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Fig. 1. Examples of automatically recovered 3D layouts. Our method returns
a 3D room model from a single panorama even in cases not supported by current
state-of-the-art methods, such as, for example, vertical walls meeting at non-right angles
or with a curved 2D footprints.

Abstract. We introduce a novel end-to-end approach to predict a 3D
room layout from a single panoramic image. Compared to recent state-
of-the-art works, our method is not limited to Manhattan World envi-
ronments, and can reconstruct rooms bounded by vertical walls that do
not form right angles or are curved – i.e., Atlanta World models. In our
approach, we project the original gravity-aligned panoramic image on two
horizontal planes, one above and one below the camera. This represen-
tation encodes all the information needed to recover the Atlanta World
3D bounding surfaces of the room in the form of a 2D room footprint on
the floor plan and a room height. To predict the 3D layout, we propose
an encoder-decoder neural network architecture, leveraging Recurrent
Neural Networks (RNNs) to capture long-range geometric patterns, and
exploiting a customized training strategy based on domain-specific knowl-
edge. The experimental results demonstrate that our method outperforms
state-of-the-art solutions in prediction accuracy, in particular in cases of
complex wall layouts or curved wall footprints.

Keywords: 3D floor plan recovery, panoramic images, 360 images, data-
driven reconstruction, structured indoor reconstruction, indoor panorama,
room layout estimation, holistic scene structure

1 Introduction

Automatic 3D reconstruction of a room’s bounding surfaces from a single image
is a very active research topic [20].
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In this context, 360◦ capture is very appealing, since it provides the quickest
and most complete single-image coverage and is supported by a wide variety
of professional and consumer capture devices that make acquisition fast and
cost-effective [31]. Since rooms are full of clutter, bounding surfaces are typically
untextured, and single images produce anyway only partial coverage and imperfect
sampling, reconstruction is difficult and ambiguous.

Since, without prior assumptions, the reconstruction problem is ill-posed, all
methods must focus reconstruction on very specific expected indoor shapes. In par-
ticular, current approaches, see Sec. 2, are either tuned to simple structures with a
limited number of corners [6] or bound by the Indoor World assumption [16] (i.e.,
the environment has a single horizontal floor and ceiling, and vertical walls which
all meet at right angles). In this context, recent data-driven approaches [33,26,30]
have produced excellent results in recovering the room layout from a single
panoramic image [34]. However, state-of-the-art data-driven methods usually
follow a costly and constraining framework: a heavy pre-processing to generate
Manhattan-aligned panoramas (e.g., edge-based alignment and warping of gen-
erated perspective views [16]), a deep neural network that predicts the layout
elements on a rectified equirectangular image, and a post-processing that fits the
(Manhattan) 3D layout to the predicted elements.

In this work, we present AtlantaNet, a novel data-driven solution to estimate
a 3D room layout from a single RGB panorama. As its name suggests, we
exploit the less restrictive Atlanta World model [23], in which the environment is
expected to have horizontal floor and ceiling and vertical walls, but without the
restriction of walls meeting at right angles or having a limited number of corners
(supporting, e.g., curved walls). In our approach, the original equirectangular
image, assumed roughly aligned with the gravity vector, is projected on two
arbitrary horizontal planes, one above and one below the camera (see Fig. 2(a)).
Exploiting the Atlanta World assumption, this representation encodes all the
information needed to recover 3D bounding surfaces of the room, i.e., the 2D
floor plan and the room height (see Sec. 4). To predict the 3D layout from this
representation, we propose an encoder-decoder architecture, leveraging Recurrent
Neural Networks (RNNs) to capture the long-range geometric pattern of room
layouts. The network maps a projected image, represented as a tensor, to a
binary segmentation mask separating the interior and exterior space, respectively
for the ceiling and for the floor projection. The walls footprint is found by
extracting a polygonal approximation of the contour of the mask generated from
the above-camera image (ceiling mask), and the room height is determined by
the scale that maximizes the correlation between the lower and upper contour
(see Sec. 4). A customized training strategy based on domain-specific knowledge
makes it possible to perform data augmentation and reuse the same network for
both projected images. For training, we exploit previously released annotated
datasets [33,26,30,6]. Our experimental results (see Sec. 5) demonstrate that our
method outperforms state-of-the-art methods [33,26,30] in prediction accuracy,
especially on rooms with multiple corners or non-Manhattan layouts. Fig. 1 shows
some 3D layouts predicted by our method.
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Our contributions are summarized as follows:

– We introduce a data encoding based on the Atlanta World indoor model,
that allows layout prediction on planar projections free from spherical im-
age deformations, unlike previous approaches that are predominantly based
on features extracted from the equirectangular view [33,26,30,6]. As sup-
ported by results, working on such a transformed domain simplifies structure
detection [19,21,30]. In addition, representative tensors can be treated as
conventional 2D images, simplifying, for example, data augmentation and
the use of powerful network architectures such as RNNs [2,1].

