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Abstract
We describe an edge-directed optimization-based method for volumetric data supersampling. The method is based
on voxel splitting and iterative refinement performed with a greedy optimization driven by the smoothing of second
order gray level derivatives and the assumption that the average gray level in the original voxels region cannot
change. Due to these assumptions, the method, which is the 3D extension of a recently proposed technique, is par-
ticularly suitable for upscaling medical imaging data creating physically reasonable voxel values and overcoming
the so-called partial volume effect.
The good quality of the results obtained is demonstrated through experimental tests. Furthermore, we show how
offline 3D upscaling of volumes can be coupled with recent techniques to perform high quality volume rendering
of large datasets, obtaining a better inspection of medical volumetric data.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]: En-
hancement/Sharpening and deblurring—

1. Introduction

A lot of research effort has been recently spent on digital
image or video upscaling, and several different methods have
been recently proposed for these purposes, like edge based
[LO01], optimization based [Fat07,SXS08,GA08,TMSV09]
or example based methods [FJP02, KTN∗07, KK08]. These
techniques, however, have been rarely applied to voxelized
volumes captured by diagnostic modalities.

The upscaling of medical volumes is usually performed
just in the Z direction to overcome the problem of rele-
vant slice spacings causing highly non-isotropic voxels. Typ-
ical solutions applied consist of interleaving new "inter-
polated" slices between the original ones, computed usu-
ally with methods based on preserving continuity of seg-
mented structures (e.g. Shape Based Interpolation [HZB92])
or through deformable registration of consecutive slices (e.g.
Registration-based interpolation [PSR∗04]).

In this way it is possible to reduce the so-called "partial
volume" effect that makes the physical value measured at
each voxel location not tissue-specific, but corresponding to

an averaged value due to the presence of different materials
inside the volume.

In this paper we propose a volume upscaling method that
we implemented not only for interleaving new slices, but
also for isotropic enlargement. The method is the 3D ex-
tension of a recent algorithm for single image superresolu-
tion [Gia10].

It is based on voxel subdivision (so that integer zooming
factors along the three dimensions can be obtained), the as-
sumption that the energy or density measured inside each
voxel is equal to the sum of those that would have been ac-
quired in the region by the simulated high resolution sensor,
and to the assumption of local smoothness of the second or-
der derivatives of the image brightness.

The physical constraint of assuming the average spatial
properties of the material unchanged in the original volume
block seem the best choice to partially overcome the par-
tial volume effect and obtain more accurate results in clas-
sification and segmentation tasks. Furthermore, this kind of
processing can be useful in order to approximate high res-
olution detail in volume rendering, improving visual analy-
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sis of the imaged anatomy. Recent multi-resolution methods
are, in fact, able to handle huge voxelized volumes allowing
their interactive visualization. This means that through an
off-line volume upscaling and the use of such techniques it
is possible to relevantly improve the quality of the 3D visual
analysis of medical data. The paper is organized as follows:
Section 2 presents the proposed algorithm and the imple-
mentations realized, Section 3 describes the multi-resolution
volume rendering approach, Section 4 presents experimental
results.

2. Proposed upscaling approach

The proposed technique enlarges images by subdividing
original voxels into smaller ones. In this way it is possible
to obtain integer scale factors along each directions: we im-
plemented two schemes, one subdividing each voxel in two
parts along the z direction (Fig. 1) obtaining a slice-based
interpolation and another subdividing each voxel in eight
smaller ones as in (Fig. 3) obtaining a 2× zooming. The
algorithm then computes the new voxel values through an
optimization scheme using two constraints: the first is the
constancy of the sum of the gray levels inside each splitted
voxel, the second is the continuity of second order deriva-
tives of the image brightness that has, in fact, shown good
results in 2D image upscaling [GA08] and it is able to re-
duce the jagged artifacts of upscaled images. This assump-
tion is also strictly related to the constant covariance con-
straint used by other well known edge directed interpolation
methods [LO01].

The constancy of the gray level sum is a physically mo-
tivated constraint that assumes that the energy captured by
the acquisition system in the original voxel location is the
same that would have been captured by a sensor array with
higher resolution. This assumption is correct for volumet-
ric imaging only if the gray level is a linear function of the
physical value measured by the device and if the so-called
"slice thickness" of the imaging modality is equal to the
"slice spacing", i.e. the effective voxel volumes do not over-
lap. This is not true, of course for all modalities and proto-
cols, but it can be considered a reasonable approximation for
many real cases.

The implementations of the method for the two cases con-
sidered (e.g. slice splitting and voxel splitting) are described
in detail in the following subsections.

