
DIGITAL HERITAGE (2025)
S. Campana, D. Ferdani, H. Graf, G. Guidi, Z. Hegarty, S. Pescarin, and F. Remondino (Editors)

OpenLIME: An open and flexible web framework for creating and
exploring complex multi-layered relightable image models

Federico Ponchio 1 Fabio Bettio 2, Fabio Marton 2, Ruggero Pintus 2, Leonardo Righetto 3 Andrea Giachetti 3, Enrico Gobbetti 2

1ISTI-CNR, Italy, 2CRS4, Italy, 3UNIVR, Italy

Figure 1: OpenLIME application examples. From left to right: a simple 31-band multispectral image viewer; neural reflectance transformation image viewer;
annotation of RTI data for archaeology; interactive audio-visual exploration of an annotated artwork in a standalone multitouch museum setup.

Abstract
We introduce OpenLIME (Open Layered IMage Explorer), an open, scalable, and flexible framework for creating web-based
interactive tools to annotate and inspect large multi-layered and multi-channel standard and relightable image models. Adaptive
image management and display use a data-flow approach, where images from sources of any size are efficiently streamed into
screen-sized buffers that can be processed and combined using customizable WebGL shaders. The framework natively supports
multispectral images, Bidirectional Reflectance Distribution Function (BRDF), and Reflectance Transformation Imaging (RTI)
datasets and can be extended to accommodate other multi-channel raster datasets, such as neural representations. Multi-layer
and multi-faceted visualizations are achieved through opacity adjustments, blending modes, and interactive lenses. The released
library provides a set of pre-configured layers, facilitating the rapid deployment of web-based datasets and kiosk applications. Its
responsive user interface is compatible with desktop, mobile, and general multitouch environments, while its modular architecture
allows for extensive customization, making it adaptable to diverse annotation and visualization needs. The paper illustrates the
framework’s design and discusses specific use cases, including the inspection of RTI models, the integration of novel relightable
image formats, archaeological data documentation and annotation, and standalone museum application creation and deployment.
The main components of the framework are released as open source.

CCS Concepts
• Computing methodologies → Graphics systems and interfaces; • Applied computing → Arts and humanities;

1. Introduction

The virtual inspection of annotated digital representations of ob-
jects or scenes, derived from simulations or captures, plays a cru-
cial role in various fields, including Cultural Heritage (CH) studies
and valorization [TLPW24, FDAB∗24]. Visualizing geometric fea-
tures and material properties supports scholars in their research
and contributes to developing conservation and preservation strate-
gies [PPY∗16, PDC∗19]. Additionally, it enhances the presentation
of cultural artifacts, either supplementing or replacing physical in-
spection for experts and the general public [MHJ22]. Annotations,
which highlight and describe areas of interest within a dataset, can
result from automated analysis or manual markup and serve as
essential tools for documenting and exchanging information, as

they facilitate data interpretation and improve viewer comprehen-
sion [VETL18, CCDL∗20, PCDS20, AMP∗23].

In these contexts, image-based models and annotations of-
ten complement or replace full-3D model generation and analy-
sis [AMP∗23]. Many cultural artifacts, including, but not limited to,
paintings and bas-reliefs, are mostly flat or have a preferential view-
ing direction. Their full-3D modeling is more complex and resource-
intensive, and does not offer significant advantages compared to its
2(.5)D counterparts [PDC∗19]. Additionally, high-resolution image
acquisition and management are simpler than 3D model process-
ing, as image data can be created without the complexities of 3D
view planning, occlusion handling, or multi-view fusion, and han-
dled using standard raster structures. Such simplified setups include

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.

https://orcid.org/0000-0002-2974-0577
https://orcid.org/0000-0003-0948-5289
https://orcid.org/0000-0001-8611-1921
https://orcid.org/0000-0003-1786-7068
https://orcid.org/0009-0000-0483-5150
https://orcid.org/0000-0002-7523-6806
https://orcid.org/0000-0003-0831-2458


Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

multi-spectral photography, multi-light image collection (MLIC)
acquisition, or a combination of both [PDC∗19, KF22]. Annota-
tion creation and exploration are also more straightforward in 2D
models due to their inherent planar parameterization that simplifies
markup and guidance towards annotated areas [PCDS20,BAMG21].
Furthermore, compared to fully 3D viewers, image-based explo-
ration simplifies navigation by limiting camera motion to panning
and zooming, reducing learning curves, and improving accessibil-
ity [JH15]. For annotation creation, in particular, 2D to 3D mappings
let users work on multiple high-res images of objects, where mutual
registration is only used to define relative positions of views and
projected annotations [AMP∗23].

In this work, we broaden the range and expand the capabilities
of current image-based solutions (see Sec. 2) by introducing and
releasing to the public OpenLIME (Open Layered IMage Explorer),
a modular, scalable, and flexible web-based framework for anno-
tated multi-channel standard and relightable raster data visualiza-
tion [Ope25]. Its web architecture supports cloud-based distribution
and offline kiosk applications running directly from local storage
without OS dependencies and required custom server-side compo-
nents. The design’s core is an adaptive multi-channel raster data man-
agement system based on a data-flow approach, efficiently streaming
and visualizing large datasets into screen-sized buffers. Arbitrary
multi-channel data formats are decomposed into co-registered im-
age sets with 1–4 channels stored in web-supported formats (PNG,
JPG, WebP). This enables efficient multi-resolution data creation,
compression, transfer, and streaming. Native web platform imple-
mentations handle decoding and uploading to the GPU, ensuring
minimal processing overhead [MDN23]. Client-side, these buffers
are processed and combined using customizable WebGL shaders
that interpret the data, implement the visualization, and handle the
combination of multiple layers. Vector graphics layers managed
with SVG are employed for interface decorations and annotation
display. The framework includes a set of pre-configured layers for
natively supporting multispectral data, relightable imaging through
Bidirectional Reflectance Distribution Function (BRDF) and Re-
flectance Transformation Imaging (RTI) datasets, visual annotations
through vector drawing, and multi-faceted visualization through
layer blending or interactive visualization lenses [BAMG21]. Ad-
ditionally, it can be extended to accommodate other multi-channel
raster datasets, such as hyperspectral imaging, neural rendering, and
alternative reflectance models, as well as other interaction and navi-
gation modes, such as audio-visual annotation-guided visualization
tours [AMPG22]. The main framework components are released as
open source software [Ope25].

This paper, after briefly analyzing related work (Sec. 2), presents
the main concepts underpinning the design of the OpenLIME frame-
work (Sec. 3) and explores its application in a selection of common
CH use cases (Sec. 4), including Reflectance Transformation Imag-
ing (RTI) model inspection, integration of novel relightable image
formats, documentation and annotation of archaeological data, and
the creation of standalone museum applications. We conclude with
a summary of results and an outline of future directions (Sec. 5).

2. Related work

A full literature review is beyond this paper’s scope. We dis-
cuss here only closely related approaches, referring to surveys
on relighting [PDC∗19], annotations [PCDS20], and artifact
fruition [FDAB∗24] for broader coverage.

