
Eurographics Italian Chapter Conference (2010)

E. Puppo, A. Brogni, and L. De Floriani (Editors)

Two examples of GPGPU acceleration

of memory-intensive algorithms

Stefano Marras1,4, Claudio Mura1,2, Enrico Gobbetti3, Riccardo Scateni1, Roberto Scopigno4

1University of Cagliari, Dept. of Mathematics and Computer Science - Italy
2Sardegna Ricerche DistrICT LAB - Italy

3CRS4 - Center for Advanced Studies, Research and Development in Sardinia - Italy
4ISTI-CNR, Visual Computing Lab. - Italy

Abstract

The advent of GPGPU technologies has allowed for sensible speed-ups in many high-dimension, memory-intensive

computational problems. In this paper we demonstrate the effectiveness of such techniques by describing two

applications of GPGPU computing to two different subfields of computer graphics, namely computer vision and

mesh processing. In the first case, CUDA technology is employed to accelerate the computation of approximation

of motion between two images, known also as optical flow. As for mesh processing, we exploit the massively-

parallel architecture of CUDA devices to accelerate the face clustering procedure that is employed in many recent

mesh segmentation algorithms. In both cases, the results obtained so far are presented and thoroughly discussed,

along with the expected future development of the work.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

The interest for GPGPU techniques has been growing

steadily since their introduction: with the exponential growth

of graphics hardware capabilities, more and more re-

searchers coming from diverse backgrounds are becoming

interested in exploiting the computing power of the GPU

to accelerate their applications. Fields as different as image

processing and network optimization, data mining and com-

putational finance all benefit from the ever-growing horse-

power of graphics processors.

In computer vision, CUDA has been mainly used for

image segmentation, feature detection, video segmentation,

SIFT computation and Bayesian Optical Flow; there is also

a large collection of classic algorithms, under the name

of OpenVIDIA, revised using CUDA programming model

[nCb].

To the best of the authors’ knowledge, GPGPU technolo-

gies have been scarcely employed in the field of mesh seg-

mentation and shape analysis. However, most of the recent

works in this research area imply heavy computations, which

lead to compute times that are far from interactivity. Due to

this drawback, a large number of algorithms that are concep-

tually valid and correct are unusable in practice. In particu-

lar, a whole class of algorithms, based on operations on the

dual graph of a mesh, could achieve significant speed-ups if

adequately implemented on GPU architectures. We therefore

employ CUDA technology to accelerate the face clustering

stage, which is at the basis of many successful segmenta-

tion algorithms, and show that relevant improvements can

be achieved over CPU timings.

The rest of the paper is structured as follows: in the fol-

lowing section, we provide an overview of CUDA technol-

ogy, highlighting the potentialities of its highly-parallel pro-

gramming model; we then describe our GPU method for

computing the optical flow using the block matching tech-

nique, focusing on the algorithmic structure of our solution

and on its mapping to the CUDA architecture; the next sec-

tion discusses our CUDA-based approach to face clustering

in triangle meshes and describes the corresponding imple-

mentation; finally, we present the current results of our work,

both in terms of timings and of visual output, and discuss po-

tential extensions.

© The Eurographics Association 2010.

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

2. Overview of CUDA

In recent years, GPU architectures have been continuously

evolving. Modern graphics devices are able to deliver an in-

credible computing power, and have become flexible enough

to support computations that are not directly linked to tradi-

tional graphics calculations.

In 2007, NVidia has introduced CUDA (Compute Uni-

fied Device Architecture), an innovative architecture for

GPGPU that allows for an almost complete abstraction from

the graphics pipeline details. The key success of CUDA

lies in its high-level programming model: computations are

expressed as special functions (called kernels) written in

CUDA C, an adaptation of the C programming language that

includes both extensions and restrictions to the original syn-

tax and semantics. Each kernel is executed in parallel by

N CUDA threads; threads are organized in 1D, 2D or 3D

blocks, which are further structured into a 1D or 2D grid.

Each thread is given an unique ID inside a block, and each

block has an ID inside a grid. The indexing scheme adopted

allows to map the computations expressed by a kernel to a

specific subset of the input data, thus implementing a paral-

lelism of type SIMD (Single Instructions Multiple Data).