2.1. Slice splitting implementation

To split each slice we divide each original voxel B(i, j,k)
of the W ×H ×N dataset in two smaller ones as in Figure
1 obtaining a new W ×H × 2N volume. Assuming that the
gray level value in the original voxel is equal to the signal
intensity per volume unit multiplied by the voxel size, we
can assign to the two smaller voxels the same value one.

Figure 1: Slice splitting: original voxels (A) are subdivided
in two parts with half z-component (B): the optimization pro-
cedure smoothing derivatives keep the sum of the original
voxels unchanged (C).

The greedy optimization procedure consists of an itera-
tive processing of splitted blocks. At each iteration, for each
splitted voxel, that will be called in the following "block",
a local energy function is computed in three different cases:
unchanged gray level values, and the two "perturbed" con-
figurations obtained adding a small δ value to one voxel and
subtracting the same value to the other (Fig. 2). The average
value in the block is in any case unchanged.

If i, j,k are the coordinates of the original grid correspond-
ing to the subdivided block B(i, j,k), for each perturbed con-
figuration Bp, the computed local energy Ep(i, j,k) is de-
fined as the sum absolute values of the differences between
second order derivatives inside and outside B (computed at
the finer scale):

E(i, j,k)p = (1)

∑hk ∑~x∈B(i, j,k) ∑~x′∈Ni jk(~x)

∣∣∣Hhk(Ip(~x))−Hhk(Ip(~x′))
∣∣∣

where ~x = (x,y,z) are the coordinates of small voxels in
the new grid, Ni jk(~x) is the set of neighboring voxels of ~x
that are not in the block Bi jk, Ip(~x) is the high-resolution
volume created by the voxel splitting, modified only in the
block (i, j,k) by replacing it with the "perturbed" version
Bp. Hhk(Ip(~x)) are the Hessian matrix entries (second order
derivatives). At the end of each complete blocks process-
ing we finally update each block replacing the internal vox-
els values with the values of the modified block Bmin corre-
sponding to the lowest energy.

To avoid large memory usage, δ is an integer value and the
representation of the original voxel value (unsigned char or
short) is not changed. The first iteration are performed with
δ = 4 and then the values are reduced to δ = 1.

2.2. Voxel subdivision in octants

In this case we split each original voxel in eight smaller ones
(Fig. 3). Then energy terms are computed as before, by eval-
uating a sum of absolute values of the differences between
first and second order derivatives of the gray levels inside
and outside the splitted voxel. Possible voxel perturbations
adding an integer value δ to one of the eight small voxels
and subtracting δ from the value of another one are 56. Of
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Figure 2: The three modified intensity distribution inside
each splitted voxel tested at each iteration of the greedy pro-
cedure

Figure 3: Voxel subdivision in octants: original voxels (A)
are subdivided in eight parts (B): the optimization procedure
smoothing derivatives keep the sum of the original voxel val-
ues unchanged (C).

course, different sets of modified configurations with equal
sum of intensities can be used, and actually we tested differ-
ent options, obtaining negligible changes in the results.

At each iteration and for each splitted voxel, we compute
for each of these configuration B1,B2, ...B56 and for the un-
changed one B0 the voxel energy, modifying then each block
according to the perturbation minimizing it. To have a good
convergence and smoother edges, we found in this case use-
ful to first remove voxelization with another greedy iterative
modification of the splitted voxel minimizing a local energy
depending by the gray level continuity at the big voxel bor-
ders, i.e.:

E′(i, j,k)p = (2)

∑hk ∑~x∈B(i, j,k) ∑~x′∈Ni jk(~x)

∣∣∣Ip(~x)− Ip(~x′)
∣∣∣

The iterative smoothing of second order derivatives per-
formed using the same energy described by eq. 2 is per-
formed after this step, providing the final result.

To speed up the computation, however, we test at each
iteration only a random subset of the voxel perturbations:
taking only one third of the possible configurations we found
that the difference in the result is negligible.

3. Multi-resolution volume rendering

Edge adaptive image upscaling is applied usually to enhance
printing quality or to upscale video for high resolution dis-
play. Medical data upscaling can be used as well to enhance
2D slices visualization on high resolution displays, but can,

of course used also to enhance volumetric visualization (e.g.
ray casting) that is often used by radiologists and physician
for diagnosis, being supported by recent radiology worksta-
tions. However, a big problem in handling upscaled volumes
is the large amount of memory required to store the 3D grid,
that can create problems even using high end graphics cards.

