
Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

A framework for GPU-accelerated exploration of massive
time-varying rectilinear scalar volumes

Fabio Marton1, Marco Agus1,2, and Enrico Gobbetti1

1CRS4, Italy
2KAUST, Saudi Arabia

Figure 1: Fat and thin client. Our flexible framework supports fully interactive spatiotemporal exploration of simulations with thousands of multi-billion-voxel
frames. Left: fat client performing local rendering on a 1920x1080 touch screen driven by a single graphics PC with NVIDIA GTX 1080Ti. Right: thin client on
Samsung Galaxy Note Pro SM-P905 Android tablet connected to a remote rendering server.

Abstract
We introduce a novel flexible approach to spatiotemporal exploration of rectilinear scalar volumes. Our out-of-core representation,
based on per-frame levels of hierarchically tiled non-redundant 3D grids, efficiently supports spatiotemporal random access
and streaming to the GPU in compressed formats. A novel low-bitrate codec able to store into fixed-size pages a variable-rate
approximation based on sparse coding with learned dictionaries is exploited to meet stringent bandwidth constraint during
time-critical operations, while a near-lossless representation is employed to support high-quality static frame rendering. A
flexible high-speed GPU decoder and raycasting framework mixes and matches GPU kernels performing parallel object-space
and image-space operations for seamless support, on fat and thin clients, of different exploration use cases, including animation
and temporal browsing, dynamic exploration of single frames, and high-quality snapshots generated from near-lossless data. The
quality and performance of our approach are demonstrated on large data sets with thousands of multi-billion-voxel frames.
CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Computer graphics; Graphics
systems and interfaces;

1 Introduction

Medical, scientific and engineering applications routinely gener-
ate time-varying rectilinear scalar volumes with thousands of time
steps and billions of voxels per frame [LPW∗08, Iri06, Tur]. While
a number of efforts have been proposed to generate reduced ab-
stract representations of entire animations [WYM08, JEG12, FE17],
interactive visual exploration of whole datasets is also crucial
to understand many phenomena in scientific and technological
fields [WF08, SBN11]. The need for interactivity in space, time,
and rendering parameters imposes current visualization applications,

typically running on desktop PCs or other personal devices, to meet
stringent memory and timing constraints. Meeting such constraints
within a real-time application is extremely difficult given the sheer
size of the explored data and the complexity of volumetric render-
ing. This has led researchers to introduce a variety of specialized
adaptive approximated visualization techniques and frameworks that
trade quality with memory and speed (see Sec. 2). Such methods
must support, in practice, a wide variety of data exploration sce-
narios with very different temporal and spatial fidelity constraints.
These include exploring animations while changing camera and

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

rendering settings in order to perceive dynamic effects, quick non-
linear temporal browsing to identify interesting time-steps, as well
as analyzing a selected time-step to perceive the finest shape de-
tails. Moreover, while simulations are computed on large parallel
machines and stored on servers, their results are visually explored
on graphics PCs, workstations, or mobile setups [NJ16]. We there-
fore need to move massive amounts of data efficiently from remote
storage to local storage and graphics hardware, and also to handle
rendering scalability issues.

In recent years, many GPU-based real-time direct volume ren-
dering (DVR) architectures have been developed. They employ
multiresolution data representations, compression, out-of-core meth-
ods and data streaming to enable interactive visualization of massive
volumetric datasets. While these architectures have been extremely
successful in the exploration of static datasets [TBR∗12,BRGIG∗14,
BHP15], current techniques do not fully support real-time explo-
ration of dynamic data with full spatial and temporal control (see
Sec. 2). In particular, in order to cope with bandwidth limitations and
limited decoding speed, many of the present real-time techniques
are forced to amortize the updates of a rendering working-set over
multiple frames. This approach, however, reduces the required band-
width, but introduces the unwanted result of mixing real dynamic
effects with spurious effects created by incremental updates.

In this paper, we introduce a novel flexible approach that exploits
multiple compressed representations within a GPU-accelerated
compression-domain configurable renderer to support a variety of
exploration means for large static and dynamic rectilinear scalar
field volumes (Sec. 3). In our approach, an input time-varying rec-
tilinear scalar field is converted off-line into a GPU-friendly out-
of-core data structure consisting of a time sequence of per-frame
multiresolution pyramids with a dual near-lossless and lossy repre-
sentation. The near-lossless representation is employed to support
high-quality static frame rendering, while the lossy representation
is specially tuned for high-speed on the-fly decoding. Extending
previous fixed-rate sparse approximation approaches [GIM12], a
novel bit allocation algorithm approximates a multiple-choice knap-
sack problem to fit in fixed-size pages sparse variable-length linear
combinations of prototype blocks stored in a learned overcomplete
dictionary. Each resolution level is organized in a hierarchically
tiled 3D grid organizing the data into pages of non-overlapping
bricks of voxel blocks, supporting spatiotemporal random access
and streaming to the GPU in compressed formats (Sec. 4). A flexible
rendering framework mixes and matches GPU kernels for seamless
support of different exploration use cases, exploiting our data layout
to efficiently perform parallel object-space and image-space opera-
tions (Sec. 5). Animation and temporal browsing without temporal
artifacts is achieved by a cache-less adaptive GPU raycasting algo-
rithm, which streams to GPU a conservatively identified working
set of the lossy representation, using transient and fast decoding
for compression-domain rendering. Dynamic exploration of single
frames is achieved by incorporating a ray-guided streaming pro-
cess supporting visibility feedback and incremental refinement from
the lossy representation, as well as high-quality snapshots gener-
ated from the near-lossless ones when the camera stops moving.
The framework supports the creation of fat clients running the full
rendering algorithm, as well as thin clients receiving image data
streamed from a rendering server (Sec. 6). As a result, our approach

can support different exploration use cases on fat and thin clients.
These include animation and temporal browsing without temporal
artifacts of datasets with thousands of multi-billion-voxel frames,
dynamic exploration of single frames, and high-quality snapshots
from near-lossless data (Sec. 7).

2 Related Work

Visualizing massive datasets requires scalable solutions in terms
of data representation, data/work partitioning and work/data reduc-
tion. We briefly discuss here the methods that are most closely re-
lated to ours. For a wider coverage, we refer the reader to established
surveys on modeling and visualization approaches for time-varying
volumetric data [WF08], compression-domain DVR [BRGIG∗14],
GPU-based large-scale DVR [BHP15], and mobile DVR [NJ16].

Output-sensitive approaches require adaptive loading of com-
pressed data stored in out-of-core structures, which range,
for static datasets, from a single-resolution set of compressed
bricks [TBR∗12] to multiresolution structures such as oc-
trees [CNLE09, Eng11, GIM12, RTW13] or hierarchical grids of
bricks [HBJP12, FSK13]. In this context, a scalable preprocess-
ing method, compressed streaming, and fast on-demand spatially
independent decompression on the GPU, are required for maxi-
mum benefits [FM07]. The simplest hardware-supported fixed-rate
schemes [YNV08, IGM10, NLP∗12] support general random access
but present a limited flexibility in terms of achievable compression
and supported data formats. Different methods based on vector quan-
tization along with adaptive texture maps [KE02, GG16, YZW∗17],
Laplacian pyramid compression techniques [SW03], or wavelet-
based transform coders [FM07, PK09] have also been proposed, but
quality and compression ratios are limited by the dictionary size
of the vector quantization stage, which forces the result to contain
a limited amount of different blocks [Ela08], making these tech-
niques more applicable to low dynamic range data (e.g., 8-16 bit
integers). An alternative to vector quantization is tensor approxima-
tion [SIM∗11, BRLP18], which is based on a rank reduction of a
data-specific preferential basis. Decompression, however, cannot be
performed at interactive rates for full time steps. Another alternative
is the recent ZFP floating point compressor [Lin14], which performs
better for high-quality compression, and is thus used in our context
for high-quality rendering of static frames.

3D volumetric compression is often extended to 4D in order
to exploit correlation between time steps [SJ94, GS01, LMC02,
ILRS03, WWS03, WWS∗05]. The main limitation of these full-4D
approaches is the added complexity in moving through time in a non-
conventional way (random access, backwards, fast-forward, ...), and
the need of having in memory a small set of frames to render a single
time-step. Other techniques exploit temporal coherence by encod-
ing each voxel with respect to reference key-frames [Wes95, MS00,
WGLS05,She06,KLW∗08,MRH10,WYM08,SBN11,JEG12]. Ran-
dom access to different time steps is simpler, but these methods suf-
fer from similar limitations than the previous ones: since key-frames
are needed to decode single time-steps, memory and bandwidth
limitations impose restrictions on the size of the data they can deal
with. A combination of the previous techniques can be found in
many systems (e.g., [FM07, NIH08, WYM10, CWW11]).

Encoding each time step individually by using 3D compression

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

methods (e.g., [GIM12, TBR∗12, PLK∗18]) guarantees full random
access and is less limiting than in video compression, since dynamic
3D volumes already provide one more dimension with respect to
2D images to exploit for data reduction. In order to achieve good
compression, however, very advanced encoders are required at the
very low bitrates required by dynamic presentation of volumes.
Treib et al. [TBR∗12] use a per-time-step wavelet-based bricked
representations combined with run-length and entropy encoding.
Pulido et al. [PLK∗18] employ a similar approach, only streaming
the coefficients required for a specific scale to support scale-specific
visualization. While excellent signal-to-noise ratios can be obtained,
and effective exploration of single time steps is supported, no real-
time performance is achieved when advancing in time, since the
inverse transformation is relatively costly.

COVRA [GIM12] also employs a sparse representation based
on a learned dictionary. While COVRA focuses on exploration of
static datasets, our framework significantly differs at the system
level. Our paged fixed-size layout improves over COVRA’s octree
representation by supporting brick access and brick spatial loca-
tion identification through index computation rather than structure
traversal (Sec. 4), making it possible to efficiently write render-
ing kernels implementing parallel object-space and image-space
operations (see Sec. 5), and to mix-and-match them to support a
variety of exploration use cases. Similarly to COVRA, we learn the
dictionary by applying the K-SVD algorithm [AEB06] to a small
weighted randomized subset of volume blocks. The advantage of
such sparse-coding approach is that reconstruction is achieved by a
simple linear combination of blocks, which can be computed very
fast on current GPUs. In terms of compressed representation, we
improve over COVRA’s fixed-rate scheme through a novel con-
strained variable-rate encoder and a better bit allocation scheme,
increasing rate-distortion performance, while still producing fixed-
size pages for optimized I/O and memory management. Moreover,
our scheme produces non-overlapping bricks, with significant com-
pression gain with respect to the bricks with apron of COVRA and
related approaches, which maintain as an extra voxel border around
each brick, and duplicate the values across brick boundaries. Finally,
COVRA relies on non-conservative incremental updates and visu-
alizes small dynamic datasets by fully decoding and pre-caching
them, while our framework is designed to support complete dynamic
updates from unlimited-length time sequences stored out-of-core.