CUDA blocks are distributed among a set of Streaming

Multiprocessors (SM), which are composed of an array of

Scalar Processors (SP); scalar processors are the fundamen-

tal computing cores that execute CUDA threads. Threads in

a block are executed on the same SM and can cooperate by

means of a limited amount of on-chip, low-latency shared

memory, which is typically used as a programmer-managed

cache for a larger yet slower global memory. For memory-

intensive applications it is fundamental to reduce the latency

coming from global memory accesses. Special patterns must

be followed when reading/writing data from this memory

area: one of the most common strategies is coalescing of

multiple accesses into fewer memory transactions, but other

approaches (such as the use of texture memory) are possible.

CUDA applications can be executed on a large set of dif-

ferent devices: although each GPU has its own specific fea-

tures (which define the so-called compute capabilities), the

execution scales transparently and only minor modifications

are required to achieve compatibility with older devices.

3. Computing Optical Flow using CUDA

3.1. Optical Flow

One of the problems faced in the processing of a sequence

of 2 or more images is the computation of the so-called

optical flow. OF is the approximation of image motion

defined as the projection of velocities 3D surface points

onto the imaging plane of a visual sensor [BB95]. The esti-

mation of image motion has a large number of applications:

for example, it can be used in other to perform motion

segmentation, compute stereo disparity between images, or

estimate 3D scene properties.

More formally, given an image intensity function I0(u,w)

at time t0, and another image I1(u,w) at time t1, our aim is

to find v ≡ (δu, δw), that is, the displacement of the local

image region x after time δt = t1 − t0. As stated by Horn

and Schunck [HS81], we can assume that the intensity is

approximatively constant under motion for at least a short

duration; from this assumption, it is possible to derive the

equation known as optical flow constraint equation:

∇Iv+ It = 0

where ∇I(Iu, Iw) is the spatial intensity gradient, It is the

temporal gradient and v = (u,w) is the image velocity. One

of the main consequences of the equation is that flow can’t

be estimated if the problem is ill-posed (e.g. there is not

enough information), and it’s possible to compute only one

component of motion in the direction of the local gradient

of image intensity.

There’s a large number of techniques, performing local

or global operations in order to compute the flow on the

entire image. Most of those techniques are expensive in

terms of time and space. In our work, we try to minimize

the time-consumption of the algorithm by choosing local

algorithms; we developed two different algorithms, both

using the CUDA programming model. First, we present an

implementation of the algorithm known as block matching;

then, we propose and implementation of the classic Lucas-

Kanade method. The work here presented can be considered

as still “in progress”, since some of the main issues are not

completely addressed.

3.2. Block Matching Algorithm

Most of the algorithms for the estimation of the optical flow

need a sequence of different images; typically, frames from

a single video are used. Since, in our work, we work only

on pairs of images of the same scene, we choose to imple-

ment a simple block matching algorithm. Block matching

is a technique widely used for stereo matching and object

tracking [GKcC03]; it detects the motion between two im-

ages in a block-wise sense. The blocks are usually defined

by dividing the first image (or frame) into non-overlapping

square parts; each block from the first frame is then matched

to a block of the second image. Matching a block means

finding the vector v = (u,w) that shifts the block from the

first image into the corresponding block in the second im-

age.

The ideal algorithm performs this way:

0. for each block B, select a set of possible shifts

1. for each possible shift δvi, shift the block in order to

locate a block Bi, same size of B, in the second image

© The Eurographics Association 2010.

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

2. compute difference/similarity between B and Bi

3. select block Bk that maximize similarity/minimize differ-

ence and couple block B with the correspondent vector

δvk

In the ideal case, B and Bk will be two blocks having ex-

actly the same pixel values; of course, since algorithm usu-

ally performs on images caught in the real world, there are

problems related to noise, lighting conditions, changes of the

shape of the objects in respect to observer point of view and

so on. Also, some blocks could not contain enough infor-

mation in order to perform a good matching (for example,

blocks with flat or poor texture), so we must be able to evalu-

ate the reliability of the matching defining some quality mea-

sure.

In order to find the best matching, we must choose a mea-

sure to use. We can measure difference between two squared

blocks using SAD (sum of absolute differences) between

their correspondent pixels, and choosing the block that min-

imize SAD. SAD has the drawback of being too sensitive to

noise, so it’s not the best choice for our purpose. SSD (sum

of squared differences) and NCC (normalized cross corre-

lation) are better solutions; we focus in particular on NCC,

since its formulation can be modified in order to adapting it

to CUDA programming model.