To avoid the necessity of storing the complete dataset
in the graphics card memory and still have an interactive
visualization of huge datasets, it is possible to exploit re-
cent adaptive techniques like that presented in [GMI08].
This method uses an octree representation of the volume
maintained out of core, and an adaptive loader executing on
the CPU, that updates view and transfer function dependent
subvolume maintained on GPU memory by asynchronously
fetching data from the octree (Fig.4). In this way, even if
the original data cannot be stored in the graphic card mem-
ory, the volume can still be interactively inspected, and it is
possible to obtain the maximal visual quality for each part
of the dataset just controlling viewpoint and camera param-
eters. The technique has shown very good results, but its
medical application is still limited due to the fact that usual
diagnostic dataset are not really huge and can be fitted into
the memory of recent graphic cards. However, the increasing
resolution of new imaging modalities, and the use of smart
volume upscaling techniques like the one presented here (or,
for example, a learning based method) could make the adap-
tive multi-resolution volume rendering quite useful.

4. Experimental results

4.1. Image quality measures

We tested both the z-upscaling and the isotropic upscaling
on different test medical datasets: two MRI acquisition of the
head, one with original resolution 256×256×60 and voxel
size 0.86 × 0.86 × 3mm., another brain MRI with original
resolution 256× 256× 256 and voxel size 1× 1× 1mm., a
CT scan of the liver with original size 512× 512× 130 and
voxel size 0.89×0.89×1.25mm and a region of CT scan of
the aortic bifurcation with original size 180×180×200 and
voxel size 0.74× 0.74× 1.25mm. All the dataset have been
converted to 8 bit grayscale.

For all the data sets we created two downsampled versions
simulating the low resolution acquisition in the first case by
merging couples of slices taking average values and in the
second case by collapsing 8-neighboring voxels blocks into
low resolution voxels taking the average value. We then up-
scaled the simulated low resolution acquisitions with differ-
ent techniques, e.g trilinear interpolation, the 3D Spline in-
terpolator implemented in Octave and the proposed method.

Figure 5 shows a visual comparison of corresponding in-
terpolated slices of upscaled volumes: the new method cre-
ates evidently sharper images, even if it is not similarly ef-
fective in removing jaggies and smoothing contours.
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Figure 4: Scheme of the volume rendering technique

To give a quantitative evaluation of the similarity of down-
scaled/upscaled volumes and original ones, we considered
two error measures. The first is the Peak Signal to Noise Ra-
tio (PSNR), defined as:

PSNR = 20log10
MAXVOX

∑
dimx
i=1 ∑

dimy
j=1 ∑

dimz
k=1 (Iup(i, j,k)−Iorig(i, j,k))2

(dimx∗dimy∗dimz)

(3)

where Iup(i, j) is the upscaled subsampled volume, Iorig the
original one, dimx,dimy and dimz the image dimensions and
MAXVOX the end scale value of the voxel intensity.

The other measure applied is the percentage of largely dif-
ferent voxels (PLDV) that counts how many voxels differs
more than a threshold (we set this value to 5% of the maxi-
mum value). This measure could be related to the number of
voxels that may be misclassified by a simple segmentation
algorithm, meaning also that a smart interpolation could ob-
tain a more precise segmentation of anatomical structures.
Table 1 shows the results obtained with the described algo-
rithm for the z-upscaling and Table 2 shows the same results
for isotropic upscaling. In both cases the proposed method is
more effective than the compared kernel-based techniques.
The result is sufficiently encouraging to suggest a wider
comparison involving different interpolation techniques and
a different imaging modalities and acquisition protocols and
to test practical application of offline volume supersampling.

4.2. Volume rendering

The good quality of the upscaled volumes appear clearly also
in the described volumetric visualization.

Figures 6 shows the renderings, obtained with a ray cast-
ing procedure with same sampling step and transfer function
of a CT scan (from the public database of University Hospi-
tal of Geneva, http://pubimage.hcuge.ch:8080/ ) of the tho-

dataset Linear Spline Our Meth.
MR1 5.73 7.85 8.49
MR2 16.21 18.74 19.65
CT 16.97 19.26 20.07

CT2 21.80 26.89 28.36
AVG 14.98 18.19 19.14

dataset Linear Spline Our Meth.
MR1 20.2 17.5 16.1
MR2 8.0 6.5 5.8
CT 7.5 5.7 5.1
CT2 5.9 3.1 2.2
AVG 10.4 8.2 7.3

Table 1: Top: PSNR(dB) obtained in the comparison of orig-
inal medical datasets with downscaled versions (collapsed
slices), upscaled in the z direction by a factor 2. Bottom:
Percentage of largely different voxels (%, lower is better)
values.