Various tools for creating and inspecting image-based data in
CH applications have been proposed in the recent past, rang-
ing from static multi-spectral and stratigraphic visualization (e.g.,
[MAD∗18, P∗23]) to dynamic inspection with camera motion and
relighting [PDC∗19]. Initially desktop-focused, recent advance-
ments have introduced web-based solutions for remote access and
cross-platform compatibility. Among desktop applications, RTI
Viewer [P∗10, PCC∗10] remains widely used in CH due to its in-
tegration with RTI Builder for creating relightable models and its
support for Polynomial Texture Mapping (PTM) [MGW01] and
Hemi-Spherical Harmonics (HSH) [GKPB04] reflectance models.
It offers photorealistic relighting and non-photorealistic enhance-
ments, such as diffuse gain and specular enhancement. Other notable
tools include APTool, which provides Radial Basis Function (RBF)
interpolation for continuous data visualization [PCS18], and PLD-
Viewer [KUL19], which supports multi-spectral relighting with a
range of visualization techniques. These tools were designed mostly
for the single purpose of data exploration, and lack the flexibil-
ity of frameworks supporting annotations, data distribution, and
adaptability to different kinds of applications. Web-based solutions
such as WebRTIViewer [P∗15], DMViewer [DHL17, FBKR17], Re-
light [P∗19], and Pixel+ [VPH∗20] primarily focus on adaptive im-
age streaming and interactive relighting from compressed formats,
such as PTM and HSH. For improved quality of high-frequency mod-
els at comparable compression rates, Relight also supports Discrete
Modal Decomposition (DMD) [PLGF∗15] and PCA-compressed
Radial-basis-function (RBF) or Bilinear interpolation of the source
MLIC [PCS18]. Marlie [JAP∗21], while limited to single-resolution
image data, also supports normal and BRDF maps. While these tools
offer several degrees of flexibility, e.g., embedding them into web
pages and modifying the visual style through CSS, extension to other
image data types or user interaction methods also requires consider-
able effort. Support for annotation creation and exploration is also
limited. In our framework, we combine raster layers handled through
WebGL with vector layers handled with Scalable Vector Graphics
(SVG) for annotation and visualization, to achieve extensibility and
broad compatibility. Moreover, in contrast to other solutions, es-
pecially for stratigraphic/multispectral imaging (e.g., [P∗23]), we
emphasize client-side processing rather than server-side compu-
tation, and we can run our application using regular web servers
without any add-ons. This approach simplifies deployment in a
variety of settings, including local-only inspection. Most existing
image viewers rely on simple blending techniques to present mul-
tiple data layers. Marlie [JAP∗21] has extended this functionality
by incorporating interactive lenses, a method that enables dynamic,
user-controlled visualization of multiple representations within the
same dataset, enhancing multi-faceted data exploration. The system
also supports annotations in the form of visual overlays and exploits
lenses to reduce clutter when presenting annotated data [JAP∗21].
Their approach, however, is limited to single-resolution images and
annotations without overlap, while we also support overlapping
annotations on multiresolution data.

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

3. Framework description

OpenLIME has a modular design that makes it possible to mix and
match components with little or no external dependencies to create
different applications. Base back-office components deal with for-
mat conversion and multiresolution decomposition of multi-channel
raster data. Server-side, standard web formats and services are used
for adaptively managing and transmitting data to clients. Client-
side components neatly separate user interface, data loading, and
visualization to create responsive applications. In the following, we
first present the basic rationale, concepts, and structure of Open-
LIME’s architecture (3.1). Then, we detail the handling of large
multi-channel raster data (3.2) and of vector data used for decora-
tion or overlay annotations (3.3). We finally provide an overview of
event handling and user interface components (3.4).

3.1. Architecture overview

OpenLIME’s core is designed as a fully client-side, web-based frame-
work for interactive visualization of complex raster datasets. The
primary goal is to enable easy deployment without requiring a dedi-
cated server-side application, relying instead on a standard HTTP
file server or asset delivery. All exploration-related data process-
ing and rendering operations are performed directly in the client
browser, leveraging WebGL for GPU-accelerated visualization.

To ensure broad compatibility and efficient data streaming, Open-
LIME supports, in addition to web-native image formats (e.g.,
JPG, PNG, WebP) [MDN23], established multiresolution image
formats such as deepzoom [Mic08], OpenStreetmap/GoogleMaps
tiles [Ope24], and IIIF [A∗24]. These formats are widely used for
handling large-scale imagery on the web and follow a similar ap-
proach of pre-generated tiled pyramids, which OpenLIME combines
to support multichannel data and efficiently loads and renders on
demand (Sec. 3.2).

CoordinateSystem
Coordinate Conversions

1. CanvasHTML
2. CanvasContext
3. Viewport
4. Viewport Center
5. Scene
6. Layer
7. Image

Viewer
Main Application

Camera
View Management

Canvas
WebGL Context

Controller
User Interaction

1...N

Core Components

Spatial Management Components

OpenLIME Core Components
Decoding & Rendering Components

Layer
Adaptive visualization

Layout/LayoutTiles
Tiling & Image Format

Cache
Tile Manag. & Prefetch

Tile
Tile Manag. & Prefetch

Shader
Decoding & Rendering

Transform
Coord. Transformations

BoundingBox
Spatial Extents

Raster
Image Load & Textures

ShaderFilter
Rendering Effects

Figure 2: OpenLIME architecture. The main components are depicted in
the diagram. Continuous lines indicate an ownership relation, while dotted
lines indicate a usage relation.

The client architecture, see Fig. 2, is centered around a Canvas
class, which manages a WebGL rendering surface and maintains a
collection of Layers representing different visualization elements.
The Camera class defines the current view, applying transformations
through the Transform class to navigate the scene. OpenLIME sup-
ports multiple coordinate systems, including canvas, layer, window,
and OpenGL coordinates, ensuring flexibility in mapping spatial
data across different contexts.

Each Layer corresponds to a specific type of visual representa-
tion, such as images, RTI datasets, or BRDF models. Rendering is
achieved through Shader programs, which process multichannel
raster data provided by the Raster class. This modular approach
allows each visualization type to handle its dataset structure and
rendering logic while maintaining a consistent interface.

A key design goal of OpenLIME is to facilitate adding new visu-
alization types with minimal effort. Developers only need to define
a new Layer subclass, specifying how data is structured and pa-
rameters are handled, along with an associated Shader class to
implement the rendering logic. This approach ensures extensibility
and adaptability for diverse visualization needs. To facilitate users
and developers, we provide a set of pre-configured layers for sup-
porting the most common use cases in CH, including plain RGB
images, various forms of RTI (PTM, HSH, and RBF), and normal
map + Ward BRDF representations.

OpenLIME enables advanced compositing of layers through
framebuffer operations, allowing multiple shaders to be combined
efficiently. The Canvas class is responsible for composing the fi-
nal image on screen through a multipass rendering technique: each
Layer uses shaders that output in linear RGB and are drawn in their
assigned order to an off-screen framebuffer. Layers can be merged
seamlessly or displayed selectively using visualization lenses. In
the final step, the Canvas applies a shader that converts the com-
posed image from linear to sRGB space before displaying it. This
approach ensures that the entire rendering pipeline operates in linear
RGB, allowing any Layer to directly sample the contents of another
Layer’s framebuffer without requiring any color space conversion,
thus maintaining the correctness and fidelity of intermediate results.
This framebuffer-based approach simplifies shader composition,
avoiding significant performance overhead while enabling real-time
blending and interactive effects (Sec. 3.2).