3 Overview

Our flexible architecture strives to permit the implementation
of interactive exploration systems that support fully dynamic spa-
tiotemporal changes, as well as accurate still-frame inspection. It is
made of general processing and rendering components which can be
mixed and matched to implement the required inspection features.
The overall structure of a typical configuration is depicted in Fig. 2.

The input data for our process is a series of T rectilinear scalar
volumes of dimension Nx×Ny×Nz. Our out-of-core representation,
based on per-frame levels of hierarchically tiled 3D grids, supports
spatiotemporal random access and streaming to the GPU in com-
pressed formats. Each frame, encoded independently of all others,
has a dual representation based on two parallel multiresolution struc-
tures of compressed data: a highly compressed lossy structure and a

Figure 2: Architecture overview. A near-lossless and a low-bitrate represen-
tation are built from the input rectilinear scalar volumes. The near-lossless
representation is exploited for computing, server side, high quality still
frames, while the low-bitrate one is used for high-framerate image genera-
tion. Thin clients receive images from a server-side renderer, while fat clients
perform local rendering on a locally downloaded copy of low-bitrate data.

near lossless one (Sec. 4). At run-time the highly compressed struc-
ture is used for rendering during interaction or animation, so that the
limited available bandwidth can be used for temporally variable data.
The near-lossless representation is used, instead, for high quality
rendering of still frames. Both renderers are performed by a flexible
rendering framework which mixes and matches GPU kernels for
seamless support of different exploration use cases (Sec. 5). More-
over, the high-bandwidth representation is typically maintained on
a remote server, while the low-bandwidth representation can be
optionally transmitted to a fat client for local high-speed rendering.
At the same time, the low-bandwidth representation can be used on
the server to provide interactive image streams for thin-clients, as
those, e.g., implemented on mobile devices (Sec. 6).

4 Data layout and compressed data representation

In order to support spatial levels of details, each frame is repre-
sented by a pyramid of 3D grids, each of which is a progressively
lower resolution representation of the same rectilinear volume. Each
lower level represents the volume using (approximately, see below)
half as many voxels in each dimension.

Fig. 3 illustrates the layout of a single resolution level, which
is itself based on a Hierarchically Tiled Array (HTA) [BGH∗06]
recursive indexing of the 3D voxel grid, with pages composed of
P3 compressed bricks composed of B3 voxels. Pages represent the
main unit for uploading data to the GPU, while bricks are used
as unit for all GPU operations. In order to simplify indexing, the
extent of each resolution level is adjusted to be a multiple of P ·B
for each axis. As all pages contain the same number of bricks, and
bricks contain the same number of voxels, pages, bricks, and voxels
can be addressed using a layout function performing simple index
computations. Moreover, it is also possible to invert the indexing,
going back from voxel index to brick and page index. This two-level
tiling improves locality of reference. All these features are exploited
in our rendering kernels (see Sec. 5). Using this layout, forward
and backward index computation just requires to know the number
of pages per level and the corresponding starting brick offset for
each level. This information is precomputed at construction time.
Forward and backward conversions can be directly implemented
with simple sums, multiplications, div, and mod operations.

For each time-step, we record the range vmin..vmax of the values
contained. Three parallel HTA structures with the same layout are
used to represent a frame. The first is a histogram array, which
contains for each brick the quantized binary histogram of the values

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

contained in the brick itself and all its higher resolution versions.
The second is the low-bitrate representation (see Sec. 4.2), while the
third is the near-lossless representation (see Sec. 4.1)

Figure 3: General data layout. Three parallel fixed-size HTA structures
with the same layout are used to represent a frame. In order to support
high-quality encoding the near-lossless representation uses the fixed-size
structure as an index to variable-rate representation.

Processing begins by computing the number of levels required to
cover the volume. The compression process, then, proceeds possibly
in parallel for each time-step. First, all the levels of the multireso-
lution pyramid in near-lossless format (see Sec. 4.1) are computed
bottom-up and stored on disk in the HTA layout. Then, we proceed
to compute the low-bitrate representation, which is done in two steps
(see Sec. 4.2), first learning the parameters of the representation,
and then iterating over all pages to perform the encoding using the
learned parameters. To further speed up the process, the individual
pages are encoded in parallel. Parallelization among frames is done
using different processes that can be eventually executed on different
machines. Parallelization within a single frame is, instead, within the
same process, as it is easier to share the output representation and
synchronize writing to frame files. At the end of construction, we
store on disk a small header containing the information for forward
and backward index computation (i.e., the number of levels, the
number of pages per level, and the starting brick offset per level).

4.1 Near-lossless compression for high-quality frames

The near-lossless representation must provide a high-quality rep-
resentation of its contents that is transiently decoded during static
frame rendering. Since no strict frame-rate constraints, and therefore
bandwidth constraints, must be met for static frame rendering, we
adopt a general representation in which each brick is encoded at
variable bit rate for meeting quality constraints. In order to ensure
random brick indexing, the constant-size HTA of the near-lossless
representation just contains a 32-bit pointer to the encoded brick
data. The brick data is stored in a separate out-of-core array in the
same order of the HTA. Several high-quality encoders can be used
for near-lossless representation of bricks. For this paper, we employ
the ZFP [Lin14] codec (version 0.5.4 [Lin]). We use the fixed ac-
curacy mode (which usually yields the best compression rates) and
vary absolute error tolerance (-a).

4.2 Low-bitrate compression for dynamic data presentation

The low-bitrate representation is used for bandwidth-critical op-
erations, which occur when transferring the dataset from a remote
server to a local fat client, or when transferring data from storage
to graphics memory at each frame during dynamic operations. It is
thus essential to ensure maximum compression, considering, e.g.,
that a single 1 Gvox frame (or working set) would require 64 MB
at 0.5 bits per sample (bps), translating to 64GB for streaming a

1K-frames animation. Moreover, supporting a 10 frames/s animation
requires a codec able to decompress and render at least 10 Gvox/s.
At such a low bitrate, the techniques able to provide the best ap-
proximations, while supporting fast GPU decompression, are based
on learned representations [BRGIG∗14, BRLP18]. In this work, we
solve an optimization problem by fitting into constant-size pages a
variable-rate sparse approximation of volume blocks that minimizes
the overall error. Constant-size pages allow for implicit indexing,
easy I/O and memory management, as well as constant-memory and
near-constant-time transfer and decoding time of local volumetric
regions. At the same time, our variable-rate approximation leads to
low error while supporting fast parallel decoding.

Our representation approximates each block bi of the volume
hierarchy by a sparse linear combination of prototype blocks stored
in an overcomplete dictionary DDD ∈ Rm×n learned from the input
volume sequence. For this, we map each block bi of size m = M3 to
a column vector yyyi ∈R

m. The dictionary DDD is structured to have each
prototype block mapped to a column vector dddk ∈ Rm of unit length.
The first column ddd1 is assumed to be the constant ddd1 =

111√
m and does

not participate to training, while the others are maintained at zero
mean. Given DDD, our compressed representation for a block yyyi, thus
consists in a set of indices ki and associated non-zero coefficients
γγγi, such that yyyi ≈ ∑

Ki
k=1 γikdddkik

, where Ki is the number of non-zero
coefficients in the representation of block i. In order to fit variable-
length representations of the blocks into a fixed page size, we first
perform dictionary learning, and then, given the learned dictionary
we perform encoding so as to meet our size constraints.

4.2.1 Dictionary learning

First, given the target page size, we compute the average target
non-zero count K. The optimal dictionary DDD is then computed by
jointly optimizing the columns 2..n of the dictionary and the sparse
representation according to the objective function

min
DDD,γγγi

∑
i

wi ‖yyyi−DDDγγγi‖
2
2 subject to ∀i,‖γγγi‖0 ≤ K (1)

where ‖γγγi‖0 counts the non-zero entries of γγγi and wi is a weight asso-
ciated to each training sample. For training, we employ a weighted
variation of K-SVD [AEB06], which performs dictionary learning
only on a small weighted randomized subset of the original samples
(i.e., a coreset) instead of on all the input samples, making learning
possible for massive data [GIM12]. Since constant blocks can be
trivially encoded due to ddd1, we estimate for each input block the
potential residual error ei = ‖yyyi− (yyyi ·ddd1)ddd1‖2

2. In order to build a
coreset of size C, we pick training samples with a probability propor-
tional to ei using a one-pass streaming method based on weighted
reservoir sampling [Efr15], assigning a weight proportional to the
reciprocal of the picking probability to account for the non-uniform
input sampling. In contrast to COVRA [GIM12], we extract the
coreset at negligible cost during the bottom-up construction of the
downsampled pyramid and the near-lossless representation.