rax, and of an upscaled version of it. With the original data
(512×512×743), the resulting image is oversmoothed and
some details vanish due to the excessive smoothing of the
gray levels making correct tissue classification difficult (a).
The visualization of the edge adaptive and energy preserv-
ing upscaled volume (isotropically enlarged of a 2× factor),
performed with the same rendering parameters appears of
a better quality (b). The enhancement of the result appears,
however, if we zoom on a small region (right): the improve-
ments in the visualization are particularly evident in pres-
ence of poorly contrasted tubular structures. Figure 7 shows
similar results on a high resolution contrasted angio-CT scan
from the same archive. Improvements are even more visible
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Figure 5: The visual quality of corresponding slices of volumes upscaled (2x) with different methods is clearly different. From
left to right: Nearest neighbor, Linear interpolation, that appears quite smoothed, Spline interpolation, still a bit smoothed, and
proposed method, providing extremely sharp images.

(a) Original data

(b) Upscaled data

Figure 6: Volume visualization of a contrasted thoracic CT (data from University of Geneva): (a) rendering of the original
data and a higher resolution detail. (b) Visualization of the same data set but processed with our upscaling approach. The
visualization uses the same transfer function and sampling step. The enhancement in the perception of surfaces and tubular
structures is more evident on the zoomed images.

with higher upscaling factors: Fig.8, shows volume render-
ing results (same transfer function and sampling step) of a
contrasted CT acquisition of the iliac bifurcation and of its
super-resoluted version. Here the original dataset has been
upscaled of a factor 4 along the x and y directions and of a

factor 8 along the z direction. Small structures appear clearly
sharper and more contrasted after the super-resolution en-
hancement (right). The major limit of the current implemen-
tation of the optimization-based supersampling, is the lim-
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(a) Original data

(b) Upscaled data

Figure 7: Volume visualization of a contrasted angio-CT of the head (data from University of Geneva): (a) rendering of the
original data and a higher resolution detail. (b) Visualization of the same data set but processed with our upscaling approach.
The visualization uses the same transfer function and sampling step. Notice how finer structures and vessels are easier to follow.

ited reduction of the voxelization artifacts, that could be,
however, handled with a specific post processing.

If data are upscaled of a very large factor, it is still pos-
sible to visualize it interactively using the adaptive tech-
niques previously described. The method used for the visu-
alization builds on the ability to rapidly traverse an octree
structure, and is based on the stackless ray traversal method
for kdtrees [HBS98, PGSS07] and recently adapted to GPU
volume rendering [GMI08, CNLE09]. We employ an ex-
tended version [IGM10] to support preintegration employing
a CUDA algorithm which takes advantage of visibility infor-
mation gathered during the octree traversal to avoid loading
occluded data. Spatio-temporal coherence can be exploited
taking advantage of the scatter memory write capability of
CUDA threads to mark the visibility of all rendered octree
blocks.

5. Conclusions

We presented new algorithms for edge-directed upscaling of
medical datasets, based on voxel splitting and on an opti-

mization procedure smoothing first and second order deriva-
tives of the gray level while keeping the intensity inside each
splitted voxel constant. The algorithm provides results that
appear very sharp, even if does not completely remove vox-
elization. However, objective tests measuring the similarity
between the original high resolution data and correspond-
ing subsampled/upsampled have shown that this similarity is
higher than that obtained by kernel-based upscaling method.
Furthermore, we have shown a reasonable application of
similar algorithms: the enhancement of ray casting volume
visualization through the use of the edge-directed upsam-
pling of the visualized data. The method requires the use of
a recent adaptive volume rendering technique able to han-
dle the interactive visualization of huge datasets. Volumes
are not only pre-processed in order to create a multiscale
representation by downsampling original ones, but upscal-
ing is performed to enhance the quality of the visualization
of small details.

The perceived higher quality of the upsampled volume
rendering shows that the technique can be successfully ap-
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Figure 8: The rendering of the adaptively upsampled volume (right) provides a sharper perception of small details (look at thin
vessels) with respect to a similar visualization (same transfer function and sampling rate) of the original volume (left)

Linear Spline Our Meth.
MR1 9.55 13.07 14.22
MR2 3.63 6.61 7.47
CT 4.62 7.62 8.82

CT2 15.54 22.01 23.97
AVG 8.33 12.32 13.62

Linear Spline Our Meth.
MR1 14.4 11.2 9.8
MR2 24.3 19.9 17.8
CT 20.3 16.7 14.9

CT2 11.0 5.4 3.3
AVG 17.5 13.3 11.4

Table 2: Top: PSNR(dB) obtained in the comparison of orig-
inal medical datasets with downscaled versions (collapsed
voxels) upscaled isotropically by a factor 2. Bottom: same
comparison using PLDV (%, lower is better).

plied in the clinical domain to enhance the perception of 3D
anatomy.
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