Cross Correlation between two continuous functions f and

g is defined as

(f ·g)(t) =
∫

f (τ)g(t+ τ)dτ

It is a measure of similarity between two functions, with

maximum value for functions that are strictly related (or

even the same function). Its discrete counterpart is defined

as

(f ∗g)[n] =
∑

∞
m=−∞ f [n]g[n+m]

Since we work on images, we use a measure that is strictly

correlated with the discrete CC, but we also need to consider

that images is subject to noise and artifacts; then, formula to

compute cross-correlation between block B0 and B1 is:

NCC(B0,B1) =

1
n−1 ∗

∑

(x,y∈B0,B1)dist(B0(x,y)−B0)

σB0

∗
dist(B1(x,y)−B1)

σB1

This formulation, named Normalized Cross Correlation,

perform an operation of normalization of both blocks,

and then compute correlation in a range [0.0,1.0]. In the

formula, n is the number of pixels of block B0 (we assume

that B0 and B1 are blocks of equal size), while σ is the

standard deviation computed using the values of pixels in

the block. This measure is quite robust, and value of NCC

can also be used as quality measure: matching near to

zero are not reliable, since it means that is not possible to

evaluate correctly the motion of the block (poor texture).

This techniques can be easily extended to the multi-scale

approach in order to deal with large displacement [BBM09];

the two reference images are subsampled with lower

resolution, then block matching is applied to image with

lowest resolution. Results are then propagated to the higher

levels, where they are used to initialize the search for the

best matching block.

Regarding the implementation issues, we try to reduce

time and space consumption using CUDA architecture,

when possible. First of all, lots of useful functions related

to image processing, such as Gaussian filtering, resampling,

rescaling, spatial convolution etc. have been reimplemented

using CUDA; since most of the operations are related to a

single pixel, they can be performed in parallel. We carry on

the device memory a part of the image (or, if the image is not

too large, the entire image), and then each kernel works only

on one pixel (and, eventually, its neighborhood) without in-

terfering with the other kernels; final results are then copied

on the host memory. Secondly, CUDA can be used in or-

der to delegate part of the computation of the NCC between

blocks. As matter of fact, we can split the formula of NCC

into two parts: we can compute dist(B(x,y)−B)/σB over the

entire block B. Obviously, also mean and variance of each

block can be pre-computed using CUDA; values can be then

stored in buffers and copied in memory when needed. For

each block B, value of NCC coefficient at pixel (x,y) can be

computed only once; we can compute these values and then

store it in buffers (e.g. linear arrays). Having one buffer for

each block, we can compute NCC as the sum of the prod-

ucts of the elements of the arrays; in this way, we simplify

the computation of NCC in terms of time-consuming, but

we need more memory in order to store the results of partial

computations. The operation of searching the best matching

is leaved to CPU, since it’s not possible to avoid branches

that affects performance of CUDA architecture. Anyhow, it

is possible to achieve a speed-up of this phase by using the

CUDA Data Parallel Primitives Library (CuDPP) [nCa].

In order to run the algorithm on a different number of

GPGPU, it is possible to select the quantity of data that can

be carried on the GPU memory during each operation. Flow

between two images can be computed in a single iterations,

if all the data needed can be carried on the GPU, or in a

number of iterations, using a piecewise-like approach.

3.3. Lucas Kanade Algorithm

One of the first and most used algorithms for the compu-

tation of the optical flow is the well-know Lucas Kanade

algorithm [LK81]. It’s a simple, local method which use a

local constant model for the velocity v. The velocity is com-

puted as a weighted least squares solution to the optical flow

constraint equation. The displacement 4 = (u,v) of pixel p

between two different frames I0 and I1 can be written as:
[

u

v

]

= (AT A)−1AT b,

with:

© The Eurographics Association 2010.

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

A =



















































Ix0
Iy0

Ix1
Iy1

. .

. .

. .

Ixn−1
Iyn−1



















































, b =



















































It0

It1

.

.

.