4.2.2 Elastic sparse coding

Given the optimal dictionary DDD for a given frame, we proceed to
compute the optimal approximation that fits within our fixed-size
pages. To do so, we encode pages in the order dictated by our HTA
layout during a single streaming pass of the input volume. Our goal

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

Algorithm 1: Elastic OMP. Algorithm for optimal allocation of
sparse codes into fixed size pages

Data: Dictionary DDD, input blocks yyyi , page size P, brick size B, block size M, average
non-zero count K

Result: For all i, encoding Ii , γγγi such that yyyi ≈ ∑k γikddd(Ii)k and

∑i count(Ii) = (PB/M)3K
//Initialize

1 KP = (PB/M)3K //Number of non-zeros in page

2 GGG = DDDᵀDDD //Precomputed Gram matrix
//Compute solution for sparsity 0

3 foreach block i in 1..(PB)3 do
4 pppi = DDDᵀyyyi ; LLLi = [1]

//Compute null solution
5 Ii = {} ; γγγi = {} ; αααi = pppi

//Compute next best grow direction

6 k+i = {arg maxk ‖αik‖}
7 γγγ

+
i = {pik+i

} ; ααα
+
i = pppi−GGGk+i

γγγ
+
i ; δ

+
i = γγγ

+
i
ᵀ
(pppi−ααα

+
i )

8 if δ
+
i > 0 then push pair(δ+i , (k+i , γγγ+i ,ααα+

i )) into priority queue Q
9 end

//Greedy grow until page filled
10 while ∑i count(Ii) < Kp and Q is not empty do

//Select block with largest decrease in error

11 pop pair(δ+i , (k+i , γγγ+i ,ααα+
i )) from priority queue Q

//Move to next best solution for the block

12 Ii = {Ii ∪ k+i } ; γγγi = γγγ
+
i ; αααi = ααα

+
i

//Compute next best grow direction

13 k+i = {arg maxk ‖αik‖}
14 www = solve for www { LLLiwww = GGGIi } //Update Choleski decomposition

15 LLLi =

[
LLLi 0

wwwᵀ √
1−wwwᵀwww

]
16 γγγ

+
i = solve for ccc { LLLiLLL

ᵀ
i ccc = αααi } ; ααα

+
i = pppi−GGGk+i

γγγ
+
i ; δ

+
i = γγγ

+
i
ᵀ
(pppi−ααα

+
i )

17 if δ
+
i > 0 then push pair(δ+i , (k+i , γγγ+i ,ααα+

i )) into priority queue Q
18 end

is to find for all blocks i in a given page composed of P3 com-
pressed bricks composed of (B/M)3 blocks, the best encoding Ii,γγγi
such that yyyi ≈ ∑k γikdddIik

, while ∑i count(Ii) = (PB/M)3K. The gen-
eral problem of optimal allocation of representation size to blocks
is an instance of the multiple choice knapsack problem (MCKP),
which is known to be NP-hard. Many efficient heuristic solutions
exist [SZ79], but their application would require the precomputation
of all possible errors associated to each possible non-zero count
of block i. Here, we profit from the fact that efficient incremental
solutions exist for sparse-coding to propose a greedy approximation
to the allocation problem.

Our approach is based on a generalization of the greedy batch-
OMP algorithm [RZE08], which was introduced for coding of a
large number of signals over the same dictionary. The greedy batch-
OMP algorithm selects at each step the dictionary column with the
highest correlation to the current residual, orthogonally projects
the input signal to the span of the selected dictionary columns,
and recomputes the residual before repeating the process if conver-
gence is not reached. High performance is ensured by replacing the
pseudo-inverse in the orthogonalization step of standard Orthogonal
Matching Pursuit with a progressive Choleski update. We exploit
this progressive updating approach to compute in a greedy fashion
the optimal sparse representation fitting in a page (see Algorithm 1).
First, we pre-compute the Gram matrix GGG = DDDᵀDDD that is employed
in the correlation search and orthogonalization steps. Then, for each
of the blocks of the page, we compute the initial solution, using
zero coefficients, and the associated residual. We also compute the
next best solution by executing a step of the Batch-OMP method,
and insert it into a priority queue sorted by maximum decrease in
residual error. We then proceed by iteratively removing the top can-

didate from the queue, increasing its nonzero count by applying
the precomputed solution, executing one step of the Batch-OMP
method to compute the next solution to push into the queue. The
method stops when the overall size constraint is met.

Figure 4: Lossy data page layout. A constant-size page is composed by
B brick headers and B brick data blocks. The headers (second row) are
constant size and point to the associated variable-sized data block.

When the greedy algorithm terminates, we store the solution in a
compact constant-size page format, depicted in Fig. 4. Each block
is approximated using an average value plus a variable number of
(index, value) pairs for the sparse representation. The first bytes of
the page representation are dedicated to B constant-size brick head-
ers, which point to the variable-size brick content. The brick layout
uses 32-bit aligned words and is designed for maximum decoding
performance, rather than maximum compression. In particular, we
do not apply any bit transformation and entropy coding. The brick
header contains 4 32-bit floats for dequantization (range of average
and range of coefficients), a 32-bit offset to the block representa-
tions, and b 32-bit block descriptors. Each descriptor contains the
8-bit nonzero count for the block, a 12-bit quantized version of the
block average, and a two 6-bit quantized versions of the range of the
coefficients of the block. The range is expressed with respect to the
coefficient range of the entire brick. The rest of the page is dedicated
to the sparse-coded representation, which concatenates for each
brick the (k,γ) pairs using 16 bits/pair, with bitcount(k) = log2(n)
and bitcount(γ) = 16−bitcount(k). Using such alignments permits
the decoding kernel (see Sec. 5.2) to read the data representation
with 32-bit aligned fetches, without introducing bank conflicts.

The approach proves very appropriate for low-bitrate encoding in
our context, as it provides state-of-the-art quality at below 0.5 bps
for floating point data, while ensuring fast random-access decoding
(see Sec. 5). In particular, the decoding performance on GPU is
sufficiently high (�10 GVox/s on a NVIDIA GeForce GTX 1080Ti)
to make it possible to use this encoding for temporal exploration of
massive dynamic datasets. See Sec. 7 for more details.

5 Adaptive rendering from compressed data

Our GPU-accelerated rendering architecture exploits the fact
that single frames can be fully stored in graphics memory in the
HTA format using the GPU-friendly low-bitrate representation. This
permits us to implement the high-bandwidth rendering process by
mirroring the out-of-core representation to graphics memory through
a paging process, and to implement transient decompression and
rendering as GPU operations working on resident structures.

5.1 GPU-accelerated configurable renderer

The process of rendering a single timestep is described in Al-
gorithm 2, and is made efficient by exploiting a number of data
structures visible to the CUDA kernels (see Fig. 5).

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

Figure 5: GPU data structures. We support rendering several timesteps in a
single frame. On board, we perform rendering by accessing bricks stored in
the HTA structure. The low-bandwidth representation is mapped to graphics
memory through a paging process. A decoded brick cache as well as other
transient structures support ray-guided streaming and rendering.

In order to support rendering of multiple timesteps at once (see
Sec. 6), we preallocate at startup space for the maximum number
of time steps that can be rendered together. At each frame, given
the selected time step t to be visualized, the histograms and the
dictionary are uploaded if not already present (line 1). The informa-
tion required for forward and backward index computation (Sec. 4)
is instead loaded once per dataset, as it is constant for all frames.

Algorithm 2: Rendering process.
Structure of the GPU-accelerated
rendering algorithm from out-of-
core data.

Data: timestep t, view parameters V , transfer
function τ, screen-space tolerance ε

Result: updated framebuffer, occlusion info
for ray-guided streaming, and GPU
caches

1 init(t)
2 identify_renderable_sets(V ,τ, ε)
3 cleanup_cache()
4 sort_renderable_set_by_slab(V )
5 foreach slab in front to back order do
6 cull_occluded_bricks()
7 identify_bricks_to_decode()
8 upload_missing_pages()
9 associate_bricks_to_cache_positions()

10 decode_bricks()
11 fill_brick_aprons()
12 raycast(V ,τ)
13 update_occlusion_mipmap()
14 end
15 pullup_visibility()

Then, in parallel for
each candidate brick,
given the viewing pa-
rameters V , the cur-
rent transfer function τ,
and, if animation is not
currently active, visibil-
ity feedback from pre-
vious frame, we deter-
mine the set of bricks
that form the current
potentially visible vari-
able resolution repre-
sentation of the dataset
(line 2). At the same
time, the selected brick
indexes are inserted in
a spatial index grid,
which is a regular grid with the same spatial extent of the vol-
ume and cells with the size of the bricks in the finest hierarchical
level. We then sort the indices of the potentially visible bricks into a
number of slabs orthogonal the axis most aligned with the viewing
direction (line 4). The number of slabs depends on the situation,
since they are used to enable rendering of frames too big to be fully
decoded at once on the GPU, as well as to reduce useless decod-
ing by exploiting occlusion culling. If we are exploring a single
frame and the full working set of the current frame can fit in cache,
the number of slabs is set to 1 to perform single-pass rendering,
otherwise it is set by default to a fixed small number (2 for static
data benefiting from multi-frame caching, 8 for dynamic data that
refresh the cache at each frame), but slabs that contain more than
the number of bricks than can be decoded at once and stored on the
GPU are further subdivided. The rendering process then proceeds
on a slab-by slab basis (lines 5-14), traversing them in front-to-back
order. First, we further reduce the working set by removing from the
potentially visible set the bricks that are occluded by data rendered
in a previous slab (line 6). This conservative culling process, active
also for dynamic datasets, is supported by a mipmapped occlusion

buffer, which maintains the achieved opacity for each pixels. Bricks
are considered occluded if their projection is covered by full-opacity
pixels. Bricks which survive are marked as needed for rendering the
current slab (line 7). Since out-of-core bricks do not overlap, we
expand the working set with the bricks containing the extra 2 voxels
required for trilinear interpolation and gradient computation.

A decoded bricks cache supports the rendering task: if we are
dealing with static data, decoded bricks are cached for reusing over
multiple frames, otherwise the cache is cleaned up at each new
frame. If we are rendering from the low-bitrate representation, we
first page in all the pages that contain needed bricks that are not in
the decoded brick cache (line 8). For the near-lossless representation,
this is not needed since we do not incrementally upload and maintain
the compressed representation in graphics memory. In both cases,
the decoded brick cache is then updated. Bricks in the cache are
computed to be self-sufficient during rendering, and, thus must have
a 2-voxel apron, i.e., a border around each brick that duplicates the
values across brick boundaries in order to permit to exploit texturing
operations for trilinear filtering and gradient computations. Cache
updating is thus performed in two passes, first decoding bricks from
a compressed representation into the inner voxels of bricks in the
decoded cache (line 9-10), and then filling-in the apron voxels by
copying data from the already decoded neighboring bricks (line 11).
Avoiding to store aprons of 323 bricks saves 42% of storage space
and data transfer bandwidth.

With all the required data in cache, rendering is then performed
by raycasting (Line 12), following per-pixel rays limited to the
current slab extent. While all previous operations where parallelized
on a brick-by-brick basis, this step uses a GPU thread per pixel.
Ray traversal exploits the dynamically computed spatial index for
brick identification and empty space skipping, and supports early
ray termination by stopping when maximum opacity is reached and
updating the occlusion mipmap (updated in line 13 and used in
line 6). In addition, in order to support ray-guided streaming, the
visibility feedback status of each traversed brick is set to true.