– We reconstruct the 3D layout, in terms of 2D footprint and room height, by
inferring the 2D layout from the contour of a solid segmentation masks and
the room height from the geometric analysis of the correlation between two
contours. Our approach is more stable and well suited to modeling complex
structures, such as curved walls, than previous approaches that infer layout
from sparse corner positions [33,26,6]. Moreover, we do not need an additional
dense network [30] or a post-processing voting scheme [26] to infer the layout
height, which can directly determined from a geometric analysis of the masks.

– We propose an end-to-end network that, differently from current state-of-
the-art approaches [33,26,30], does not require heavy pre-processing, such
as detection of main Manhattan-world directions from vanishing lines analy-
sis [34,32,16] and related image warping, nor complex layout post-processing,
such as Manhattan-world regularization of detected features [33,26,30]. Our
only requirement is that input images are roughly aligned with the gravity
vector, a constraint which is easily met by hardware or software means [9],
and is verified in all current benchmark databases. As a result, our method,
in addition to being faster, does nor require complex per-image deformations
that make multi-view analysis difficult (see discussion in Sec. 6).

– We propose a training strategy based on feeding both ceiling and floor view
on the same network instance, improving inference performance compared to
a dual joined branches architecture or on separate training for ceiling and
floor (see results and ablation study at Sec. 5.3).

We tested our approach on both conventional benchmarks (see Zou et al. [34])
and more challenging non-Manhattan scenes annotated by us (see Sec. 5.1).
Results demonstrate how our method outperforms previous works on both testing
sets (Sec. 5). Code and data are made available at https: // github. com/ crs4/
AtlantaNet .

2 Related work

3D reconstruction and modeling of indoor scenes has attracted a lot of research
in recent years. Here, we analyze only the approaches closer to ours, referring
the reader to a very recent survey for a general coverage of the subject [20].

A noticeable series of works concentrate on parsing the room layout from a
single RGB image. Since man-made interiors often follow very strict rules, several
successful approaches have been proposed by imposing specific priors.

https://github.com/crs4/AtlantaNet
https://github.com/crs4/AtlantaNet
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Delage et al. [4] presented one the first monocular approaches to automatically
recover a 3D reconstruction from a single indoor image. They adopt a dynamic
Bayesian network trained to recognize the floor-wall boundary in each column of
the image, assuming the indoor scene consists only of a flat floor and straight
vertical walls. However, in its original formulation, such a reconstruction is limited
to partial views (e.g., a room corner).

Full-view geometric context (GC) estimation from appearance priors, i.e., the
establishment of a correspondence between image pixels and geometric surface
labels, was proposed as a method to analyze outdoor scenes by Hoiem et al. [13].
In combination with Orientation Maps (OM) [16], which are map of local belief
of region orientations computed from line segments through heuristic rules, GC is
the basis for almost all methods based on geometric reasoning on a single image.
Hedau et al. [12], in particular, successfully analyzed the labeling of pixels under
the cuboid prior, while Lee et al. [16] considered the less constraining Indoor
World Model (IWM), i.e., a Manhattan World with single-floor and single-ceiling,
by noting that projections of building interiors under the Indoor World can be
fully represented by corners, so a valid structure can be obtained by imposing
geometric constraints on corners. Such a geometric reasoning on IWM supports
several efficient reconstruction methods. A notable example is the work of Flint
et al. [8,7], who, exploiting the homography between floor and ceiling, reduce
the structure classification problem to the estimation of the y-coordinate of the
ceiling-wall boundary in each image column.