Itn−1



















































A is the matrix made by the values of spatial derivatives,

obtained as a combination of the spatial derivatives of both

I0 and I1, while b is an array containing the temporal deriva-

tives obtained as difference between the values of the same

pixel in the two images. The values of derivatives are com-

puted using only a local subset of the pixels of the image,

centered in pixel p; n is the number of pixels involved in the

process. The previous formulation can be simplified, and 4

can be obtained as:

[

u

v

]

=

(
∑n

i=0
I2
xi

∑n
i=0

Ixi
Iyi

∑n
i=0

Ixi
Iyi

∑n
i=0

I2
yi

)−1 (
∑n

i=0
Ixi

Iti
∑n

i=0
Iyi

Iti

)

An implementation based on CUDA programming model

is straightforward. Three different kernels compute spatial

and temporal derivatives of the images, storing them in the

global memory, while the fourth (and most important) ker-

nel reads data from global memory and use them in order to

compute the displacement for the pixel p using the formu-

lation previously written. The main advantage of this imple-

mentation is that the displacement of each pixel is computed

in parallel with the other ones. We developed a pyramidal

implementation in the same way we developed for block

matching algorithm; also, thanks to the huge time saving, we

can perform a number of iterative refinement steps consist-

ing in executing the algorithm and warping the destination

image with the last computed flow iteratively. A similar im-

plementation has been proposed in [?]; we add the support

for large-resolution image and other additional features like

alpha mask that allows the user to select only the regions of

interest in the computation.

4. Face clustering for mesh segmentation

Given a 3D boundary mesh M, a segmentation of M is a

partition of the set S of its elements (typically, faces) into k

disjoint, connected sets S 1,S 2, . . . ,S k. The partition is per-

formed according to a specific criterion, which is largely de-

pendent on the domain of application. A wide set of different

segmentation techniques have been proposed by the research

in the last years; among them, an important group of algo-

rithms computes the desired partition by performing opera-

tions on the dual graph of the mesh.

The method considered in this paper employs an iter-

ative fuzzy clustering procedure, following the approach

described in [KT03]. This strategy can be easily general-

ized to fit a whole class of segmentation algorithms (see

also [LZHM06], [LHMR08]).

The procedure is based on the following steps:

0. compute the distances between all pairs of faces in the

mesh

1. compute a (new) set of centroid faces

2. for each face, compute the degree of membership to each

cluster

3. if stop condition is met, exit; otherwise, go back to 1

Since step 0 is the most compute-intensive, we focus on

that stage and describe our method to accelerate its execu-

tion using a GPU-friendly procedure. We have developed a

preliminary implementation of the remaining phases both in

CPU and in GPU, under CUDA; however, since a perfor-

mance optimization of the work done is still in progress, we

only provide the final results obtained, without providing a

detailed description.

4.1. APSP algorithm on the GPU

The distances evaluation procedure operates on the dual

graph of the input mesh. As a preliminary step, the dis-

tance between adjacent faces in the mesh is evaluated, and

the values obtained define the costs of the dual arcs. Several

definitions of distance can be employed, which makes the

method flexible and adaptable to specific applications and

requirements. We have chosen to employ a definition based

on the geodesic and angular distance between adjacent faces,

largely derived from the one employed in [KT03] and ex-

pressed by the following formula:

Dist(fi, f j) = α
Distang(fi, f j)

AVG(Distang)
+ (1−α)

Distgeod(fi, f j)

AVG(Distgeod)

where fi and f j are adjacent faces and α is a user-defined

parameter.

The distances between adjacent faces are then propagated

on the whole graph using an all-pairs shortest paths algo-

rithm (APSP), which finds the minimum distance path be-

tween each pair of nodes of the dual graph.

In spite of being only a preprocessing operation, the

distance computation dominates the execution time of the

whole process. Throughout this section, we shall denote by

N the number of nodes in the dual graph of the processed

mesh (that is, the number of faces of the mesh itself). Since

the dual graph is undirected and sparse (each node has ex-

actly three adjacent nodes) the best known algorithm for

the APSP is the repeated Dijkstra, yielding a O(N2logN)

time complexity. The efficiency of this algorithm lies in

the selective distance update operation: when the shortest-

path distance to a node v has been permanently defined,

only the distance estimates for its neighbors are updated.

If the implementation employs a heap-based data structure

for storing the nodes in intermediate steps, the update re-

quires 3·O(logN) =O(logN) time. However, when the graph

is dense, the update operation takes O(N) time: in such cases,

the Floyd-Warshall algorithm is normally employed, leading

to a time complexity of O(N3).

© The Eurographics Association 2010.