The visualization of multi-layered raster datasets is augmented
with active decoration and annotation elements, see Sec. 3.3, pri-
marily implemented using vector graphics. OpenLIME adopts SVG
for annotations due to its lightweight nature, scalability, and com-
patibility with existing web standards. This decision aligns with the
Web Annotation Data Model, a W3C recommendation that is the
foundation for IIIF’s Image API Selector extension [A∗24]. Using
DOM-based SVG elements for annotations, OpenLIME simplifies
user interaction handling. Click, hover, and other event-driven behav-
iors can be managed directly using standard event listeners, making
implementing intuitive, interactive features easier without requiring
complex WebGL-based input processing.

The OpenLIME graphical user interface is built with standard
DOM elements, separate from the WebGL renderer, allowing flexi-
ble, customizable, application-specific interface design. Specialized
classes handle pointer interactions, mapping user input to layer
parameters and view changes (Sec. 3.4). This separation lets devel-
opers customize interfaces without altering the core visualization
logic. The default OpenLIME GUI provides a robust and intuitive
control system that can be quickly assembled by instantiating prede-
fined classes, but custom interfaces can be implemented as needed
without modifying the core rendering logic.

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

3.2. Scalable access, rendering, and composition of massive
multilayered multi-field raster data

OpenLIME is designed to simplify the handling of large multi-field
raster datasets and their combination into multi-layered visualiza-
tions. We assume that each layer’s raster data is represented by an
arbitrary number of scalar values per pixel, transformed to colors,
and fused with other layer colors at presentation time based on the
current viewing, lighting, and user-defined characteristics.

For simplicity and efficiency reasons, by default, multi-channel
rasters are decomposed into a set of co-registered image planes with
one to four channels each, stored in web-supported formats (PNG,
JPG, WebP). These formats provide quantization and lossy+lossless
compression and enable transparent natively-implemented acceler-
ated decoding on the web client [MDN23]. Each image plane is
quantized and compressed, and bias and scale values are stored in an
image descriptor for dequantization. Large images are then decom-
posed into a tiled pyramid stored in one of the many possible mul-
tiresolution formats (e.g., deepzoom, OpenStreetmap/GoogleMaps
tiles, or IIIF). Since, by default, all data is handled in standard for-
mats, we can reuse existing tools (e.g., vips [VIP22]) for this task.
Optionally, using the tarzoom utility provided by OpenLIME, the
directory tree containing all the tiles is then sequentially concate-
nated into a single file, augmented with an index that contains the
start offset of each tile (and thus implicitly also its size). Having
a single data file makes it possible to easily move the entire repre-
sentation among different machines and file systems, and supports
the efficient extraction of individual tiles with simple HTTP Range
requests through any modern standard HTTP server.

Client-side, an adaptive renderer incrementally fetches image
tiles, adjusting the level of detail based on the zoom value, view-
port size, and interaction behavior. For consistency, all the image
planes comprising a given tile are grouped in an instance of the
Tile class, which asynchronously fetches the planes and marks
completion when all the planes have arrived. The LayoutTiles

class organizes tiles at multiple resolutions, allowing the system to
refine the displayed image as the user zooms in progressively. By pri-
oritizing visible tiles and employing a cache of already loaded tiles,
the system reduces visual latency and ensures that high-resolution
textures replace low-resolution ones only when needed, reducing
memory overhead. A fully interactive visualization experience is
further supported by decoupling decoding and rendering of cached
tiles from asynchronous tile retrieval. Rendering is performed by
moving all the tiles to viewport-sized buffers and then executing the
decoding and shading pipeline on them. Moreover, rather than only
supporting the usual power-of-two refinement, OpenLIME makes
it possible to decouple the decoding and rendering resolution from
the resolution at which data is loaded, which is achieved by down-
scaling the buffers, performing decoding and rendering, and then
upscaling the results to produce the final viewport colors for each
layer. This makes it possible to meet interactivity constraints for
heavy-to-decode data, such as neural representations (Sec. 4.2).

GPU-accelerated decoding and rendering are achieved by ex-
ecuting WebGL shaders, attached to layers and encapsulated in
instances of the Shader class. The class simplifies WebGL shader
management by automatically handling the allocation and updating
of sampler units associated with image planes, uniform variables,

and attribute variables, as well as compiling shader programs on
the GPU. Shaders attached to OpenLIME layers access the various
planes composing the image representation and use other informa-
tion provided in uniform variables (e.g., light color, light direction,
view direction) to produce a pixel’s color. To support the easy dy-
namic insertion of post-processing operations, standard OpenLIME
fragment shaders implement a parameterless data() function that
returns a vec4 color instead of the typical main() function. Instances
of the ShaderFilter class also implement a data() function, tak-
ing the result of the previous data() as a parameter. At run-time,
each time a filter is added or removed, OpenLIME automatically
regenerates the proper main function that composes all the active
filters, providing extensive versatility.

For multi-layered visualization, the LayerCombiner module pro-
vides various dynamic compositing options of multiple graphical
layers via framebuffer operations and custom shaders. In addition
to the common blending operations, the LayerLens module makes
it possible to implement visualization lenses that define different
combination modes inside and outside the lens focus area, by default
a movable and scalable circle (see, e.g., Fig. 1, Fig. 3, and Fig. 4).

3.3. Decorations and annotations

Multi-layered visualizations of raster data are enhanced with active
decoration and annotation elements, primarily using vector graphics.
Decorations, fixed in viewport space, leverage a centralized Skin
system that manages SVG assets through external files, enabling
easy theming without altering core code. They also support dynamic
toolbar creation via SVG element cloning and binding to event
listeners (see Sec. 3.4). In contrast, annotations tie overlays and
external information to specific model regions and, therefore, stay
aligned with the model as the view changes.

The OpenLIME framework exposes an annotation system based
on a hierarchy of specialized layer classes that are all children of
the core Layer class. At the base is the LayerAnnotation class
that provides the basic infrastructure for working with annotation
collections. Instances of this class are responsible for loading anno-
tations from remote sources, keeping selection states, and providing
a single entry point to control the visibility of annotations. They link
into the viewer’s UI via a configurable annotations list entry system,
whereby interactions with annotations are facilitated via a sepa-
rate interface panel. On this foundation, LayerSvgAnnotation
expands the annotation system to enable the rendering of vector
graphics directly onto the canvas in the form of SVG elements. By
placing the annotation elements in an SVG overlay that sits above
the WebGL canvas, we can create complex vector graphics with
interactive features that might have been difficult to achieve purely
in WebGL. The SVG annotation layer guarantees that transforma-
tion synchronization between the WebGL coordinate system and the
SVG viewBox is correctly handled. The styling of custom elements
is also supported through a class-based system whereby different
annotation types can be assigned different visual properties.

