulated model
with binding constraints. If the manipulated object is animatable, binding con-
straints are also in place to connect the manipulated model to its controller. The
user becomes thus the source of a flow of information that propagates through
the internal constraint networks of the user-interface mediator object, of the ma-
nipulated object and of the animation controller (see Figure 6). In order to be
able to record the evolution over time of the model’s information during manipu-
lation, each track owns a recording daemon whose task is to store the variations
of the monitored variable and to update the track at the end of the manipulation.
For continuous tracks, the data reduction algorithm is applied to the incoming
data and the approximation spline is inserted in the track. Discrete tracks are
built from the successive transitory value changes triggered by the user’s ma-
nipulations. Multiple recording daemons may be active simultaneously so as to
record the variations of all variables influenced by the manipulation. That way,
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it is possible to interact with the animated object at the task level [16], as the
3D motion described by the 3D cursor can be interpreted as a high-level goal
allowing the simultaneous and coordinated control of several parameters as, for
example, when guiding a walking articulated figure.

Since interaction constraints have a higher priority than the binding con-
straints of the controllers, recording can occur during animation playback. For a
given model, the tracks that are not influenced by the interaction participate in
the animation playback, while the variations of the variables being modified by
the interaction are recorded. The recording daemons are able to determine when
to record the modifications of the variable they monitor by analyzing the local
orientation of the constraint network that binds the controller to the model:
an incoming constraint network means that the variable is modified due to the
user’s manipulation, and not by animation playback. This behavior is obtained
in a declarative way by exploiting the ability of the constraint solver to deal
with hierarchies of dataflow constraints. It allows the system to promote the
use of a layered approach to animation specification, where the user starts by
recording some part of the animation, and later defines additional pieces that
are automatically synchronized with the rest of the animation by manipulating
the models during animation playback.

3.4 Example

The example scene (see Figure 9 in color plates) is composed of a character, a
light and a camera. An appropriate virtual tool and a controller object has been
connected to each scene element to provide support for manipulation and ani-
mation. A tool encapsulating a walking engine has been bound to the character
to provide the model with a walking behavior. During manipulation or anima-
tion, the tool is responsible to generate the walking cycle animation according
to the translation speed. Lookat constraints make the camera and the light al-
ways point towards the character head. During animation playback, the camera
and the light positions are determined by their recorded paths, while their ori-
entations are determined by the lookat constraints. By connecting together the
start and end time binders of the character’s and light’s tracks, we introduced
synchronization constraints so that both motions perform in parallel. The cam-
era motion has been made to start after the character’s motion by interactively
connecting the camera’s start time binder with the character’s end time binder.

The environment presented in Figure 8 (see color plates) is composed of



5632 constraints and 13659 active variables. The scene’s graphical representation
contains 3000 polygons illuminated by a spot light (the animated light source)
and a directional light (a light attached to the user’s viewpoint). The redraw
rate was 10 frames per second on a Silicon Graphics Crimson VGX. Despite the
complexity of the constraint network, rendering speed was largely the limiting
factor, since 80% of the application time was spent in rendering operations.

4 Conclusion

In this paper, we have presented how the animation subsystem of Viriual Studio
has been modeled on top of the OOCIP VB2 architecture. In VB2, there is
no intrinsic difference between user-interface and application objects. Multi-way
dataflow constraints provide the necessary tight coupling among components
that makes it possible to seamlessly compose animated and interactive behaviors.
Indirect paths allow an effective use of the constraint model in the context of
dynamic applications. The ability of the underlying constraint solver to deal with
hierarchies of multi-way, multi-output dataflow constraints, together with the
ability of the state manager to handle indirect constraints, are exploited to define
most of the behaviors of the modeling and animation components in a declarative
way. The ease of integration between all system’s components opens the door to
novel interactive solution to modeling and animation problems. By recording the
effects of the user’s manipulations on the models, all the expressive power of the
3D user interface is exploited when defining animations. This performance-based
approach complements standard key-framing systems by providing the ability
to create animations with straight-ahead actions. At the end of the recording
session, animation tracks are automatically updated to integrate the new piece of
animation. Animation components can be easily synchronized using constrained
manipulation during playback.

Our system demonstrates that, although they are limited to expressing acyclic
conflict-free graphs, multi-way dataflow constraints are general enough to model
a large variety of behaviors, while remaining efficient enough to ensure the re-
sponsiveness of large interactive 3D graphics applications. In the graphics com-
munity, these techniques have until recently been largely confined to 2D appli-
cations [7][18]. To our knowledge, VB2 and TBAG [8] are the first 3D graphics
systems that uniformly use multi-way constraint networks to model large ani-
mated environments.
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Fig. 7: Camera tool and camera position track.

Fig. 8: The scene is composed of a character, a light and a camera.