After rendering all slabs, the frame-buffer contains the final com-
posited image for the volume, and the visibility status of all rendered
bricks is up-to-date and can be used to guide the next frame’s refine-
ment step (line 2). Since the visibility status is computed only for
bricks which are leaf in the current representation, at frame end it is
pulled up to coarser grid levels by considering visible a brick with
at least one of its finer level bricks was traversed (15).

5.2 GPU-accelerated operations

The rendering scheme can be fully implemented using a series of
well-defined GPU-accelerated operations. The operations done at
initialization stage are the following.

• init() first verifies if the current timestep is in the active set, and,
if not, uploads to graphics memory its histogram and dictionary
for low-bitrate decoding. If the active set is full, and all active
timesteps are for the current frame, the most recently used one
is replaced. Otherwise, the oldest one is replaced. We then clear
the viewport to the background color, the occlusion mipmap to
null opacity, and the visited state of bricks to false.
• identify_renderable_sets() is executed as a single GPU kernel,

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

with one thread per brick. Since our mapping allows us to derive,
from the brick position, its level and 3D location, all bricks can
be handled in parallel. The bricks are thus marked part of the
potentially visible set if within the view-frustum, having some
voxels at non-null opacity according to the precomputed his-
togram, and projecting its voxel at the correct size according to
the current screen-space tolerance. When inter-frame occlusion
is enabled, we discard the brick if both the brick and its parent
were not visible on previous frame according to the visibility
buffer. If the brick is selected the kernel marks it as a leaf on
the flag buffer and writes the slab index and the brick id on
the selected bricks buffer, see Fig. 5. For efficient empty space
skipping, all cells of the spatial index covered by the brick are
initialized with the brick identification (level,x,y,z) (4 x uint8),
where level has the highest bit set to one if the brick is empty.
At kernel termination, thus, the spatial index correctly indexes
the multi-resolution representation used for the current frame,
so that, during traversal, it is possible to enter a brick, access its
data through the layout function, and proceed to the next brick
using the extent dictated by the level.

Figure 6: Cache buffers. Slot list contains all the slots in the 3D buffer. The
index of the corresponding brick is stored for each used slot (in cyan). The
indices of the new bricks to be decoded are in magenta. Corresponding slots
are copied from the slot list to the decoded positions buffer.

• cleanup_cache() is executed as a GPU kernel, with one thread
per used cache slots for usage identification, followed by a GPU
compaction step. The cache, see Fig. 6, is organized in two
parallel buffers, with the first containing all the cache brick
positions and the second containing the associated compound
id (brick, time step slot). Associating the time-step slot to the
id makes it possible to handle multiple timesteps at once. The
first available_slot_counter slots are free, and the last are the
used ones. This kernel sets to free all slots pointing to bricks
not part of the current working set. A GPU compaction step
then places the free slots before the used ones and updates
available_slot_counter.
• sort_renderable_set_by_slab() performs GPU sorting of the

buffer of selected bricks according to the slab id. After this
operation all the selected bricks belonging to a slab can be easily
accessed linearly through this buffer.

After these initial operations, we iterate the following sequence
of steps for each slab.

• cull_occluded_bricks() is executed as a GPU kernel, with one
thread per selected brick in the current slab. Exploiting the oc-
clusion mipmap, it checks if the brick is occluded by identifying
at which level of the mipmap the box projects to a single pixel
and then checking if all the 2×2 pixels covering the box projec-
tion are conservatively marked as fully occluded. The brick flag
buffer is updated accordingly.
• identify_bricks_to_decode() is executed as a GPU kernel, with

Figure 7: Apron Filler. The apron voxels of destination yellow brick D are
filled following these steps: (1) find cache slot of ID; (2) from cache slot
and voxel position, compute global (level,x,y, z); (3) convert (level,x,y, z)
to an offset in the HTA layout to identify source brick (green); (4) find
corresponding position in cache, fetch voxel and copy to destination position.
Only one apron layer (instead of two) is depicted here for simplicity.

one thread per selected brick in the current slab. It is responsible
for identifying which are the bricks which need to be decoded,
i.e., the currently unoccluded brick in the working set which are
not already in cache. In this phase, we also identify the auxiliary
bricks which are necessary to compute the apron voxels. Hence
for each active brick, we check all its 26 neighbors and mark as
auxiliary the ones not marked as active and not present in cache.
• upload_missing_pages() is responsible of mirroring to graph-

ics memory the pages of the low-bitrate representation which
contain active bricks. This operation can be automatically per-
formed using CUDA Unified Memory Access (UMA) [Nvi]
by mapping the out-of-core file to graphics memory. We have
however found that significantly higher performance can be ob-
tained by implementing paging in an explicit memory manager,
by updating a small buffer of flags (one byte/page) during brick
identification, downloading it to CPU, and moving to GPU with
cudaMemcpyAsync() the missing pages.
• associate_bricks_to_cache_positions() is executed as a GPU

kernel, with one thread per brick to be decoded. Each thread
associates to each brick the available position in the slot list
associated to its thread id. The cache positions are copied to the
decoded position buffer, while the brick indices are written in the
cache index buffer. Finally, available_slot_counter is updated.
• decode_bricks() computes the decompressed brick representa-

tion, and behaves differently if rendering static frames from the
near-lossless representation or high-frequency updates from the
low-bandwidth representation. In all cases, only the inner voxels
of the bricks are computed, since apron voxels will be separately
infilled later on. The decoding of each brick is thus totally local.
Near lossless data just uploads to the cache the decompressed
version of each brick, exploiting the ZFP codec [Lin]. Decom-
pression from the low-bitrate representation starts by computing,
with a GPU kernel, for each brick, the offset into the com-
pressed data representation of each variable-rate block and the
dequantized version of the block average and coefficient ranges.
Decompression is then started, using a thread per decoded voxel,
with a grid size equal to the block size. The decoding threads
cooperatively upload the compressed block representation to
shared memory. Each participating thread loads 32 bits, and
decodes to GPU shared memory two index-coefficient pairs
in order to avoid bank conflicts. After thread synchronization,
each thread separately computes the linear combination of its
associated elements required to compute its associated voxel.
• fill_brick_aprons() computes the 2-voxel apron of each newly

decoded brick that is not flagged as auxiliary. The operation is

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

performed by three GPU kernels: one for the top+bottom layers,
one for left+right, and one for back+front of each brick. We’ve
experimentally found that decoding 4 voxels per thread is a
good trade-off between computation and read/write operations.
Threads are associated to the boundary voxels of destination
bricks. For each of these voxels, the original source brick and the
associated voxel is identified by exploiting the decoded position
buffer, which maps global positions to decoded bricks, and the
known correspondence between local coordinates in the source
brick and destination brick (Fig. 7). This procedure is applied
once per slab for newly decoded bricks missing their apron.
• raycast() performs the rendering and accumulation of the por-

tion of the rays in the current slab by accessing the decoded
information through the spatial grid. The operation is performed
using one ray per thread, which traverses the regular grid us-
ing a DDA approach. Using the spatial grid results in a faster
approach with respect to KD-restart [FS05], or neighbor point-
ers [GMI08], because it permits us to skip any further hierarchy
descents, which are generally used to traverse other similar hi-
erarchical volume structures. Each time a grid cell is entered,
the type and location and size of the indexed brick are com-
puted from the stored (level,x,y,z) of the cell. Empty bricks are
accumulated at once, while non-empty bricks are accessed by
fetching their cache position from the decoded brick position
buffer before performing accumulation of all the voxels. Then
accumulation continues by moving to the exit cell, determined
by the ray direction and the brick size. The process repeats until
the ray terminates because of full opacity or the end of the slab
is reached. When a brick produces a not empty contribution, a
visibility flag is set to one in the visibility buffer. Writing can
be done simultaneously without the need of atomic functions,
because all writes of concurrent threads will be for the same
value and there are no race conditions. Moreover, when full
occlusion is reached, the occlusion value of the pixel is updated.
• update_occlusion_mipmap() builds the mipmap of occlusion

values from the fine-level occlusion map, in order to permit an
efficient intra-frame occlusion computation. A kernel with one
thread per pixel of the coarser map version is executed for each
mipmap level. Intra-frame occlusion culling is fully conservative,
and it is used to reduce the number of decoded bricks.
• pullup_visibility() updates the inner node visibility values from

the leaf-level visited-node values, in order to permit an efficient
inter-frame occlusion computation for ray-guided streaming.
This operation is performed bottom-up in CPU by marking as
invisible all nodes below the currently rendered representation,
and as visible each node for which at least one child is visible.
Inter-frame occlusion culling is used to reduce data uploading
and decoding through ray-guided streaming. Since this non-
conservative operation may lead to unwanted dynamic effects
due to incremental loading during animations, it is only activated
for rendering static frames.

6 Data distribution and rendering clients
Our flexible rendering process makes it possible to generate a

variety of systems exploiting both highly-compressed rate and high-
quality data. The default configuration, depicted in Fig. 2, supports
both thin clients receiving all rendered images from server-side ren-
derers, and fat clients performing local high-frequency rendering

on a locally-downloaded copy of low-bitrate data and using a sepa-
rate process (local or on a remote rendering server) for generating
high-quality snapshots from near-lossless data.

In our reference implementation, a user interface freely moves
the camera, changes the transfer function, and determines which
timesteps are shown. Available controls include using a jog shuttle
to jump to a selected timestep or to interactively move forward
and backward in time, as well as enabling playback with user-
defined speed and time direction. Moreover, all the clients support
rendering images associated to a single simulation timestep, as
well as rendering multiple timesteps in parallel viewports, maintain-
ing the same transfer function, viewing parameters, and animation
settings. This latter option is made possible by the fact that we
cache on GPU multiple frame descriptions (Sec. 5.1). This option
makes it straightforward to render parallel evolution in separate
viewports (see Fig. 8 and accompanying video), but other more
advanced options for presenting multiple frames are also readily
implementable [HMCM09, BCP∗12]. In contrast to the approach of
Pulido et al. [PLK∗18], which also used multiple frames displayed
at once to improve temporal understanding of simulations, we are
not limited to multiple static frames, but we can perform spatiotem-
poral exploration on the selected frames, obtained by keeping the
time difference between displayed frames constant while we move
in time and by sharing the same interactive camera.

Figure 8: Temporal multiview rendering. Three time steps of the HBDT
dataset synchronously inspected within the same frame.