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

Though theoretically not optimal for undirected, sparse

graphs, Floyd-Warshall algorithm exhibits a regular memory

access pattern. The procedure operates on a N ×N matrix;

at the beginning of the process, the generic cell δi j has the

following value:

d0
i j =



















0 if i = j

ci j if i , j∧ (i, j) ∈ E

∞ if i , j∧ (i, j) < E

where E is the set of edges of the input (dual) graph.

The procedure can be optimized for parallel execution on

CUDA by partitioning the above matrix into squared tiles of

size B, as done in [KK08]. Assuming that NmodB = 0, the

matrix is partitioned into (N/B)× (N/B) tiles; if N is not a

multiple of B, a padding can be added to the matrix so that

this condition is met. This partitioning allows for a parallel

processing of multiple tiles; however, the tiles cannot be pro-

cessed in parallel altogether, since data dependencies must

be respected and correctly handled.

Figure 1: Block dependencies in the tiled Floyd-Warshall

algorithm: in stage 1 (top, left) the red block is self-

dependent; in stage 2 (top, right), the green block depends

upon itself and upon the primary block (shown in red);

in stage 3 (bottom) the green block depends upon the two

blocks shown in blue.

This tiled Floyd-Warshall algorithm executes N/B itera-

tions, one for every block in the diagonal of the partitioned

matrix. At the generic iteration k, three stages are performed

sequentially: in stage 1, the tile in position k in the diago-

nal is processed (primary block); in stage 2, the blocks in

the same row or column as the primary block are handled;

finally, in stage 3 the remaining tiles are computed. Each pri-

mary block is self-dependent, and can be handled by simply

computing the Floyd-Warshall algorithm as if the tile was an

entire adjacency matrix. The blocks processed in stage 2 de-

pend upon themselves and upon the primary block. Finally,

each tile processed in stage 3 depends upon two tiles: the

tile sharing row index with the primary block and the col-

umn index with the current block; the tile sharing the row

index with the current block and the column index with the

primary block. Figure 1 provides an immediate description

of the tile dependencies.

The above procedure, described in detail in [KK08], com-

putes the APSP for generic directed graphs. Note that the

dual graph of a mesh is undirected, which means that only

the lower (or upper) triangular part of the distance matrix

Figure 2: Block dependencies in the tiled Floyd-Warshall

algorithm adapted for undirected graphs: no changes are

required in stage 1 (top, left) and 2 (top, right); in stage 3

(bottom), the block crossed out is fetched from the lower tri-

angular part of the matrix.

must be computed. Stated differently, only the values [i, j]

with i ≥ j need to be computed. Such remarks can be trans-

posed to the tile-based partitioning of the distance matrix: if

(r,c) is the index of a generic block in the tiled matrix, only

the blocks with r ≥ c need to be computed. In fact, the upper

triangular part of each primary block need not be computed;

however, it is convenient to perform en extra k ·Ω(B2/2) op-

erations in order to maintain a regular structure in the pro-

cessing and allow for more efficient implementation.

The tiled Floyd-Warshall algorithm can be adapted to pro-

cess only the required blocks: only minor changes are re-

quired to the staged execution described above. Assuming

the upper triangular part of the matrix is discarded, only the

lower blocks must be computed. Since primary blocks are

self-dependent, no changes are needed in stage 1. In stage

2, only the tiles on the same column as the primary block

are to be computed. Stage 3 requires the most critical adap-

tation: one of the dependency tiles is always located above

the diagonal: since we only want to process the lower trian-

gular blocks, it is useful to express all computations in terms

of such data. Due to the symmetry in the distance matrix, a

generic block (r,c) is structurally identical to the transposed

symmetric block, that is, to the transpose of the block (c,r).

As a result, the discarded dependency block can always be

obtained from the lower part of the matrix. Please note that

this peculiar approach allows to reduce by a factor of 2 the

amount of processing required in stage 2, while the number

of tiles handled in stage 3 is reduced by more than a half.

Also, the memory footprint required is equal to O(N2/2),

thus improving over the spatial complexity of the original

method.

4.2. Implementation

The algorithm can be implemented by mapping each B×B

tile of the partitioned matrix to an equally-sized CUDA

block, with a CUDA thread processing a single value in the

tile. For the directed case, the mapping is simple. In stage 1,

a CUDA grid containing a single block is created. In stage 2,

a bi-dimensional grid of size 2× (B−1) is launched, with the

blocks in the first row processing the tiles sharing the row

with the primary block and the second row processing tiles

© The Eurographics Association 2010.