One of the main limitations of single-image methods lies, in fact, on the
restricted field of view (FOV) of conventional perspective images, which inevitably
results in a limited geometric context [32]. With the emergence of consumer-level
360◦ cameras, a wide indoor context can now be captured with one or at least few
shots. As a result, most of the research on reconstruction from sparse imagery
is now focused in this direction. Zhang et al. [32] propose a whole-room 3D
context model that maps a full-view panorama to a 3D bounding box of the
room, also detecting all major objects inside (e.g, PanoContext). By combining
OM for the top part and GC for the bottom part, they demonstrate that by using
panoramas, their algorithm significantly outperforms results on regular-FOV
images. More recently, Xu et al. [27] extended this approach of by assuming
IWM instead of a box-shaped room, thus obtaining a more accurate shape of
the room, and Yang et al. [28] proposed an algorithm that, starting from a
single full-view panorama, automatically infers a 3D shape from a collection of
partially oriented super-pixel facets and line segments, exploiting the Manhattan
World constraint. Pintore et al. [19] tackle the problem of recovering room
boundaries in a top-down 2D domain, in a manner conceptually similar to that
of dense approaches. To recover the shape of the room from the single images
they combine the ceiling-floor homography [8] to a spatial transform (E2P -
i.e., equirectangular to perspective) [19], based on the Unified projection model
for spherical images [10]. Such E2P transform highlights the shape of the room
projected on a 2D floorplan, generating two projections, respectively for the
floor and for the ceiling edges. Applying the ceiling-floor homography, they
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recover the height of the walls and enforce the 2D shape estimation from the
projected contours. As for all feature-based methods, the effectiveness of these
approaches depend on the quality of extracted features (e.g., edges or flat uniform
patches). To overcome these problems, more and more solutions are turning
towards data-driven approaches [34].

The peculiarity of indoor reconstruction makes generic segmentation solutions
(e.g., U-Net [22] or DeepLab [3]) not appropriate. In particular, defining a
graphical model at the pixel-level makes it hard to incorporate global shape
priors. Recent data-driven approaches have demonstrated impressive performance
in recovering the 3D boundary of a single room meeting the Manhattan World
constraint. Zou et al. [33] predict the corner probability map and boundary map
of directly from a panorama (e..g, LayoutNet). They also extend Stanford 2D-3D
dataset [25] with annotated layouts for training and evaluation. Yang et al. [30]
propose a deep learning framework, called DuLa-Net, which exploits features
fusion between the original panoramic view and the ceiling E2P transform [19],
to output a floor plan probability map. A Manhattan regularization step is then
performed to recover the 2D floor plan shape, through a grid aligned to the
main Manhattan axes. Similarly to LayoutNet approach [33], a number of recent
works [6,26] focus on inferring the room layout from the sparse corners position
in the panoramic image. Sun et al. [26] represent room layout as three 1D vectors
that encode, at each image column, the boundary positions of floor-wall and
ceiling-wall, and the existence of wall-wall boundary. The 2D layout is then
obtained by fitting Manhattan World segments on the estimated corner positions.

Recently, Zou et al. [34] have presented an extensive evaluation of the latest
high-performance methods. In their classification, such methods basically share
the same pipeline: a Manhattan World pre-processing step (e.g., based on Zhang
et al. [32]), the prediction of layout elements and a post-processing for fitting the
3D model to the predicted elements after a series of regularization. Differently
to almost all recent methods [33,26,30], we do not need complex pre-processing
steps, such as computation of Manhattan vanishing lines [16] and warping the
panoramic image according to them, but only perform projection along the gravity
vector. While our method, like many recent ones, shares with HorizonNet [26]
and Dula-Net [30] the encoder-decoder concept, we introduce important novelties
in the network architecture. In particular, HorizonNet fully works in a 1D domain
derived from the equirectangular projection, while we work entirely in a 2D
domain derived from projections on horizontal planes. Moreover, in contrast
to Dula-Net, we use a single branch working in the transformed domain (both
for floor and ceiling), while Dula-Net uses two parallel branches for the ceiling-
view probability and for ceiling-floor probability in the equirectangular domain,
plus an additional linear branch for deriving the height. Our results show the
advantages of our solution. Furthermore, in contrast to many other works, we
predict the room layout from dense 2D segmentation maps by simply extracting
the largest connected component, rather than from a sparse number of inferred
corner positions [6,26]. Such an approach is more robust, particularly in cases of
non-Manhattan shapes.
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3 Overview

(a) Dataencoding (b) Layoutrecovery

Fig. 2. Data encoding and layout prediction. Fig. 2(a): the Atlanta Transform
Ah maps all the points of the equirectangular image in 3D space as if their height was
hf (focal height), where hf can assume only two possible values: −he (eye height) and
hc (ceiling height). Since at least hc is an unknown value, we apply the transform by
imposing a single, fixed, hf , which depends by a fixed field-of-view (FOV). Fig. 2(b): We
infer through our network the ceiling or floor shapes. The height is directly proportional
to the ratio hr (height ratio) between these shapes, and the 2D footprint of the room is
recovered from the ceiling shape (which is less affected by clutter).