The Annotation class defines the properties and behaviors of
a single annotation element in a very generic way. Each annota-
tion instance holds information about metadata (ID, label, descrip-
tion), visual properties (SVG content, style, class), state (visibility,

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

selection), spatial information (bounding box, region), and extra
custom properties for domain- or application-specific needs (see,
e.g., Sec. 4.3 and Sec. 4.4). It is capable of handling many types
of annotations like Vector-based SVG annotations (lines, shapes,
text), Region annotations (rectangles, polygons), Point annotations
(markers, pins), and aggregates of diverse element types.

The annotations can be added to the application either by pass-
ing an array of annotation objects or by using a JSON endpoint
(local or remote). When loading annotations from a remote URL, a
LayerAnnotation instance downloads annotation data, constructs
one Annotation object for each entry using a distinct ID, and sets
properties like initial visibility based on metadata. Once the process-
ing is complete, the layer emits events to inform the system that the
annotations are loaded and ready to be rendered.

3.4. Device mapping and user interface

OpenLIME unifies events generated by input devices to handle
single-touch (mouse or pen) and multi-touch interaction through a
portable abstraction layer built on top of PointerEvents [W3C25].
At the most fundamental level, a lightweight event handling sys-
tem that employs the observer pattern is implemented through its
Signals module. It extends prototypes with signal capabilities via
an addSignals function, which registers named event types and
provides methods to subscribe to those events, listen for one-time
messages, and emit the events themselves. Throughout the frame-
work, class instances use this system to communicate only with
event listeners. Such architecture allows modules to be loosely cou-
pled, avoiding direct dependencies. The event system supports stan-
dard features such as event registration (listeners), event removal,
one-time listeners, and event capturing.

OpenLIME implements on top of Signals a comprehensive in-
put interaction system through its PointerManager module that
abstracts device-specific inputs into a unified event-handling frame-
work. Based on the Web API’s PointerEvent interface, it seam-
lessly supports mouse and touch interactions, maintaining consis-
tent behavior across diverse input devices. The system processes
single-pointer events individually while correlating multiple con-
current events to recognize complex gestures. At the low level, in-
stances of the SinglePointerHandler class track single-pointer
inputs throughout their complete lifecycle and maintain a state of the
pointer’s position, movement, and temporal characteristics. These
individual events are then mapped into a higher-level gesture by a
recognition system that identifies patterns such as taps, double-taps,
holds, pans, and pinch-to-zoom operations.

The PointerManager architecture is consistent with the Web
API’s event-handling system. The original PointerEvent is pre-
served and enriched with additional data useful for the mod-
ule’s functionality. Native Event methods remain fully accessi-
ble—developers can, for example, stop event propagation us-
ing stopPropagation() or prevent default behaviors with
preventDefault(). Handling events from input devices is greatly
simplified by the recognition of gestural input – for example, writing
just three callbacks (PanStart, PanMove, and PanEnd) is enough
to define how the system should respond to a user’s panning gesture.

A PointerManager instance works in concert with sev-

eral Controller instances to define behaviors in response to
user actions. Events circulate through controllers in a prior-
ity order, and controllers can capture events, preventing them
from reaching other controllers until the controller releases con-
trol. This allows the implementation of per-layer controllers
through the priority mechanism and composite actions through
the capture/release mechanism. The system includes default con-
trollers such as ControllerPanZoom for camera navigation,
ControllerLightSphere for light direction, ControllerLens
for lens positioning, and ControllerFocusAndContext for co-
ordinated lens and camera control [BAMG21]. An example is dis-
cussed in Sec. 4.1 and illustrated in Fig. 4.

Figure 3: Multilayered multispectral visualization. The model shows the 7-
band albedo of a Saint-Demetrios Icon, computed from 50 photos under UV
(385nm, 405nm), visible (RGB), and IR (740nm, 850nm) directional lighting.
The graph displays the multispectral reflectance of a selected skin pixel. The
lens shows False Color Infrared (R=IR-850nm, G=VIS-R, B=VIS-G), while
the context shows visible channels.

4. Use cases

To exemplify OpenLIME’s adaptability across use cases and setups,
we briefly describe how it has been used to build applications with
widely varying required features, supported data, and targeted user
base. First, we show how the basic components provided by the
framework are used to build an RTI processing and exploration
pipeline (Sec. 4.1). Then, we discuss how the raster data formats
and the shading pipeline have been integrated to design and sup-
port novel neural relighting models (Sec. 4.2). We finally focus on
two CH-specific applications. The first one targets domain experts,
and concerns the documentation and annotation of archaeological
data (Sec. 4.3). The second targets instead the general public, with
the virtual exploration of a massive mural using a standalone mu-
seum application driving a large touch screen (Sec. 4.4).

4.1. Inspecting acquired models

One of the main applications of scalable image viewers is remote
inspection of artifacts. For instance, the ability of RTI to faithfully re-
produce the appearance of objects with challenging materials makes
a good case for museum and virtual exhibits aimed at the general
public, where direct access to the artifact is inconvenient for any
reason. At the same time, relightable images are used for analysis
by professionals in a variety of cultural heritage applications such
as inscriptions, cuneiform tablets, manuscripts, paintings, mosaics,

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

Figure 4: Multilayered RTI visualization. The simple code at the bottom
creates the multilayered visualization on top. The RTI model is a lead sheet
found in the 1960s in Caesarea Maritima. The item, now at the Archaeologi-
cal Museum of Milan, was acquired to study the engraved inscriptions.

coins, and medallions. The ability to change the light direction and
apply enhancement algorithms on the dataset allows remote viewers
to reveal subtle details of the surface. Similar consideration can
be made for multi-spectral visualization, where combining visible
and invisible light measurements helps analysis and exploration of
models (see, e.g., Fig. 3). Both use cases are directly supported by
OpenLIME’s base classes.

Fig. 4 illustrates the structure of a basic multilayered viewer, to-
gether with a screenshot taken during interactive inspection. The

item, found in the 1960s in Caesarea Maritima, is a non-flat en-
graved lead sheet with different degrees of roughness. PTM data
was created from images taken with a light dome (47 LED) and
a Nikon D810 DSLR camera, to study hardly visible inscriptions.
The example code creates two layers from the same PTM data in
tarzoom format. A third layer provides a combined display, realized
with a visualization lens with the second layer as the focus and the
first as the context. A focus-and-context controller is then created to
jointly control the lens and the camera. From this terse description,
OpenLIME automatically creates the data loaders, the shaders for the
various RTI display modes, the menus to choose the selected layer
(first, second, or combined with lens), and the toolbar, which also
includes modal camera/light direction. In the image above the code,
the lens focus presents a synthetic monochrome reflective surface,
while the context uses the original reflectance. Interactive relighting
with a raking light emphasizes the inscriptions. The structure of
the multispectral viewer depicted in Fig. 3 is very similar: only the
layer types are modified, and the selection of channel combinations
available in the interface is determined by a JSON file that associates
a preset name to a particular weighted channel combination.