Fat client and snapshot renderer. The fat client (Fig. 1 left) begins
its operations by progressively downloading the low-bitrate represen-
tation of the explored dataset. The default progressive downloading
behavior is to first download one every eight timesteps, and for each
timestep download the data at half resolution, leading to a 1/64 data
reduction. After this initial data arrives, interaction can begin, and
data is continued to be downloaded in background, first refining
along the temporal direction, and, then refining in space. Imple-
menting this progressive method is straightforward, since timesteps
are stored separately and each timestep is stored in coarse-to-fine
order. For a 1024× 10243 dataset, we thus need to receive only
about 1 GB of data before starting to interact, and 64GB to receive

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

the full dataset. On a typical 1 Gbit/s network this translates to an
initial latency of only a few seconds, after which the user can start to
perform the first inspection operations (e.g., browsing the evolution,
selecting transfer functions) while waiting for the full data. Dur-
ing interactive exploration, rendering operations are controlled by
tuning the renderer behavior according to the interaction state. We
use a simple state machine for implementing this behavior. When
continuously moving among timesteps (playback, jog&shuttle), the
renderer is configured to favor time continuity over spatial conti-
nuity. In this case, inter-frame occlusion is disabled. By contrast,
when animation is stopped, and the user is moving, inter-frame
occlusion is enabled. As soon as the user stops moving or chang-
ing other view parameters (including transfer function) for more
than one frame, an asynchronous request is sent to the snapshot
renderer (typically residing on a server), which immediately starts
producing a high-quality frame by using the rendering algorithm
with the near-lossless data. The rendering process is carried out on
a slab-by-slab basis and is interruptible. When the client moves, it
can thus immediately cancel the request if the high-quality image
has not yet arrived. For end-to-end bandwidth reduction, we use a
CUDA JPEG encoder to compress the framebuffer on GPU before
downloading it for network transmission [HSP∗13]. At maximum
quality, we can encode and transmit 4K images at <200ms latency
on a NVIDIA GTX 1080Ti, which is sufficient for static snapshots.

Thin client and remote interactive renderer. The thin client de-
sign is meant to work on platforms not capable of high-frequency
volume rendering (Fig. 1 right). The typical use case is mobile
rendering. In order to show the feasibility of the approach, we imple-
mented an Android client with the same user interface and behavior
as the fat client. The only major difference is that high-frequency
frames are delegated to a remote renderer, sent over the network
as images, and displayed locally. The remote renderer starts as a
streamlined copy of the fat client without a user interface, and begins
by waiting for client connection. Then, it continuously uses the view
and transfer function parameters communicated by the client to gen-
erates images, encode them and send them for display to the client.
The frame grabber and encoder used in this work is the same CUDA
codec used for high-quality images, configured for high compres-
sion rate (for this paper, quality 75%, no chroma subsampling). An
alternative, and more promising, solution would be to use the H.265
hardware decoder of NVIDIA boards. We are currently not using it
as, in our first implementation, we had an increased latency on An-
droid clients. We plan to investigate these issues in the future. With
our current codec, a full HD image is encoded to ~0.5MB/frame in
less than 8ms, which is largely compatible with interactive speeds
on a typical network setting. At this compression rate, 20 frames/s
translate to a 80 Mbit/s stream, which is fully within typical wireless
limits, and will be readily usable also in broadband settings, given
the current evolution towards 5G networks, with a predicted 490
Mbit/s median speed for consumer-level 3.5GHz bands.

7 Implementation and results

An implementation of our architecture has been realized with
C++, OpenGL, and NVIDIA CUDA 10.0, on Linux for process-
ing, server-side rendering, and fat clients, and on Android for the
proof-of-concept thin client. We have tested it with a variety of
high resolution static and dynamic models. In this paper, we discuss

the results obtained with three representative massive time-varying
datasets from the JHU Turbulence database [Tur]: the velocity mag-
nitude field of a forced isotropic turbulence simulation (ISO, 1024
timesteps 10243, float, 4TB), the density field of a homogeneous
buoyancy-driven turbulence simulation (HBDT, 1010 timesteps
10243, float, 4TB), and the x-component of the velocity field of a
channel flow simulation (CHAN, 4000 timesteps 2048×512×1536,
float, 24TB). In addition, to test rendering performance also on
massive static dataset, we present rendering results for a single
frame of the density field of a Rayleigh-Taylor instability simu-
lation [LBM∗06] (RT, 1 timestep 30723, ushort, 54 GB). Fig. 9
present several frames of inspection sequences of these datasets.

7.1 Compression performance
We evaluated our low-bitrate compression strategy by running a

battery of tests on the selected time-varying datasets, changing the
target non-zero count K to 6,9,12,15 to obtain compression rates
between ~0.25 bps and ~0.50 bps. In all tests, we used pages of
P3 = 43 bricks of B3 = 43 blocks of M3 = 83 voxels. We learned
dictionaries of 1024 prototype blocks in 50 K-SVD iterations on
16 Mvoxels coresets. While a number of possible settings are sup-
ported in our system, the above configuration is tuned for low-bitrate
encodings. In particular, using power-of-two settings aligns well
with our multiresolution grids that halve resolution at each coarser
level. In this context, the selected block dimension is the smallest
that can support the required compression rate, while 1024 pro-
totypes can be indexed with 10bits, leaving 6 bits for coefficient
encoding, and are sufficient to generate an overcomplete dictionary
for the selected block dimension. The number of iterations and
coreset size were selected based on prior experience with similar
encoders [GIM12].

In order to provide a context for the evaluation of the compres-
sion component of our work, we provide also a comparison with
alternative compression methods supporting real-time decoding (i.e.,
over 1 GVox/frame at 10 frames/s). In particular, we evaluate a
fixed-rate encoding (similar to COVRA [GIM12]), ASTC [NLP∗12]
(version 10/2017 [ARM]), and Hierarchical Vector Quantization
(HVQ) [SW03] (version used for the COVRA evaluation [GIM12]).
We also include, as a reference, a comparison with methods that do
not meet the decoding speed constraints, i.e., the CudaCompress
wavelet codec (CC) [TBR∗12] (version 2013 [Tre]), ZFP [Lin]
(version 0.5.4 [Lin]), and SZ [DC16] (version 2.1.0 [ANL]). For
ZFP, we used the fixed accuracy mode, which usually yields the
best signal-to-noise ratios, and varied the absolute error tolerance
(-a) to obtain the desired bit rates, while for CC we prescribed
the required bit rate, for SZ we varied relative error, and for ASTC
we selected maximum quality and lowest bitrate achievable. Using
settings similar to the COVRA evaluation [GIM12], HVQ was run
with a dictionary of 1024 elements per level and 12 bits for the
quantization of block average.

Compression Speed. Processing was performed on a single Arch
Linux PC with 256MB RAM and two 24-core Intel Xeon E5-2650
v4 2.20 GHz CPUs, with input and output data stored on a Synology
RS3617Xs+ with a RAID 5 composed of SEAGATE ST10kNE004-
1ZF101 disks (BTRFS file system) connected using a 10 Gbit/s link.
Compression was performed using four parallel processes, encod-
ing four frames at a time. The analysis of the different phases of

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

Figure 9: Inspection sequences. Representative frames of interactive spatiotemporal inspection sequences of massive dynamic and static datasets. From top to
bottom: ISO (1024 timesteps 10243), HBDT (1010 timesteps 10243), CHAN (4000 timesteps 2048×512×1536), RT (1 timestep 30723)

construction shows that the bottom-up filtering phase (eventually
including coreset extraction phase), common to all methods is rea-
sonably fast (20 s/frame for ISO and HBDT, 32 s/frame for CHAN),
and is dominated by data transfer time from the file server to the pro-
cessing node. The various tested codecs have very different coding
times. The faster is the hardware-accelerated CC, which is able to
encode data at a very high rate (about 4 s/frame for ISO and HBDT
and 6 s/frame for CHAN), followed by ZFP (15-29 s/frame for ISO
and HBDT, 23-44 for CHAN, lower times being for higher compres-
sion rates). The slowest codecs are ASTC (over 12 min/frame for
ISO, 15 min/frame for HBDT, 17 min/frame for CHAN) and SZ
(13 min/frame for ISO and HBDT, 21 min/frame for CHAN). The
compression times for the sparse coding methods fall somewhere
in the middle between these extremes. Dictionary learning time is
independent from dataset size and only slightly dependent on spar-
sity (42-74s for K = 6..15). Encoding time is linear with dataset
size, and grows sublinearly with target sparsity. Elastic encoding
is, on average, between 1.5x to 2x slower than fixed-size encoding
(24s-33 s/frame for fixed-size encoding vs. of 42s-74s for elastic
optimization of ISO and HBDT, 35s-49s vs. 56s-74s for CHAN,
lower times being for higher compression rates). While we do not
consider encoding speed essential for this asymmetric application,
where we just need to encode data once per simulation, we plan to
improve compression speed on time-varying data by reusing dic-
tionaries for neighboring frames and running only 1-2 refinement
operations on these already trained dictionaries, since we expect
dictionaries of neighboring frames to be similar. Given the amount
of time dedicated to dictionary learning in the used configuration,
we expect at least a 2x speed-up for this reusing strategy.