Our method takes as input a single panoramic image, that we assume aligned
to the gravity vector. This is easily obtained on all modern mobile devices that
have an IMU on board, or can be achieved prior to the application of our pipeline
through standard image processing means [9]. Starting from the oriented image,
our approach, depicted in Fig. 2 determines the room structure.

The first module generates, from the input equirectangular image (e.g.,
panorama original size), an Atlanta Transform (e.g., 3× 1024× 1024) on two hor-
izontal planes placed above and below the camera. For training, the ground truth
annotations, conventionally provided on a panoramic image, are transformed in
the same way. To simplify discussion, we call the projection on the upper plane
the ceiling projection, and the projection on the lower plane the floor projection.
Note, however, that the selected planes do not need to be exactly corresponding
to the ceiling or for the floor plane, since the room dimensions are determined
automatically by our method and are not known in advance.

During training, the network (see Fig.3) is fed by alternating ceiling or
floor images, according to a probability function (see Sec. 4.3 and Sec. 5.3). In
prediction mode, the same trained network is used to infer ceiling or floor shapes.

The height of the layout is directly proportional to the ratio hr between the
ceiling shape and the floor shape (i.e., a scaling factor). Since in real cases, the
floor shape is partially occluded by the clutter, we assume as inferred hr the
value that maximizes the intersection-over-union between the contours of the
ceiling and the floor shapes (see Fig. 2(b)).

On output, the 2D shape of the room is simply the contour of the largest
connected region of the mask resulting from the network, without applying any
post-process regularization, as opposed to, e.g., solutions based on Manhattan-
world constraints. The final 3D layout is then determined by extruding a 2D
shape from the ceiling shape using the recovered layout height.
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4 Approach

4.1 Data encoding

Assuming the Atlanta World model [23], we project the panoramic image on
two horizontal planes, building, respectively, one representative tensor (i.e.,
3 × 1024 × 1024) for the ceiling and one for the floor horizontal plane (see
Fig. 2(b)). To transform the equirectangular map we adopt the following relation:

Ah(θ, γ, hf ) =


x = hf/ tan γ ∗ cos θ
y = hf/ tan γ ∗ sin θ
z = hf

(1)

The function Ah, called Atlanta Transform, maps all the points of the equirect-
angular image in 3D space as if their height was hf [19]. Compared to a classic
pin-hole model, hf can be seen as the focal length for a 180 degree field-of-view.
In the specific case of the Atlanta World model, hf can assume only two possible
values: −he, that is the floor plane below camera center, and hc, that is the
distance between the camera center and the ceiling plane (see Fig. 2(a)).

Considering he a known constant or at most fixed as a scale factor, the 3D
layout of an Atlanta model is fully defined by a two-dimensional shape - i.e.
the 2D footprint of the layout on the floorplan, and by the ceiling distance hc.
Ideally in order to directly apply equation 1 we should also know the value
of hc. Since, in our case, hc is unknown before reconstruction and must be
inferred by the network, we apply a modified version of the transform [30] by
imposing a single, fixed, hf , which depends by a fixed field-of-view (FOV), i.e.,
hf = w/2 ∗ tan(FOV/2), where w × w is the extent in pixels of each transform
(that we assume square). As a consequence, the height of the room is determined
by the ratio between hc and he, and is directly proportional to the ratio hr
between the ceiling shape and the floor shape. Ideally, hr should be the value
that makes the floor shape match with the ceiling shape. Since in real cases, the
floor shape is heavily occluded by clutter, we assume as inferred hr the value
that maximizes the intersection-over-union between the contours of the ceiling
and the floor shapes (see Fig. 2(b)).