4.2. Exploring novel relightable image representations

Classic relightable models, such as PTM, HSH, and DMD, are com-
pact and low-complexity formulations of widespread use for fast
interactive relighting in local and remote visualization. Without extra
information, however, these methods are limited to modeling only
low-frequency behavior [PDC∗19]. In recent years, neural networks
have emerged as a viable technique for compression and nonlin-
ear approximation from large amounts of data and have also been
applied to rendering settings [TFT∗20]. In the RTI realm, the Neu-
ralRTI approach [DFP∗20, DRP∗24] introduced a fully connected
asymmetric autoencoder to encode the original per-pixel informa-
tion into a low-dimensional vector and decode it to reconstruct
pixel values from the pixel encoding and a novel light direction.
The image quality is higher than that of classic solutions at equal
storage cost [DFP∗20]. OpenLIME offered a framework where the
method could be integrated as an optimized first-class component
interoperable with the rest of the platform [RKG∗24].

In NeuralRTI, the encoder processes all the observations of a
single pixel (N RGB tuples associated with the N sampled input
light directions) with fully connected layers and ELU activation
functions to produce K ≪ 3N latent-space features. The decoder
takes latent-space features, concatenates them with a given light
direction, and produces the single associated RGB value for the
pixel. Thus, once the training phase is finished, it is possible to
use the encoder to produce a static map of per-pixel latent features.
Afterward, the encoder is discarded, and relighted images can be
computed just from the per-pixel latent features and interactively
set light directions, which feed the decoder, whose parameters (i.e.,
weights and biases) are common for the entire image.

The storage and transmission cost is almost entirely due to the la-
tent feature maps storing per-pixel data since the network structure,
weights, and biases are shared for the entire dataset and amount
to a few kilobytes, which can be loaded once and for all at model
opening time. In a typical implementation [DFP∗20], latent maps
require K=9 channels per pixel, which OpenLIME separates into

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

three different RGB images. Righetto et al. [RKG∗24] have empir-
ically determined that, while the NeuralRTI representation is not
linear, averaging nearby latent space features tends to produce a
pixel whose relighting behavior is similar to that of the averaged
pixels (i.e., close to averaging the reflected colors at similar inci-
dent angles). This makes it possible to reuse the same machinery
used for plain images and PTM to produce tiled pyramids of latent
features. The only custom component of the processing pipeline is,
thus, the encoding, based on Python and Keras, for transforming
the input high-resolution MLIC into latent feature maps stored as
separate images. Pyramid creation, tiling, and compaction are then
performed with vips [VIP22] and OpenLIME’s tarzoom, see Sec. 3.2.
For compressing the latent maps, the execution on a web platform
encourages the usage of natively supported PNG, JPEG, or WebP
images [MDN23]. Since NeuralRTI’s latent features have structures
similar to those of RGB photographic images, JPEG was selected
for compression, but, since neural coefficient values are not directly
perceived as colors by users in the final image (unlike, e.g., PTM),
JPEG compression is set up by disabling RGB to YUV conversion,
deactivating chroma subsampling, and using non-biased quantiza-
tion tables.

Figure 5: Multilayered rendering of neural and classic relightable models.
Inside the lens, the model is rendered from a PTM format, while outside it is
rendered using a NeuralRTI representation, which provides increased details
at similar compression rates. The desaturation effect in the lens is obtained
through the concatenation of a shader filter. Both models are derived from
a high-resolution MLIC capture of textile artifacts from the Oseberg Find
from a Viking Age burial mound at Oseberg in South Norway.

The integration into the rendering pipeline was, then, realized
by implementing a specific NeuralRTILayer, extending the basic
Layer class. The class loads from a JSON file the decoder weights
and biases and refers to the latent feature maps through three image
pyramids, which are asynchronously loaded into buffers during
exploration using the standard tiled image loader of OpenLIME.
The layer contains a standard Vertex shader and a custom WebGL 2
fragment shader. The fragment shader has weights and biases stored
in uniform arrays, and, at execution, samples the latent space feature
from the three texture maps using the pixel’s coordinate, combines
it with a given light direction, provided as uniform variables, and
propagates these values through the network until we reach the final
stage with the output color. Each layer computes its output as a dot
product of input and weights, a sum with biases, and an application
of the activation function (ELU for inner layers, identity for the final
one). Since all the pixels compute the same sequence of vectorized

operations to produce their output, and all dot products and sums
are aligned on 16-byte boundaries, shading threads do not diverge.

NeuralRTILayer is a standard OpenLIME layer, and
NeuralRTIShader is a standard OpenLIME shader. Thus, one can
exploit our dataflow design to combine NeuralRTI color computa-
tion with a sequence of post-processing operations through cascad-
ing filter integration in the fragment shaders. In particular, gamma,
brightness, color-remapping, and contrast correction on neural ren-
derings can be achieved using the same tools the framework makes
available to all other rendering representations (Normal+BRDF,
PTM, HSH, RBF). Moreover, multi-layered visualizations can mix
a NeuraRTILayer with other standard layers with no particular
coding effort (see, e.g., Fig. 5).

4.3. Annotating archaeological findings

In addition to visual inspection, archaeologists need to document,
discuss, and present their interpretations through annotations on
images of the artefact. Annotating directly on an RTI, rather than
on a static image, is more effective, particularly when physical
access to the object is limited, since analyzing the object under
different illumination conditions may reveal hidden features and
patterns [PDC∗19].

An example of OpenLIME’s relighting and annotation support’s
usage is the documentation of an inscribed limestone block dis-
covered in Marseille, France: Le Bloc de l’Alcazar. Approximately
two meters wide, this stone is densely covered with overlapping
graffiti dating back over 2,600 years. These engravings’ complexity,
layering, and faintness made them very difficult to decipher through
conventional imaging or direct observation.

Figure 6: RTI capture and annotation. Left: A dome with 100 lights was
used to capture 120 RTI datasets; Light direction and intensity were com-
pensated, and photogrammetry was employed to merge the datasets into a
single RTI panorama, resulting in 600 million pixels. Right: annotation of
Greek pentekonteres (long warships).

120 RTI datasets of the block’s surface were captured with a
100-light dome (Fig. 6 left). Light directions and intensity were
compensated, and photogrammetry was employed to merge the
datasets into a single RTI panorama, resulting in a 600Mpixel raster
in the PTM format. Converted to tarzoom (Sec. 3.2), a multiresolu-
tion relightable model was then made available online for scholarly
inspection and annotation.

OpenLIME includes an integrated annotation editor, implemented
in the EditorSvgAnnotation class. Users can draw points, lines,
polygons, and rectangles directly on the surface to create annota-
tions, and specify properties such as label, description, and class
(Sec. 3.3). Freehand drawing of lines and polygons is enhanced with

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

a simplification algorithm that reduces annotation complexity while
preserving shape, and supports fine path adjustments, similar to vec-
tor editing in graphic design tools. Freehand drawing is facilitated
by the native support for drawing tablets, with pen input for drawing
and multitouch input for image scaling and panning (Sec. 3.4). As
most users still rely on a mouse connected to a desktop or laptop,
however, manual drawing can be cumbersome and imprecise, and
the ability to edit paths significantly improves the user experience.
We plan to further extend this approach to guide the user during an-
notation, in particular by using feature detection on relighted models
and snapping the annotation markup to the detected features.