Decompression Speed. Supporting at least 10 frames/s animation
requires a codec able to upload data to GPU, decompress, and render
it at a rate of least 10 Gvox/s. Table 1 summarizes the uploading and
decompression performance obtained on a single PC with i9-7900X
3.30 GHz CPU and a GeForce GTX 1080Ti for the various codecs.
From the table, it is clear that, despite the increase in bandwidth, the
uncompressed format is still not viable (less than 2.5 GVox/s from
RAM to texture memory). The most performing real-time codec is
ASTC, because of the direct hardware support. ASTC, however, has

Real-Time Non-Real-Time
Elastic Fixed ASTC HVQ Unc. CC ZFP SZ

bps D H D H D H D H D H D H D H D H
~0.26 33.33 29.41 41.67 35.71 – – – – – – 4.18 4.11 0.23 0.14 0.01 0.01
~0.35 30.30 26.32 34.48 29.41 – – – – – – 4.05 3.97 0.22 0.14 0.01 0.01
~0.45 27.03 23.26 31.25 26.32 – – – – – – 4.01 3.92 0.20 0.13 0.01 0.01
~0.54 24.39 20.83 28.57 23.81 – 125.00 34.48 28.57 – – 3.92 3.82 0.18 0.12 0.01 0.01

32 – – – – – – – – – 0.40 – – – – – –

Table 1: Decoding performance. Uploading and decoding speed in GVox/s
for the various codecs. Real-time codecs have to support over 1 GVox/frame
at 10 frames/s. Column D reports pure decoding speed for data in device
memory for GPU codecs and in RAM for CPU ones, while column H reports
the speed of moving data from host to device and decompressing it.

limitations in terms of achievable compression and quality (see be-
low). The sparse-coding approaches and HVQ also clearly meet the
decoding speed constraint. It is interesting to note that elastic sparse
coding is not introducing a major decoding overhead over fixed-rate
coding, since the decoding kernel is carefully designed for speed
rather than for maximum achievable compression. It avoids memory
conflicts through aligned read/write operations and, since all voxels
in a block are decoded in parallel and have the same non-zero count,
it has minimum divergence. The fastest non-real-time codec is, by
far, the CUDA-accelerated CC wavelet codec, which, however, falls
below the required real-time decoding threshold, since, to achieve
its excellent quality of reconstruction at low bitrates it includes sev-
eral costly operations, such as inverse RLE decoding and Huffman
decoding in addition to inverse wavelet transform. Moreover, for
consistency with the original paper [TBR∗12], we report here for CC
the speed obtained for at a granularity of 2563 voxels/brick, which
produces the maximum achievable speed, while the other real-time
codecs have been configured at a much finer granularity of 323, in
order to support a more efficient culling. The CPU codecs ZFP, and
even more SZ, cannot currently be used in a high-bandwidth context,
both because of their limited speed and because data must travel in
decompressed format from RAM to GPU. ZFP has very recently
introduced a GPU-accelerated decoder (version 0.5.4 [Lin]), which,
however, only supports fixed-rate encoding, with reduced quality
over the fixed-tolerance version.

Rate and distortion. Table 2 summarizes the low-bitrate compres-
sion performance on a single selected time step of each time-varying

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

Figure 10: HBDT isosurface rendering quality. From left to right: uncompressed, ZFP near-lossless (7.4 bps, volume PSNR=92.06, SSIM=0.999), elastic
sparse coding (0.45 bps, SSIM=0.856), fixed sparse coding (0.43 bps, SSIM=0.809), ASTC (0.59 bps, SSIM=0.697), HVQ (0.50 bps, SSIM=0.351), CC (0.45 bps,
0.833), ZFP (0.41 bps, SSIM=0.206), SZ (0.46 bps, SSIM=0.347). Codecs supporting real-time decoding are marked in cyan, while others are marked in blue.

Real-Time Non-Real-Time
Elastic Fixed ASTC HVQ CC ZFP SZ

bps PSNR bps PSNR bps PSNR bps PSNR bps PSNR bps PSNR bps PSNR

ISO

0.26 43.84 0.24 42.88 – – – – 0.26 47.70 0.29 29.89 0.26 35.54
0.35 45.80 0.34 44.86 – – – – 0.35 49.71 0.34 33.07 0.34 35.73
0.45 47.18 0.43 46.26 – – – – 0.45 51.51 0.41 36.60 0.46 35.99
0.54 48.22 0.52 47.34 0.59 45.85 0.50 41.47 0.54 52.89 0.53 40.52 0.55 36.28

HBDT

0.26 37.90 0.24 35.43 – – – – 0.24 41.90 0.30 3.94 0.29 45.41
0.35 39.61 0.34 37.40 – – – – 0.32 44.64 0.36 13.54 0.33 45.56
0.45 40.95 0.43 38.92 – – – – – – 0.44 22.27 0.45 46.20
0.54 41.66 0.52 39.91 0.59 38.02 0.50 23.28 – – 0.58 30.44 0.55 46.88

CHAN

0.26 46.47 0.24 45.09 – – – – 0.26 49.88 0.27 23.82 0.25 36.87
0.35 48.43 0.35 47.10 – – – – 0.35 51.98 0.34 33.21 0.33 37.07
0.45 49.82 0.43 48.55 – – – – 0.44 53.94 0.49 40.77 0.43 37.33
0.54 50.80 0.52 49.64 0.59 23.17 0.50 41.70 0.52 55.47 0.63 44.81 0.51 37.65

Table 2: Compression rate and distortion. The considered real-time meth-
ods are those capable to sustain a decompression rate of over 1 GVox/frame
at 10 frames/s: elastic sparse coding and fixed sparse coding with varying
sparsity (K=6,9,12,15), ASTC at highest quality and maximum compression,
HVQ with fixed 1K dictionary. For reference, we also include results obtained
with non-real-time methods: CC, ZFP with varying accuracy (-a), and SZ
with varying relative error (RE). Empty cells correspond to non-achievable
compression rate with the given method.

dataset (time step 256 for all datasets). Other time steps provide
consistent results. Empty cells correspond to non-achievable com-
pression rate with the given method. To permit comparison with
other single-resolution methods, we report the results obtained only
for the leaf-level full-resolution grid. Compression rate is measured
in bits per sample (bps), while quality is measured with peak signal

to noise ratio (PSNR), defined as 10 log10
(maxi xi−mini xi)

2

1
N ∑i(xi−yi)2 , where xi

is the original voxel value, and yi is the approximated one, and N the
total number of voxels. Fig. 10 shows the effect of compression on
image quality for an isosurface rendering detail of the HBDT dataset,
and includes also the Structural Similarity (SSIM) [WBSS04] in-
dex of each image computed with compressed data with respect to
ground truth. Based on decoding performance evaluation, the con-
sidered real-time methods are elastic sparse coding and fixed sparse
coding with varying sparsity (K=6,9,12,15), ASTC at highest quality
and maximum compression, and HVQ with fixed 1K dictionary. The
scalability of our method is demonstrated by the fact that, by suitably
tuning target sparsity, both fixed and elastic encoding can span a
good range of both compression rates and quality. Elastic encoding
proves to be able to significantly improve quality for all datasets
in the tested compression range, as it increases PSNR by +1dB
to +2dB over the fixed-size version, and by several dBs over the
competing real-time methods. The improved compression quality
of our method with respect to other real-time codecs also translates
to significantly improved image quality at comparable bitrates (See
Fig. 10). For reference, we have also included results obtained with
non-real-time methods: CC, ZFP with varying accuracy (-a), and SZ
with varying relative error (RE). CC proves to be the most perform-
ing codec at these low bitrates, with a performance that is slightly
lower in terms of SSIM and superior in terms of PSNR with respect
to elastic sparse coding, thanks to the implemented transformation

and entropy coding methods, not included in the sparse-coding tech-
niques to support real-time decoding. ZFP and SZ, even though
they do not perform well at such a low bitrate, are more scalable
than CC, which, by design, is not applicable in near-lossless mode,
when many wavelet coefficients are non-zero and their quantization
leads to large Huffman tables with many different symbols. The
two empty cells in the table corresponds to cases where CC cannot
achieve the desired bit rate, due to overflowing Huffman table. For
this reason, we currently employ ZFP for near-lossless frames (see
Diffenderfer et al. [DFH∗19] for a study of the behavior of ZFP at
moderate-to-high bitrates). Fig. 10 also includes the image generated
by ZFP at 7.4bps (volumetric PSNR=92.06).

7.2 Rendering performance

The performance of our rendering system implemented as a fat
client was evaluated on a single Arch Linux PC with 128MB RAM,
a 24-core i9-7900X 3.30 GHz CPU, a GeForce GTX 1080Ti and
a local Samsung 9160 Pro 1TB SSD for storage. The server is the
same machine used for processing, connected on local 10 Gbit/s
LAN. The performance of our proof-of-concept thin client imple-
mentation was evaluated, instead, on a Samsung Galaxy Note Pro
SM-P905 Android 5.0 Tablet with a Qualcomm Snapdragon 800
chipset (Quad-core 2.3 GHz Krait 400 CPU and Adreno 330 GPU)
connected at 144 Mbit/s on a moderately loaded wireless LAN to
the same server used for the fat client. The remote renderer and the
snapshot renderer were executed on the same node and shared all
resources. The quantitative results presented here in details were col-
lected by gathering information on pre-recorded interactive paths de-
signed to be representative of typical volumetric inspection tasks and
to heavily stress the system, including rotations and rapid changes
from overall views to extreme close-ups and back (see also Fig. 9).
Each recorded path was played back with different settings on a
window size of 1920× 1080 pixels. In order to stress the system,
renderer resolution was always set to full accuracy (1 voxel/pixel).
We measured actual frame rates (i.e., not only raw rendering times,
but frame-to-frame times). The qualitative performance of our sys-
tem is also illustrated in an accompanying video, that shows in
live recordings of the analyzed sequences, as well as of similar
interactive sequences with all datasets.

Startup latency. For these tests, we have used the 0.45 bps elastic
setting, which leads to create low-bitrate representations of 65GB
(ISO), 64GB (HBDT), 376GB (CHAN), and 1.8GB (RT). At start
time, the system performs progressive downloading from remote
storage, storing the representation on the local SSD disk for further
access. Sufficient data for the initial exploration is received from the
server after 2.5s for ISO and HBDT, 3.0s for CHAN, and less than
one second for the single-frame RT. Almost immediate interaction is
thus ensured. The full amount of data is received by the clients after
less than two minutes for ISO and HBDT, about two minutes and a

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

half for CHAN, and less than three seconds for RT. This makes it
viable to maintain data on a server, and download it on demand on
local fast SSD disks only at the start of an inspection session. Using
uncompressed data would require hours.

Figure 11: Dynamic dataset exploration. Top Left: frame time with intra-
frame occlusion culling. Top Right: frame time without intra-frame occlu-
sion culling. Bottom Left: decoded voxels/frame with intra-frame occlusion
culling. Bottom Right: decoded voxels/frame without intra-frame occlusion
culling.