4.2 Network architecture

Fig. 3 shows an overview of AtlantaNet. The network takes as an input a transform
of size 3×w×w (see Sec. 4.1) and produces a segmentation mask of size 1×w×w.
We tested different sizes for the input transform, and we found that 1024 × 1024
is the best size in terms of performance, so as to guarantee sufficient detail for
the most complex forms and not to require large memory resources (see Sec. 5).
The size of the output is 1 × 1024 × 1024, that is a binary segmentation mask
describing the ceiling or floor shape. We adopt ResNet [11] as feature extractor,
which has proven to be one of the most effective encoder for both panoramic
and perspective images [34]. The output of each ResNet block has half spatial
resolution compared to that of the previous block. To capture both low-level
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Fig. 3. Network architecture. The network takes as input a transforms of size
3 × w × w (see Sec. 4.1) and passes it to a ResNet encoder. To capture both low-level
and high-level features, we keep the last four feature maps of the encoder. Each feature
map is then reduced to the same size, 256×32×32, through a sequence of convolutional
layers and reshaped to 256× 1024. The 4 features maps are concatenated to a sequential
feature map of 1024 × 1024. We feed such a sequence to a RNN, obtaining, after a
reshaping, a 1024 × 32 × 32 map. We upsample such map to recover a 1 × 1024 × 1024
binary segmentation mask describing the ceiling or floor shape.

and high-level features, we keep the last four feature maps of the encoder [26].
Each feature map is then reduced to the same size, 256 × 32 × 32, through a
sequence of convolutional layers (Convs in Fig. 3), where each layer contains: a
2D convolution having stride 2 (e.g., except for the last block, having stride 1), a
batch normalization module and a rectified linear unit function (ReLU). Finally,
we reshape the 4 features maps to 256 × 1024, and we concatenate them layers
to obtain a single sequential feature map of 1024 × 1024 (i.e., 1024 layers for a
sequence having length 1024).

We feed such a sequence to a RNN, that is exploited to capture the shape of
the object and thus make coherent predictions even in ambiguous cases such as
occlusions and cluttered scenes. In particular, we employ convolutional LSTM [24]
modules in our model as the decoder core. Specifically we adopt a bi-directional
LSTM with 512 features in the hidden state and 2 hidden internal layers. The
output of the RNN decoder is a 1024 × 1024 feature map, which collect all the
time steps of the RNN layers.

We reshape the RNN output to 1024 × 32 × 32, and, after a a drop-off, we
up-sample it through a sequence of 6 convolutional layers (same of Convs but
with stride 1) each one followed by an interpolation (e.g., factor 2 for each layer).
In the final layer of the decoder the ReLU is replaced by Sigmoid. As a result we
obtain a prediction mask 1 × 1024 × 1024 of the targeted shape (see Fig. 3).

At inferring time the same trained network is applied to the ceiling and floor
transform respectively (See Fig. 2(b)). The 2D room layout F2D is obtained with
a simple polygonal approximation of the ceiling shape contour, while the ratio of
heights hr (and therefore hc - see Sec. 4.1), is obtained from the ratio between
the contours of the two inferred shapes. In particular, being hr actually a scale
factor between the ceiling and floor transform, it is determined by the scale that
maximizes the matching points between the two contours (see Fig. 2(b)). We
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build the final 3D model just extruding F2D, using hr to determine hc and he
(see Sec. 4.1).

4.3 Training

To train our network, we adopt a specific loss function based on the binary cross
entropy error of the predicted pixel probability in the mask M and in its gradient
M ′, compared to ground truth:

−
1

n

∑
p=M

(p̂ log p+ (1− p̂) log (1− p))−
1

n

∑
q=M′

(q̂ log q + (1− q̂) log (1− q)) (2)

where p is the probability of one pixel in M , p̂ is the ground truth of p in M , q is
the pixel probability in M ′, q̂ is the ground truth, and n is the number of pixels
in M and M ′ which is the transform resolution. The gradient of binary masks is
obtained by a Sobel filter of kernel size 3. Even though the gradient component
provides a value only near edges, its presence improves the sharpening of the
contour in cases of small boundary surface details. This is very important in
our case, since in our approach we extract the contour of the largest detected
component without performing any post-processing. It also improves noise filtering
in highly textured images (see ablation study in Sec. 5.3).

Working completely in a plane-projected domain clearly simplifies data aug-
mentation, compared to panorama augmentation [26]. In practice, for each
training iteration, we augment the input panorama set with random rotations
and mirrorings, performing all operations in 2D space.

We could separately perform training of an instance for floor prediction and
a second instance for ceiling mask prediction, or create an architecture that
performs parallel training with a common loss function, or use a single instance
capable to handle both ceiling and floors.