To create, edit, or delete annotations stored in a repository, Open-
LIME was extended to provide a Representational State Transfer
Application Programming Interface (REST API) along with a mini-
mal backend implemented in PHP or Express.js, supporting either
file-based or relational database storage. The current simple sup-
ported workflow allows each user to independently add or remove
annotations without an explicit locking mechanisms. Concurrent
edits are managed by handling each annotation update through
API endpoints that execute database operations within transactions.
As future work, we plan to extend this basic protocol to support
automatic local database view updates through notification broad-
casts and annotation versioning. The current setup enables easy
deployment of a basic annotation backend for custom applications
or straightforward integration with existing systems through simple
middleware, and has been later integrated into OpenLIME’s core.
By installing OpenLIME on a shared accessible server, scholars
from around the world could remotely access the RTI, highlight
features of interest, share observations, and collaboratively develop
interpretations. Through this digital platform, researchers identified
iconography of ships (Fig. 6 right), numerous human and animal
figures, and Greek letters. Finally, a presentation setup, without
annotation editing features, was created and opened to the public.

4.4. Interactive museum presentation

Figure 7: Museum exploration of an annotated multi-layered model. Image
taken live during the Cabras exhibition. Another image of the same exhibition
is in Fig. 1. The OpenLIME instance is isolated and running from a small
Intel NUC placed behind the multitouch display.

Interactive exploration of high-quality digital replicas of artworks
is increasingly common in museums since it enhances the overall ex-
perience and engages visitors better than passive media [FDAB∗24].
Here, we illustrate how OpenLIME was employed to support a

large multi-disciplinary project targeting the physical reproduction,
digital documentation, and public presentation of a monumental art-
work [AAB∗22]. The artwork is a semi-abstract 23m × 5m sandcast
relief by the Italian sculptor Costantino Nivola that was created in
1954 for the Olivetti Showroom on 5th Avenue in Manhattan [AC22].
The artwork, originally conceived to be painted, was installed pre-
serving the natural appearance of the sand alone. The artwork was
then moved to the Harvard University Science Center in 1972, where
color reminiscent of the earlier studies was applied. In two exhibi-
tions, a first one where a virtual presentation enriched a physical
replica [ACCS], and a second purely virtual one [ACC∗], Open-
LIME applications let visitors explore an annotated multi-layered
version of the artwork (see Fig. 7).

The exhibition curators desired to use digital means to inform
and engage the visitor, focusing on school audiences and casual
museum-goers, adapting the quantity and the quality of information
accordingly. Nivola’s sandcast relief blends myth and modernity,
featuring Sardinian gods, dynamic figures, marine textures, personal
imprints, and rhythmic patterns [AC22]. Due to its intricate visual
and semantic complexity, domain experts decided to design the mu-
seum presentation around annotation-driven exploration for guided
and interactive tours, and to offer a comparison between Manhattan’s
original plain installation and Harvard’s colored version.

To create the OpenLIME base image data, the 3D model ac-
quired and reconstructed for documentation and fabrication purposes
was rasterized at ≈2 pixel/mm through orthographic rendering of
the mural using MeshLab [CCC∗08], resulting in a normal map, a
monochrome Lambertian BRDF map, to show the model without a
default sand color as in the Olivetti Showroom, and a colored Lam-
bertian BRDF map, to show the current state as acquired in Harvard.
The maps, each 45695×14953 (683M) pixels, were then converted
using the same tools discussed in Sec. 3.2 to two OpenLIME Layers,
each referencing tiled pyramids in the normal+BRDF format.

Figure 8: Hierarchical annotations. A multi-level visit is created by con-
necting annotations. Each annotation connects a particular position on the
mural to a viewing state, a visual overlay, and a text + video + audio de-
scription. Connections to the next annotation at the same level and to the
first at the more detailed level structure the visit.

The curators then created annotations using OpenLIME tools
(Sec. 3.3), classifying them thematically in History, Content, Tech-
nique and style, and Trivia. In addition, they were divided according
to their importance, creating three possible depths of exploration
to accommodate the viewer’s available time and level of interest.
Each annotation connects a particular position on the mural to a
viewing state, visual overlay, and description. The viewing state

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.



Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

is a recording of the viewer parameters (i.e., camera, lighting, ac-
tive layers, and so on) at the moment of annotation creation. The
visual overlay is an SVG markup, and the description contains a
short rich text and an optional audio clip. A natural sequence was
then created by connecting each annotation to the next one at the
same level (if available) and the first at the more detailed level (if
available). As a result, an annotation tree was obtained (see Fig. 8).
This enhanced annotation structure was created by extending, using
the extra custom properties field, the basic annotation provided by
the OpenLIME core, described in Sec. 3.3.

To obtain a walk-up-and-use installation, a simplified user in-
terface lets visitors control a single virtual object: an interactive
visualization lens. Moving and scaling the lens positions the focus
area and automatically centers the viewport around it [BAMG21].
Inside the lens, the monochrome layer is displayed, while outside
the lens, visitors see the colored model. Moreover, an attached dash-
board around the lens lets users trigger all interactively controlled
actions, including enabling relighting by light direction manipula-
tion and navigation through annotations. The area for displaying
the annotation description is also attached to the lens. To avoid
clutter, only one annotation at a time is presented. Moreover, a pre-
ferred path connecting the different annotations was authored. This
path connects each annotation to the next one at the same level (if
available) and the first at a more detailed level (if available). An
interactive audiovisual tour, presenting all the annotations in the
authored order, is triggered when explicitly requested with a user
action or the application remains idle for a predefined amount of
time (i.e., no visitors are interacting with it). Instead, when visitors
interact with the lens, they can explore areas of the mural by panning
and zooming, or move to annotated areas by selecting a “next” or
“down” button. When a new annotation is activated, its rich text is
displayed near the lens, and the audio clip, if present, is played.

The Nivola Mural Museum Application is deployed on a compact
and low-cost Intel NUC8BEB, which has an Intel Core i7-8559U
processor (2.70GHz, 4 cores/8 threads), 16GB DDR4-2400 RAM,
and a 1TB Samsung SSD 860 EVO for quick storage. The system
has Intel Iris Plus Graphics 655 with 7931MB of video memory. The
application is shown on an 86-inch Iiyama UHD 4K touchscreen
display (3840×2160, 400 cd/m²) in landscape mode. The system is
completely standalone and does not need a network connection to
operate. It is running in a streamlined Manjaro Linux/X11 environ-
ment, with the content being served locally from a Caddy [Mat19]
web server. The kiosk implementation is done via a custom system
service that starts at boot and ensures reliable operation by using a
shell script that detects which display is present and connected, sets
the appropriate resolution, turns off screen timeout, hides the cursor,
and then launches Chromium in kiosk mode. This makes for a dedi-
cated, low-maintenance interactive exhibit that runs automatically
at system boot through systemd integration.