Dynamic dataset exploration on fat client. When continuously
moving among timesteps (playback, jog&shuttle), the renderer is
configured to favor time continuity over spatial continuity. In this
case, conservative intra-frame occlusion is enabled, while non-
conservative inter-frame occlusion is disabled to avoid spurious
dynamic effects. Fig. 11 reports rendering times and decoded voxel
counts for the spatiotemporal paths in the accompanying video for
the three dynamic datasets. Representative frames are in Fig. 9. In
these spatiotemporal paths, the simulation is played first forward
and than backward in time while the camera is moving. As reported,
the frame rate is interactive with and without occlusion culling,
since the average rendering time with occlusion culling enabled is
36 ms/frame for ISO 54 ms/frame for HBDT, and 44 ms/frame for
CHAN, while the average frame times without occlusion culling are
of 56 ms/frame for ISO 66 ms/frame for HBDT, and 73 ms/frame for
CHAN. The peak rendering time when occlusion culling is enabled
is for the highly transparent HBDT (105 ms/frame), while the peak
when occlusion culling is disabled is for the larger, but more opaque,
CHAN (138 ms/frame). Intra-frame occlusion is effective, at least
for moderately opaque transfer functions, in improving performance
by reducing the number of decoded bricks in conjunction with early
ray termination. The total number of decoded bricks is reduced by
70% for ISO, over 148% for the more opaque CHAN, and 41%
for the more transparent HBDT. This leads to rendering speedups
of 55% for ISO, 88% for CHAN, and 22% for HBDT. Decoding
speed is always maintained at around 19 GVox/s for all datasets,
while apron filling has been measured at around 18 GVox/s. Since
storing non-overlapping bricks reduces storage footprint, as well
as server-to-client and client-to-GPU bandwidths by 42%, using
the apron filling approach proves effective. For fully benchmark-
ing random access capabilities, we also measured the performance
obtained when playing back the same animation with randomly
shuffled timesteps, which was in the range 18ms-122ms (average
42ms) for all frames and all datasets. This is just a bit below the
achieved rendering speed, with an average performance decrease
of 11% (at worst 81%), mainly due to the reduced efficiency in
accessing the file system.

Static timestep exploration on fat client. When animation is
stopped, and the user is moving, inter-frame occlusion is enabled,

Figure 12: Static dataset exploration. Top Left: frame time with occlu-
sion culling. Top Right: frame time without occlusion culling. Bottom Left:
decoded voxels/frame with occlusion culling. Bottom Right: decoded vox-
els/frame without occlusion culling.

in order to increase spatial exploration performance even if in-
cremental updates may introduce dynamic effects. In these con-
ditions, the cache proves effective, and the number of decoded
voxels/frames falls down due to ray-guided streaming Fig. 12 sum-
marizes performance measures gathered during spatial exploration
of the frame used for compression evaluation in Sec. 7.1. When
the decompressed brick cache size is large enough to cache the
entire working set, only few bricks/frame are decompressed at cache
misses, and performance is similar to previous single-pass GPU
raycasters [HBJP12, GIM12]. For the three dynamic datasets, us-
ing the same paths tested for the dynamic benchmark, the average
frame rate is 54 frames/s for ISO and 78 frames/s for HBDT, and
45 frames/s for CHAN. The frame rate never falls below interactive
performance, since the slowest measured refresh frequency is for
CHAN at 27.1 frames/s. The average number of voxels decoded
per frame never exceeds 106 Mvoxels, since much of the required
working set for a given image is already present in cache before
rendering. For these datasets, moreover, occlusion culling is less
effective than for the dynamic case, since the loading and decoding
effort per frame is already low due to caching. Thus, the frame
rate with and without occlusion culling is almost the same. When,
instead the dataset size is larger than the decompressed-brick cache
size, as for RT, the situation changes. In this case, we switch to the
multipass slab-based approach and we enable intra-frame occlusion
culling in addition to the inter-frame one. At tolerance 1, we achieve
for this dataset a minimum frame rate of 7.5 frames/s (average for
path 22 frames/s), with a peak 599 decoded Mvoxels/frame. By
contrast, without occlusion culling, the performance drops to a min-
imum frame rate of 1.5 frames/s, with a peak uploaded and decoded
voxel count/frame of over 6 GVoxels/frame.

High quality still image on fat client. As soon as the user stops
modifying the view for more than one frame, the client requests
the remote snapshot renderer to produce a high-quality frame by
applying our out-of-core raycaster to the near-lossless data. Using
a tolerance of 1 voxel/pixel, the latency measured for receiving
the image rendered from near-lossless data has been measured to
0.5-1.5s for the dynamic datasets, and to 0.8-7s for the much larger
static RT dataset (timing depending on views). Almost all time is
due to loading and decoding data from storage (fetching data from
the file server rather than from local SSDs), and ZFP decoding and
uploading of bricks. Even though these aspects can be optimized
(e.g., by using a CUDA ZFP decoder or a faster file server), the
latency is already acceptable for an interactive application, at least
for our time-varying data.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

Thin client performance. As rendering for a thin client is done re-
motely, the difference in performance is mostly due to the increased
latency and reduced frame rate connected to the communication. We
evaluated our proof-of-concept implementation by re-executing the
dynamic tests on the Android client. We found that, on our current
implementation, the remote renderer speed remains, within a few
percents, exactly the same as that of the fat client (Fig. 11), since
the only overhead is GPU encoding of rendered image and socket
transmission. The limiting factor, at 1080p, is, on our implementa-
tion, the proof-of-concept Android client. A constant ~30 ms/frame
is spent in network operation and OpenGL refresh, while the most
demanding operation is the software decoding of the received im-
ages, which takes ~98 ms/frame. As a result the refresh speed is
capped to ~8 frames/s on all datasets. Lowering resolution to 720p
reduces decoding time to ~46 ms/frame increases maximum client
frame rate to ~13 frames/s. We expect to remove this limitation by
using an optimized decoder on Android, but this implementation
issue is orthogonal to our work.

8 Conclusions

We have presented a novel flexible approach to support time-
varying rectilinear scalar volume exploration. By introducing a novel
high-performance low-bitrate codec, which advances the state-of-
the-art in terms of quality achievable at very low bitrates in real-
time settings, and combining it with a near-lossless codec within a
new software architecture, we are capable of supporting full spatial
and spatiotemporal exploration in a variety of setups, from local
analysis on graphics workstations to remote exploration on thin
mobile clients.

The major limitations, shared with other compression-based ap-
proaches, are the non-negligible encoding time and the (unavoidable)
limits of the achievable quality during animation dictated by the
need to fit massive frame sizes in the available bandwidth. Our
results show, however, that our solution is of immediate practical
interest, since excellent-quality results can be achieved on time-
varying datasets with billions of voxels per frame and thousands of
time-steps, and, by combining system-level solutions for spatial ex-
ploration and for automatic generation of full-quality static frames,
many use cases can be handled.

Our future work will further extend the capabilities of this ap-
proach, in particular moving from scalar data to multidimensional
data, where we expect that the benefits of our compression-based
approach can provide further advantages. Moreover, while in this
work we focused on the enabling technology to support a variety
of interactive exploration data-intensive means, we plan in the fu-
ture to complement these features with domain-independent and
domain-dependent data-reduction methods for extracting relevant
information from time-varying data, bridging the gap between inter-
active raw-data exploration and static derived-data display.

Acknowledgments. The authors would like to warmly thank Peter Lindstrom (ZFP), Marc Treib
(CC), and Sheng Di, Dingwen Tao, Xin Liang (SZ) for making their compression codes available.
Datasets ISO, HBDT and CHAN are courtesy of the Johns Hopkins Turbulence Database (JHTDB)
initiative. Dataset RT is courtesy of LLNL. We also acknowledge the contribution of Sardinian Re-
gional Authorities (projects VIGECLAB and TDM) and of King Abdullah University of Science and
Technology (KAUST).

References
[AEB06] AHARON M., ELAD M., BRUCKSTEIN A.: K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse representation.
IEEE TSP 54, 11 (2006), 4311–4322. 3, 4

[ANL] SZ compression library. https://github.com/
disheng222/SZ. [accessed: 2018-10-31]. 9

[ARM] ASTC compression library. https://github.com/
ARM-software/astc-encoder. [accessed: 2018:10:31]. 9

[BCP∗12] BRAMBILLA A., CARNECKY R., PEIKERT R., VIOLA I.,
HAUSER H.: Illustrative flow visualization: State of the art, trends and
challenges. Proc. EG STAR (2012). 8

[BGH∗06] BIKSHANDI G., GUO J., HOEFLINGER D., ALMASI G.,
FRAGUELA B. B., GARZARÁN M. J., PADUA D., VON PRAUN C.:
Programming for parallelism and locality with hierarchically tiled arrays.
In Proc. PPoPP (2006), pp. 48–57. 3

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-art in
GPU-based large-scale volume visualization. Computer Graphics Forum
34, 8 (2015), 13–37. 2

[BRGIG∗14] BALSA RODRIGUEZ M., GOBBETTI E., IGLESIAS GUI-
TIÁN J., MAKHINYA M., MARTON F., PAJAROLA R., SUTER S.: State-
of-the-art in compressed GPU-based direct volume rendering. Computer
Graphics Forum 33, 6 (2014), 77–100. 2, 4

[BRLP18] BALLESTER-RIPOLL R., LINDSTROM P., PAJAROLA R.:
TTHRESH: Tensor compression for multidimensional visual data. arXiv
preprint arXiv:1806.05952 (2018). 2, 4

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gaVoxels: Ray-guided streaming for efficient and detailed voxel rendering.
In Proc. I3D (2009), pp. 15–22. 2

[CWW11] CAO Y., WU G., WANG H.: A smart compression scheme for
GPU-accelerated volume rendering of time-varying data. In Proc. IEEE
ICVRV (2011), pp. 205–210. 2

[DC16] DI S., CAPPELLO F.: Fast error-bounded lossy HPC data com-
pression with SZ. In Proc. IEEE IPDPS (2016), pp. 730–739. 9

[DFH∗19] DIFFENDERFER J., FOX A., HITTINGER J., SANDERS G.,
LINDSTROM P.: Error analysis of ZFP compression for floating-point
data. SIAM Journal on Scientific Computing (2019). To appear. 11

[Efr15] EFRAIMIDIS P. S.: Weighted random sampling over data streams.
In Algorithms, Probability, Networks, and Games. 2015, pp. 183–195. 4

[Ela08] ELAD M.: Sparse and Redundant Representations. Springer,
2008. 2

[Eng11] ENGEL K.: CERA-TVR: A framework for interactive high-
quality teravoxel volume visualization on standard PCs. In Proc. IEEE
LDAV (2011), pp. 123–124. 2

[FE17] FREY S., ERTL T.: Flow-based temporal selection for interactive
volume visualization. Computer Graphics Forum 36, 8 (2017), 153–165.
1

[FM07] FOUT N., MA K.-L.: Transform coding for hardware-accelerated
volume rendering. IEEE TVCG 13, 6 (2007), 1600–1607. 2

[FS05] FOLEY T., SUGERMAN J.: KD-tree acceleration structures for a
GPU raytracer. In Proc. Graphics hardware (2005), pp. 15–22. 8