In the first case, we experienced, for the ceiling branch training, a tendency to
over-fit and a rapid decay of the learning rate after a small number of iterations.
At the same time, training the floor branch with only floor images results in
rough shapes. This is a predictable behavior, taking into account that the ceiling
part usually has cleaner areas but with less features, while in the floor part the
architectural structure is more occluded and therefore more difficult to match,
alone, with the ground-truth shape of the room[30].

In the second case, we tested two parallel branches by jointly training two
instances of AtlantaNet, where the loss function is the sum of the ceiling and
floor loss respectively. It should be noted that in this case a direct feature fusion
is not possible, since this would imply knowledge of the scale factor between
the two transformed tensors, which is itself an unknown value. In this case, we
obtained an appreciable improvement of the performance compared to single
training. However, the resulting shape is not accurate enough, especially in cases
of multiple corners or more complex shapes (see results in Sec.5.3).

We thus adopted a strategy that uses a single Atlanta Net instance, but
trained to predict indifferently the ceiling or floor shape. To do this, we feed the
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same network with examples of ceiling and floor transforms, coupled with their
respective ground truth. As showed by comparative results (see Sec. 5.3), such a
strategy boosts the performances, as it guides the network to find commonalities
between clean structures, mostly present in the ceiling transforms, and highly
cluttered structures, mostly present in floor transforms.

5 Results

Fig. 4. Qualitative results and comparison. For each row, we show: the original
panoramic image annotated with our reconstruction; an intersection-over-union visual
comparison, between our approach (green line), HorizonNet [26] (red line) and ground
truth (azure mask); the 3D layout obtained with the compared approach [26] (third
column) and with ours (fourth column).

We implemented our method with PyTorch [18], adopting ResNet50 as feature
encoder. The presented results are obtained using the Adam optimizer [14] with
β1 = 0.9, β2 = 0.999 and learning rate 0.0001. We trained the network on
4 NVIDIA RTX 2080Ti GPUs for 300 epochs (best valid around 200 epoch,
varying with dataset), with a batch size of 8 (3 × 1024 × 1024 input size). As an
example, training with the MatterportLayout [34] dataset takes about 2 minutes
per epoch. The final layout extraction is obtained by applying a simple polygonal
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approximation [5] to the larger connected region contour (see Sec. 4.2), thus
eliminating excess vertices and saving the resulting model as a json file (we adopt
the same convention as MatterportLayout [34] and PanoAnnotator [29]).

5.1 Datasets

We trained AtlantaNet using publicly available datasets: PanoContext [32], Stan-
ford 2D-3D [25] and Matterport3D [17]. To simplify comparison, we arrange
testing by following the split (cuboid layout, or general Manhattan World),
adopted by other works [33,6,26,30]. In addiction, we introduce a specific testing
set of a hundred images to benchmark more complex Atlanta World cases (At-
lantaLayout). The testing set was created by annotating a selection of images
from Matterport3D [17] and Structured3D [15]. For cuboid and simple Manhattan
layout, we follow the same training/validation/test splitting proposed by Layout-
Net [33] and HorizonNet [26], while for general Manhattan World we follow the
data split and annotation provided by Zou et al. [34] (e.g., MatterportLayout).

To test Atlanta World layouts, we extend existing testing set with annotated
3D layouts having less restrictive assumptions, as, for example, rooms with curved
walls or non-right corner angles. In this case, to ensure a fair evaluation we have
prepared the test set by combining the new annotations with a subset of test
images taken from the MatterportLayout testing set.

5.2 Performance

We evaluate the performance of our approach by following the standard evaluation
metrics proposed by Zou et al. [34] and adopted by others [33,26,30]. Specifically,
we considered the following metrics: 3DIoU (volumetric intersection-over-union),
2DIoU (pixel-wise intersection-over-union), cornererror (L2 distance normalized
to bounding box diagonal), pixelerror (floor, ceiling, wall labeling accuracy of the
original image) and δi (percentage of pixels where the ratio between the prediction
label and the ground truth label is within a threshold of 1.25). Following Zou et
al. [34], we adopt 3DIoU , cornererror and pixelerror for cuboid layouts, and
3DIoU , 2DIoU , δi for other layouts.

We present a comparison with recent state-of-the-art methods [33,6,26,30] for
which comparable results are published or for which source code and data are
available. For comparison purposes, we adhere to the methodology reported in the
mentioned papers, and we split results into Cuboid layouts, General Manhattan
World and Atlanta World, preserving the same metrics and setup of the original
papers. All results are collected with the same ResNet50 feature encoder. Missing
fields in tables indicate cases not reported in original papers.