5. Conclusions

We have presented OpenLIME, a scalable web-based framework for
creating local, mobile, and online applications for interactive inspec-
tion of annotated multi-layered, multi-channel and/or relightable
image models. It efficiently and flexibly manages large annotated
raster datasets in multiple image formats using a data-flow approach,

supporting advanced inspection through real-time adaptive stream-
ing and client-side WebGL-based processing. With a modular and
responsive design, OpenLIME supports desktop, mobile, and mul-
titouch environments, facilitating rapid deployment for web-based
datasets and kiosk applications. The presented use cases demonstrate
that, in its current form, the framework is already capable of sup-
porting a range of use cases, including multispectral and relightable
image inspection, visual computing research, archaeological doc-
umentation, and museum applications. The framework is released
as open source [Ope25] and can be readily used for applications in
cultural heritage and other application domains. We are currently
working on implementing configurable pipelines using buffers with
different bit counts, extending the lens subsystem to support general
multi-faceted data visualization, and integrating the viewer into a
general cloud-based system for annotating and inspecting cultural
heritage models, also using it as a tool to inspect areas of 3D models.

Acknowledgments The project received funding from the EU under Grant
Agreement 101157364 – ECHOES and from Sardinian Regional Author-
ities under project XDATA (RAS Art9 LR 20/2015). Project REFLEX
(PRIN2022, EU Next-GenerationEU PNRR M4C2 Inv. 1.1) contributed
to supporting the study of NeuralRTI components. The authors thank: The
Columbia Imaging and Vision Laboratory (CAVE) at Columbia University
for multispectral data [YMIN08] (Fig. 1-1); Tomasz Lojewski and the AGH
University of Science and Technology in Krakow for the provision of the
Oseberg Find data (Fig. 1-2 and Fig. 5); CNRS, Mercurio Imaging and the
Marseille History Museum for the Alcazar collaboration (Fig. 1-3, Fig. 6);
Giuliana Altea, Antonella Camarda, and the Nivola Museum for their contri-
bution to the Nivola project (Fig. 1-4, Fig. 7, and Fig. 8); Ormylia Foundation
for the Saint Demetrios icon (Fig. 3); Attilio Mastrocinque and the Civic
Archaeological Museum in Milan for the lamina item (Fig. 4).

References

[A∗24] APPLEBY M., ET AL.: Image API 3.0, 2024. [Accessed 2025-03-
31]. URL: https://iiif.io/api/image/3.0/. 3

[AAB∗22] AHSAN M., ALTEA G., BETTIO F., CALLIERI M., CA-
MARDA A., CIGNONI P., GOBBETTI E., LEDDA P., LUTZU A., MAR-
TON F., MIGNEMI G., PONCHIO F.: Ebb & flow: Uncovering Costantino
Nivola’s Olivetti sandcast through 3D fabrication and virtual exploration.
In Proc. GCH (2022), pp. 85–94. doi:10.2312/gch.20221230. 8

[AC22] ALTEA G., CAMARDA A. (Eds.): Lo showroom Olivetti a New
York. Costantino Nivola e la cultura italiana negli Stati Uniti. Edizioni di
Comunità, Roma/Ivrea, 2022. 8

[ACC∗] ALTEA G., CAMARDA A., CHERI L., DEPALMAS A., STEIN C.:
On the Shoulders of Giants. The Modern Prehistory of Costantino Nivola.
Museo Civico Giovanni Marongiu, Cabras & Museo Nivola, Orani, Italy.
Nov 30, 2024–Mar 23, 2025. 8

[ACCS] ALTEA G., CAMARDA A., CHERI L., STEIN C.: Nivola and
New York. From the Olivetti Showroom to the Unbelievable City. Museo
Nivola, Orani, Italy. Apr 15-Aug 29, 2022. 8

[AMP∗23] ABERGEL V., MANUEL A., PAMART A., CAO I., DE LUCA
L.: Aïoli: A reality-based 3D annotation cloud platform for the collab-
orative documentation of cultural heritage artefacts. DAACH 30 (2023),
e00285. doi:10.1016/j.daach.2023.e00285. 1, 2

[AMPG22] AHSAN M., MARTON F., PINTUS R., GOBBETTI E.: Audio-
visual annotation graphs for guiding lens-based scene exploration. Com-
puters & Graphics 105 (2022), 131–145. doi:10.1016/j.cag.
2022.05.003. 2

[BAMG21] BETTIO F., AHSAN M., MARTON F., GOBBETTI E.: A novel
approach for exploring annotated data with interactive lenses. CGF 40, 3
(2021), 387–398. doi:10.1111/cgf.14315. 2, 5, 9

[CCC∗08] CIGNONI P., CALLIERI M., CORSINI M., DELLEPI-
ANE M., GANOVELLI F., RANZUGLIA G.: MeshLab: an Open-
Source Mesh Processing Tool. In EG Italy (2008), pp. 129–

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.

https://iiif.io/api/image/3.0/
https://doi.org/10.2312/gch.20221230
https://doi.org/10.1016/j.daach.2023.e00285
https://doi.org/10.1016/j.cag.2022.05.003
https://doi.org/10.1016/j.cag.2022.05.003
https://doi.org/10.1111/cgf.14315


Ponchio, Bettio, Marton, Pintus, Giachetti, Gobbetti / OpenLIME

136. doi:10.2312/LocalChapterEvents/ItalChap/
ItalianChapConf2008/129-136. 8

[CCDL∗20] CROCE V., CAROTI G., DE LUCA L., PIEMONTE A.,
VÉRON P.: Semantic annotations on heritage models: 2D/3D approaches
and future research challenges. ISPRS Archives 43 (2020), 829–836. doi:
10.5194/isprs-archives-XLIII-B2-2020-829-2020. 1

[DFP∗20] DULECHA T. G., FANNI F. A., PONCHIO F., PELLACINI
F., GIACHETTI A.: Neural reflectance transformation imaging.
The Visual Computer 36 (2020), 2161–2174. doi:10.1007/
s00371-020-01910-9. 6

[DHL17] DHLAB: RTI tools, 2017. [Accessed 2025-03-17]. URL:
https://github.com/dhlab-basel/rti.js. 2

[DRP∗24] DULECHA T., RIGHETTO L., PINTUS R., GOBBETTI E., GI-
ACHETTI A.: Disk-NeuralRTI: Optimized NeuralRTI relighting through
knowledge distillation. In Proc. STAG (2024). doi:10.2312/stag.
20241340. 6

[FBKR17] FORNARO P., BIANCO A., KAISER A., ROSENTHALER L.:
Enhanced RTI for gloss reproduction. Elec. Imaging 2017, 8 (2017),
66–72. doi:10.2352/ISSN.2470-1173.2017.8.MAAP-284.
2

[FDAB∗24] FURFERI R., DI ANGELO L., BERTINI M., MAZZANTI P.,
DE VECCHIS K., BIFFI M.: Enhancing traditional museum fruition:
current state and emerging tendencies. Heritage Science 12, 1 (2024), 20.
doi:10.1186/s40494-024-01139-y. 1, 2, 8

[GKPB04] GAUTRON P., KRIVÁNEK J., PATTANAIK S. N., BOUA-
TOUCH K.: A novel hemispherical basis for accurate and efficient ren-
dering. Rendering Techniques 2004 (2004), 321–330. doi:10.2312/
EGWR/EGSR04/321-330. 2