[FSK13] FOGAL T., SCHIEWE A., KRUGER J.: An analysis of scalable
GPU-based ray-guided volume rendering. In Proc. IEEE LDAV (Oct
2013), pp. 43–51. 2

[GG16] GUTHE S., GOESELE M.: Variable length coding for GPU-based
direct volume rendering. In Proc. VMV (2016), pp. 77–84. 2

[GIM12] GOBBETTI E., IGLESIAS GUITIÁN J., MARTON F.: COVRA:
A compression-domain output-sensitive volume rendering architecture
based on a sparse representation of voxel blocks. Computer Graphics
Forum 31, 3/4 (2012), 1315–1324. 2, 3, 4, 9, 12

[GMI08] GOBBETTI E., MARTON F., IGLESIAS GUITIÁN J. A.: A single-
pass GPU ray casting framework for interactive out-of-core rendering
of massive volumetric datasets. The Visual Computer 24, 7–9 (2008),
797–806. 8

[GS01] GUTHE S., STRASSER W.: Real-time decompression and visu-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/disheng222/SZ
https://github.com/disheng222/SZ
https://github.com/ARM-software/astc-encoder
https://github.com/ARM-software/astc-encoder


F. Marton & M. Agus & E. Gobbetti / GPU-accelerated volume exploration

alization of animated volume data. In Proc. IEEE Vis (2001), IEEE,
pp. 349–572. 2

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER H.: Inter-
active volume exploration of petascale microscopy data streams using a
visualization-driven virtual memory approach. IEEE TVCG 18, 12 (2012),
2285–2294. 2, 12

[HMCM09] HSU W.-H., MEI J., CORREA C. D., MA K.-L.: Depicting
time evolving flow with illustrative visualization techniques. In Interna-
tional Conference on Arts and Technology (2009), Springer, pp. 136–147.
8

[HSP∗13] HOLUB P., SROM M., PULEC M., MATELA J., JIRMAN M.:
GPU-accelerated DXT and JPEG compression schemes for low-latency
network transmissions of HD, 2K, and 4K video. Future Generation
Computer Systems 29, 8 (2013), 1991–2006. 9

[IGM10] IGLESIAS GUITIÁN J. A., GOBBETTI E., MARTON F.: View-
dependent exploration of massive volumetric models on large scale light
field displays. The Visual Computer 26, 6–8 (2010), 1037–1047. 2

[ILRS03] IBARRIA L., LINDSTROM P., ROSSIGNAC J., SZYMCZAK A.:
Out-of-core compression and decompression of large n-dimensional scalar
fields. Computer Graphics Forum 22, 3 (2003), 343–348. 2

[Iri06] IRION R.: The terascale supernova initiative: Modeling the first
instance of a star’s death. SciDAC Review 2, 1 (2006), 26–37. 1

[JEG12] JANG Y., EBERT D. S., GAITHER K. P.: Time-varying data
visualization using functional representations. IEEE TVCG 18, 3 (2012),
421–433. 1, 2

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Proc. Graphics
Hardware (2002), pp. 7–15. 2

[KLW∗08] KO C.-L., LIAO H.-S., WANG T.-P., FU K.-W., LIN C.-Y.,
CHUANG J.-H.: Multi-resolution volume rendering of large time-varying
data using video-based compression. In Proc. IEEE Pacific Vis (2008),
pp. 135–142. 2

[LBM∗06] LANEY D., BREMER P.-T., MASCARENHAS A., MILLER P.,
PASCUCCI V.: Understanding the structure of the turbulent mixing layer
in hydrodynamic instabilities. IEEE TVCG 12, 5 (2006), 1053–1060. 9

[Lin] ZFP compression library. https://computation.
llnl.gov/projects/floating-point-compression/
zfp-versions. [accessed: 2018-10-31]. 4, 7, 9, 10

[Lin14] LINDSTROM: Fixed-rate compressed floating point arrays. IEEE
TVCG 20, 12 (2014), 2674–2683. 2, 4

[LMC02] LUM E. B., MA K.-L., CLYNE J.: A hardware-assisted scalable
solution for interactive volume rendering of time-varying data. IEEE
TVCG, 3 (2002), 286–301. 2

[LPW∗08] LI Y., PERLMAN E., WAN M., YANG Y., MENEVEAU C.,
BURNS R., CHEN S., SZALAY A., EYINK G.: A public turbulence
database cluster and applications to study Lagrangian evolution of velocity
increments in turbulence. Journal of Turbulence, 9 (2008). 1

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K.: A GPU-
supported lossless compression scheme for rendering time-varying vol-
ume data. In Proc. Volume Graphics (2010), pp. 109–116. 2

[MS00] MA K.-L., SHEN H.-W.: Compression and accelerated render-
ing of time-varying volume data. In Proc. International Workshop on
Computer Graphics and Virtual Reality (2000), pp. 82–89. 2

[NIH08] NAGAYASU D., INO F., HAGIHARA K.: Two-stage compression
for fast volume rendering of time-varying scalar data. In Proc. GRAPHITE
(2008), pp. 275–284. 2

[NJ16] NOGUERA J. M., JIMÉNEZ J. R.: Mobile volume rendering: past,
present and future. IEEE transactions on visualization and computer
graphics 22, 2 (2016), 1164–1178. 2

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S., OL-
SON T.: Adaptive scalable texture compression. In Proc. HPG (2012),
pp. 105–114. 2, 9

[Nvi] CUDA toolkit. https://developer.nvidia.com/
cuda-toolkit. [accessed: 2018-10-31]. 7

[PK09] PARYS R., KNITTEL G.: Giga-voxel rendering from compressed

data on a display wall. In Proc. WSCG (2009). 2
[PLK∗18] PULIDO J., LIVESCU D., KANOV K., BURNS R. C., CANADA

C., AHRENS J. P., HAMANN B.: Remote visual analysis of large tur-
bulence databases at multiple scales. J. Parallel Distrib. Comput. 120
(2018), 115–126. 3, 8

[RTW13] REICHL F., TREIB M., WESTERMANN R.: Visualization of big
SPH simulations via compressed octree grids. In Proc. IEEE Big Data
(2013), pp. 71–78. 2

[RZE08] RUBINSTEIN R., ZIBULEVSKY M., ELAD M.: Efficient im-
plementation of the K-SVD algorithm using batch orthogonal matching
pursuit. Tech. rep., CS Technion, 2008. 5

[SBN11] SHE B., BOULANGER P., NOGA M.: Real-time rendering of
temporal volumetric data on a GPU. In Proc. IEEE InfoVis (2011),
pp. 622–631. 1, 2

[She06] SHEN H.-W.: Visualization of large scale time-varying scientific
data. Journal of Physics 46, 1 (2006), 535–544. 2

[SIM∗11] SUTER S., IGLESIAS GUITIÁN J., MARTON F., AGUS M.,
ELSENER A., ZOLLIKOFER C., GOPI M., GOBBETTI E., PAJAROLA R.:
Interactive multiscale tensor reconstruction for multiresolution volume
visualization. IEEE TVCG 17, 12 (2011), 2135–2143. 2

[SJ94] SHEN H.-W., JOHNSON C. R.: Differential volume rendering: A
fast volume visualization technique for flow animation. In Proc. IEEE
Vis (1994), pp. 180–187. 2

[SW03] SCHNEIDER J., WESTERMANN R.: Compression domain volume
rendering. In Proc. IEEE Vis. (2003), pp. 293–300. 2, 9

[SZ79] SINHA P., ZOLTNERS A. A.: The multiple-choice knapsack prob-
lem. Operations Research 27, 3 (1979), 503–515. 5

[TBR∗12] TREIB M., BURGER K., REICHL F., MENEVEAU C., SZALAY
A., WESTERMANN R.: Turbulence visualization at the terascale on
desktop PCs. IEEE TVCG 18, 12 (2012), 2169–2177. 2, 3, 9, 10

[Tre] CUDACOMPRESS compression library. https://github.
com/m0bl0/cudaCompress. [accessed: 2019-02-01]. 9

[Tur] Johns Hopkins Turbulence Databases. http://turbulence.
pha.jhu.edu/datasets.aspx. [accessed: 2018-10-31]. 1, 9

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.: Image
quality assessment: from error visibility to structural similarity. IEEE TIP
13, 4 (2004), 600 –612. 11

[Wes95] WESTERMANN R.: Compression domain rendering of time-
resolved volume data. In Proc.IEEE Vis (1995), pp. 168–175. 2

[WF08] WEISS K., FLORIANI L.: Modeling and visualization approaches
for time-varying volumetric data. In Proc. Advances in Visual Computing
(2008), pp. 1000–1010. 1, 2

[WGLS05] WANG C., GAO J., LI L., SHEN H.-W.: A multiresolution
volume rendering framework for large-scale time-varying data visualiza-
tion. In Proc. Volume Graphics (2005), pp. 11–19. 2

[WWS03] WOODRING J., WANG C., SHEN H.-W.: High dimensional
direct rendering of time-varying volumetric data. In Proc. IEEE Vis
(2003), pp. 417–424. 2

[WWS∗05] WANG H., WU Q., SHI L., YU Y., AHUJA N.: Out-of-core
tensor approximation of multi-dimensional matrices of visual data. ACM
TOG 24, 3 (July 2005), 527–535. 2

[WYM08] WANG C., YU H., MA K.-L.: Importance-driven time-varying
data visualization. IEEE TVCG 14, 6 (2008), 1547–1554. 1, 2

[WYM10] WANG C., YU H., MA K.-L.: Application-driven compression
for visualizing large-scale time-varying data. IEEE CGA 30, 1 (2010),
59–69. 2

[YNV08] YELA H., NAVAZO I., VAZQUEZ P.: S3Dc: A 3Dc-based
volume compression algorithm. Computer Graphics Forum (2008), 95–
104. 2

[YZW∗17] YU S., ZHANG S., WANG K., XIA Y., ZHANG H.: An
efficient and fast GPU-based algorithm for visualizing large volume of
4D data from virtual heart simulations. Biomedical Signal Processing
and Control 35 (2017), 8–18. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://computation.llnl.gov/projects/floating-point-compression/zfp-versions
https://computation.llnl.gov/projects/floating-point-compression/zfp-versions
https://computation.llnl.gov/projects/floating-point-compression/zfp-versions
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/m0bl0/cudaCompress
https://github.com/m0bl0/cudaCompress
http://turbulence.pha.jhu.edu/datasets.aspx
http://turbulence.pha.jhu.edu/datasets.aspx