Tab. 1 reports on performance obtained on Cuboid layouts, a worst-case
comparison for our method, since, in contrast to competitors, we do not assume
that walls must meet at right angles. Following the same convention presented
by Sun et al. [26] and Zou et al. [34], the networks have been trained with three
different datasets (i.e., PanoContext, Stanford 2D-3D-S, both of them), and
tested with same testing set - e.g. Stanford 2D-3D-S [25]. Results demonstrate
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Training dataset: PanoContext S-2D-3D PC+Stanford
Metrics [%]: 3D Corner Pixel 3D Corner Pixel 3D Corner Pixel

IoU error error IoU error error IoU error error
CFL [6] 65.13 1.44 4.75 - - - - - -
LayoutNet [33] - - - 76.33 1.04 2.70 82.66 0.83 2.59
Dula-Net [30] - - - 79.36 - - 86.60 0.67 2.48
HorizonNet [26] 75.57 0.94 3.18 79.79 0.71 2.39 82.66 0.69 2.27
Ours 75.56 0.96 3.05 82.43 0.70 2.25 83.94 0.71 2.18

Table 1. Cuboid layout performance. All the methods have been tested with the
same S-2D-3D testing set [25] and trained with the enlisted training sets. Our method,
even without Manhattan World pre-processing and regularization, is aligned with the
performance of the best state-of-art methods that exploit Manhattan-world constraints.

how our approach, on these constrained indoors, has a performance similar to
state-of-the-art approaches tuned for Manhattan-world environments, although
it does not employ any specific post-processing and cuboid regularization.

In Tab. 2, we report on performance obtained on General Manhattan World
and Atlanta World layouts (see Sec. 5.1). We compare our method results with

Dula-Net [30] HorizonNet [26] Ours
3D IoU 2D IoU δi 3D IoU 2D IoU δi 3D IoU 2D IoU δi

Manhattan 4 corners 77.02 81.12 0.818 81.88 84.67 0.945 82.64 85.12 0.950
Manhattan 6 corners 78.79 82.69 0.859 82.26 84.82 0.938 80.10 82.00 0.815
Manhattan 8 corners 71.03 74.00 0.823 71.78 73.91 0.903 71.79 74.15 0.911
Manhattan >10 corners 63.27 66.12 0.741 68.32 70.58 0.861 73.89 76.93 0.915
Manhattan Overall 75.05 78.82 0.818 79.11 81.71 0.929 81.59 84.00 0.945
Atlanta 6 corners - - - 74.45 77.13 0.862 84.26 88.78 0.972
Atlanta 8 corners - - - 65.00 66.93 0.820 78.37 80.50 0.907
Atlanta >10 corners-odd - - - 64.40 67.72 0.812 75.34 77.75 0.870
Atlanta Overall - - - 67.08 70.57 0.845 72.50 76.49 0.879
Atlanta FT Overall - - - 73.53 76.38 0.851 80.01 84.33 0.924

Table 2. General layout performance. All methods are trained with the same
MatterportLayout dataset [34] and tested on the MatterportLayout test set and on a
specific set of complex Manhattan and non-Manhattan scenes (e.g., AtlantaLayout). For
Dula-Net [30] performance we refer to the latest available results using MatterportLayout
training [34]. >10 - corners-odd row refer to complex layouts, including curved walls.

results for methods having best performance in general Manhattan cases [30,26].
All the tested approaches are trained with the same MatterportLayout dataset [34]
and evaluated both on the MatterportLayout testing set (labeled Manhattan
in tab. 2) and on a specific testing set (labeled Atlanta in tab. 2), containing
more complex shapes, such as non-right angles and curved walls. For Dula-
Net [30] performance, we refer to the latest available results obtained by training
with the MatterportLayout dataset by Zou et al. [34]. The Atlanta FT Overall
line presents, in addition, results that have been obtained by augmenting the
MatterportLayout training dataset with selected Atlanta scenes for fine-tuning.
The results demonstrate the accuracy of our approach with both testing sets,
and how it outperforms other approaches as the layout complexity grows. It
should be noted that a portion of the error depends, for all the approaches, by
the approximated ground truth annotation, which clearly affects both training
and performance evaluation.
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In Fig. 4, we show a selection of scenes for a qualitative evaluation of our
method compared to ground truth and HorizonNet [26]. At the first column we
show the original panoramic image annotated with our results. It should be noted
how, in these complex cases, even the manual labeling of an equirectangular image
is not trivial, as well as the visual understanding of the room structure. In order to
provide a more intuitive comparison, we show, besides, the intersection-over-union
of the recovered layout (green) with the ground truth floorplan (azure mask) and
the same layout reconstructed by HorizonNet [26] (red). In the third and fourth
column, we show the 3D layout obtained, respectively, with our approach and with
the HorizonNet approach [26]. Visual results confirm numerical performances in
terms of footprint and height recovery.