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

Figure 7: Timings of the four version of the APSP algorithm

implemented: in blue, the CPU Single-thread Repeated Di-

jkstra; in red, the CPU Multi-thread Repeated Dijkstra; in

yellow, the tiled GPU Floyd-Warshall version; in green, the

tiled, undirected GPU Floyd-Warshall.

weighted using flow quality, has to be implemented in order

to remove the noise in the flow. Moreover, some discontinu-

ities are still present, since we are operating locally without

any constraint on global smoothness (such as in [Sch85]).

Adding some kind of constraint will improve the global

quality and usability of our flow. Finally, basic NCC formu-

lation provides results that are better than the ones obtained

using SSD or SAD measure, but it can be probably improved

including in the measure also a term related to spatial deriva-

tives of the images. Nevertheless, results obtained so far are

encouraging, and we are confident to achieve better results,

both timewise and in terms of quality of the output, in the

next future.

6.2. Face clustering

The analysis of the timing results shows that segmentation

algorithms based on face clustering can significantly bene-

fit from GPGPU techniques. Moreover, GPU architectures

are evolving at a faster rate than those for CPU, and it is

likely that, in the near future, the gap existing between the

two technologies will become wider. As a result, the conve-

nience of GPU-based methods is expected to become even

higher, justifying the effort put in the study of GPGPU tech-

nologies.

Among the possible future extensions to this work, the

most interesting one is the design and implementation of

a full-scale, GPU-accelerated segmentation algorithm. The

proper clustering stage, which has not been described in this

paper and is object of active work at the moment of writ-

ing, is a step that can largely benefit from the use of GPGPU

techniques; moreover, many methods (as the one by Katz

and Tal described in [KT03]) employ minimum-cut to refine

the borders between clusters, and some recent research work
on CUDA-based cuts could be adapted to fit the segmenta-

tion purposes.

References

[BB95] Beauchemin S. S., Barron J. L.: The computation of op-
tical flow. ACM Comput. Surv. 27, 3 (1995), 433–466.

[BBM09] Brox T., Bregler C., Malik J.: Large displacement
optical flow. In Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (Los Alamitos, CA, USA, 2009), IEEE
Computer Society, pp. 41–48.

[CCC∗08] Cignoni P., Callieri M., Corsini M., Dellepiane M.,
Ganovelli F., Ranzuglia G.: Meshlab: an open-source mesh pro-
cessing tool. In Sixth Eurographics Italian Chapter Conference

(2008), pp. 129–136.

[GKcC03] Gyaourova A., Kamath C., ching Cheung S.: Block

Matching for object tracking. Tech. rep., LLNL, UCRL-TR-
200271, 2003.

[HS81] Horn B. K. P., Schunck B. G.: Determining optical flow.
Artifical Intelligence 17 (1981), 185–203.

[KK08] Katz G. J., Kider Jr J. T.: All-pairs shortest-paths for
large graphs on the gpu. In GH ’08: Proceedings of the 23rd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-

ware (Aire-la-Ville, Switzerland, Switzerland, 2008), Eurograph-
ics Association, pp. 47–55.

[KT03] Katz S., Tal A.: Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM TOG 22, 3 (2003), 954–961.

[LHMR08] Lai Y.-K., Hu S.-M., Martin R. R., Rosin P. L.: Fast
mesh segmentation using random walks. In SPM ’08: Proceed-

ings of the 2008 ACM symposium on Solid and physical modeling

(New York, NY, USA, 2008), ACM, pp. 183–191.

[LK81] Lucas B. D., Kanade T.: An iterative image registration
technique with an application to stereo vision (ijcai). In Pro-

ceedings of the 7th International Joint Conference on Artificial

Intelligence (IJCAI ’81) (April 1981), pp. 674–679.

[LZHM06] Lai Y.-K., Zhou Q.-Y., Hu S.-M., Martin R. R.: Fea-
ture sensitive mesh segmentation. In SPM ’06: Proceedings of

the 2006 ACM symposium on Solid and physical modeling (New
York, NY, USA, 2006), ACM, pp. 17–25.

[nCa] nVidia Corporation: CUDA data parallel primitives li-
brary.

[nCb] nVidia Corporation: OpenVIDIA.

[Sch85] Schunck B.: Image flow: Fundamentals and future re-
search. In CVPR85 (1985), pp. 560–571.

© The Eurographics Association 2010.