5.3 Ablation Study

Backbone Setup Gradient loss 3D IoU 2D IoU δi Train. params
ResNet50 Two instances trained separately 75.48 78.26 0.856 200M
ResNet50 Two instances trained jointly 76.04 79.92 0.815 200M
ResNet50 One instance and mixed feeding 79.26 83.35 0.854 100M
ResNet50 One instance and mixed feeding V 80.79 84.12 0.902 100M
Resnet101 One instance and mixed feeding V 83.22 86.96 0.940 119M

Table 3. Ablation. The ablation study demonstrates how our proposed designs improve
the accuracy of prediction. Results are sorted by increasing performance, showing only
those cases that actually increase it.

Our ablation experiments are presented in Tab. 3. We report the results
averaged across general Manhattan and Atlanta World testing instances (Tab. 2).
First, we tested, with the same ResNet50 backbone and without gradient loss
function (Sec. 4.3), different configurations: two instances trained separately, two
instances trained jointly with a common (overall) loss function and the adopted
mixed approach. While the difference between separate and joined training of
two instances is quite small, results confirm instead that the mixed feeding
approach (see Sec. 4.3) provides a consistent performance boost. For the winning
set-up (One instance and mixed feeding), we also evaluate the contribution
of the gradient loss component. Including the gradient leads to an accuracy
improvement, mainly due to increased performance with more complex shapes.

At last, we show how our method changes its performance by adopting a
deeper backbone - i.e., ResNet101. While the ResNet50 encoder (also adopted by
compared works) provides consistent results for the given datasets (see Sec. 5.1),
increasing the backbone depth appears to be a better option for more complex
layouts.

5.4 Limitations and Failure Cases

Our method is trained to return a single connected region for each projection
(ceiling and floor), containing the information needed to recover the room layout
(see Sec. 4.2). Fig. 5 shows an example where the layout of a semi-circular
room (Fig. 5(a)) is wrongly predicted. Although geometrically self-consistent
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(a) (b) (c)

Fig. 5. Failure case. Fig. 5(a) shows a circular room where the ceiling level is not
correctly identified, resulting in the wrong layout of Fig. 5(b) and Fig. 5(c) (ground
truth as green line).

(see recovered 3D at Fig. 5(b)), the recovered shape (yellow ceiling mask in
Fig. 5(c)) does not describe the real room layout (green annotation). From the
topological point-of-view, this happens where the horizontal planes are not clearly
identifiable, so, in our example, when the horizontal ceiling is partially occluded
by other horizontal structures.

6 Conclusions

We have introduced a novel end-to-end approach to predict the 3D room layout
from a single panoramic image. We project the original panoramic image on two
horizontal planes, one above and one below the camera, and use a suitably trained
deep neural network to recover the inside-outside segmentation mask of these two
images. The upper image mask, which contains less clutter, is used to determine
the 2D floor plan in form of a polygonal layout, while the correlation between
upper and lower mask is used to determine the room height under the Atlanta
world model. Our experimental results clearly demonstrate that our method
outperforms state-of-the-art solutions in prediction accuracy, in particular in
cases of complex wall layouts or curved wall footprints. Moreover, the method
requires much less pre- and post-processing than competing solutions based on
the more constraining Manhattan world model.

Our current work is concentrating in several directions. In particular, we are
planning to exploit multiple images to perform a multi-view recovery of single
rooms with large amount of clutter or complex convex shapes. The fact that our
approach just requires two planar projections as input to a network makes it
very suitable for this application, especially since registration between multiple
overlapping images aligned to the gravity vector is reasonably simple to achieve.
Moreover, we are also working on the integration of this approach in a multi-room
structured reconstruction environment, in order to automatically reconstruct
complete building floors. Finally, we are working on improved annotation tools
to generate larger training sets with non-Manhattan layouts.
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