[JAP∗21] JASPE A., AHSAN M., PINTUS R., GIACHETTI A., GOBBETTI
E.: Web-based exploration of annotated multi-layered relightable image
models. ACM JOCCH 14, 2 (2021), 24:1–24:31. doi:10.1145/
3430846. 2

[JH15] JANKOWSKI J., HACHET M.: Advances in interaction with 3D en-
vironments. CGF 34, 1 (2015), 152–190. doi:10.1111/cgf.12466.
2

[KF22] KUZIO O., FARNAND S.: Comparing practical spectral imaging
methods for cultural heritage studio photography. ACM JOCCH 16, 1
(2022). doi:10.1145/3531019. 2

[KUL19] KUL: PLD, 2019. [Accessed 2025-03-17]. URL: https:
//portablelightdome.wordpress.com/software. 2

[MAD∗18] MOUTAFIDOU A., ADAMOPOULOS G., DROSOU A., TZO-
VARAS D., FUDOS I.: Multiple material layer visualization for cul-
tural heritage artifacts. In Proc. GCH (2018), pp. 155–159. doi:
10.2312/gch.20181353. 2

[Mat19] MATTHEW HOLT AND OTHERS: Caddy, 2019. [Accessed 2025-
03-24]. URL: https://github.com/caddyserver/caddy. 9

[MDN23] MDN M.: Image file type and format guide, 2023. [Online;
accessed 28-May-2023]. URL: https://developer.mozilla.
org/en-US/docs/Web/Media/Formats/Image_types. 2, 3,
4, 7

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polynomial tex-
ture maps. In Proc. SIGGRAPH (2001), pp. 519–528. doi:10.1145/
383259.383320. 2

[MHJ22] MEINECKE C., HALL C., JÄNICKE S.: Towards enhancing
virtual museums by contextualizing art through interactive visualizations.
ACM JOCCH 15, 4 (2022), 1–26. doi:10.1145/3527619. 1

[Mic08] MICROSOFT: DeepZooom, 2008. [Accessed 2025-
03-19]. URL: http://www.seadragon.com/developer/
creating-content/file-formats/. 3

[Ope24] OPENSTREETMAPWIKI: Slippy map tilenames, 2024. [Ac-
cessed 2025-03-31]. URL: https://wiki.openstreetmap.
org/wiki/Slippy_map_tilenames. 3

[Ope25] OPENLIME TEAM: OpenLime: Open Layered
IMage Explorer, 2025. [Accessed 2025-03-17]. URL:
https://github.com/cnr-isti-vclab/openlime and
https://github.com/crs4/openlime. 2, 9

[P∗10] PALMA G., ET AL.: RTIViewer, 2010. [Accessed 2025-
03-17]. URL: https://vcg.isti.cnr.it/~palma/rti/

rtiviewer.php. 2
[P∗15] PALMA G., ET AL.: WebRTI viewer, 2015. [Accessed 2025-03-

17]. URL: http://vcg.isti.cnr.it/rti/webviewer.php.
2

[P∗19] PONCHIO F., ET AL.: Relight, 2019. [Accessed 2025-03-17].
URL: http://vcg.isti.cnr.it/relight/. 2

[P∗23] PILLAY R., ET AL.: IIIPImage 1.2, 2023. [Accessed 2025-03-31].
URL: https://iipimage.sourceforge.io/. 2

[PCC∗10] PALMA G., CORSINI M., CIGNONI P., SCOPIGNO R., MUDGE
M.: Dynamic shading enhancement for reflectance transformation imag-
ing. ACM JOCCH 3, 2 (2010), 1–20. doi:10.1145/1841317.
184132. 2

[PCDS20] PONCHIO F., CALLIERI M., DELLEPIANE M., SCOPIGNO
R.: Effective annotations over 3D models. CGF 39, 1 (2020), 89–105.
doi:10.1111/cgf.13664. 1, 2

[PCS18] PONCHIO F., CORSINI M., SCOPIGNO R.: A compact represen-
tation of relightable images for the web. In Proc. ACM Web3D (2018),
pp. 1:1–1:10. doi:10.1145/3208806.3208820. 2

[PDC∗19] PINTUS R., DULECHA T., CIORTAN I., GOBBETTI E., GI-
ACHETTI A.: State-of-the-art in multi-light image collections for sur-
face visualization and analysis. CGF 38, 3 (2019), 909–934. doi:
10.1111/cgf.13732. 1, 2, 6, 7

[PLGF∗15] PITARD G., LE GOÏC G., FAVRELIÈRE H., SAMPER S.,
DESAGE S.-F., PILLET M.: Discrete modal decomposition for sur-
face appearance modelling and rendering. In Opt. Meas. Systems for
Industr. Inspect. IX (2015), vol. 9525, pp. 489–498. doi:10.1117/
12.2184840. 2

[PPY∗16] PINTUS R., PAL K., YANG Y., WEYRICH T., GOBBETTI E.,
RUSHMEIER H.: A survey of geometric analysis in cultural heritage.
CGF 35, 1 (2016), 4–31. doi:10.1111/cgf.12668. 1

[RKG∗24] RIGHETTO L., KHADEMIZADEH M., GIACHETTI A., PON-
CHIO F., GIGILASHVILI D., BETTIO F., GOBBETTI E.: Efficient
and user-friendly visualization of neural relightable images for cul-
tural heritage applications. ACM JOCCH 17, 4 (2024), 54:1–54:24.
doi:10.1145/3690390. 6, 7

[TFT∗20] TEWARI A., FRIED O., THIES J., SITZMANN V., LOMBARDI
S., SUNKAVALLI K., MARTIN-BRUALLA R., SIMON T., SARAGIH J.,
NIESSNER M., ET AL.: State of the art on neural rendering. CGF 39, 2
(2020), 701–727. doi:10.1111/cgf.14022. 6

[TLPW24] TANG Y., LIU L., PAN T., WU Z.: A bibliometric analysis
of cultural heritage visualisation based on web of science from 1998 to
2023: a literature overview. Human. and Social Sciences Commun. 11, 1
(2024), 1–11. doi:10.1057/s41599-024-03567-4. 1

[VETL18] VANHULST P., EVEQUOZ F., TUOR R., LALANNE D.: A
descriptive attribute-based framework for annotations in data visual-
ization. In Proc. VISIGRAPP (2018), pp. 143–166. doi:10.1007/
978-3-030-26756-8_7. 1

[VIP22] VIPS: libvips: A fast image processing library with low memory
needs, 2022. [Accessed 2025-03-19]. URL: https://www.libvips.
org/. 4, 7

[VPH∗20] VANWEDDINGEN V., PROESMANS M., HAMEEUW H., VAN-
DERMEULEN B., VAN DER PERRE A., VASTENHOUD C., LEMMERS
F., L. W., L. V. G.: Pixel+ viewer, 2020. [Accessed 2025-06-
24]. URL: https://www.heritage-visualisation.org/
pixelplusviewer.html. 2

[W3C25] W3C: Pointer Events Level 4, 2025. [Accessed 2025-03-18].
URL: https://www.w3.org/TR/pointerevents4/. 5

[YMIN08] YASUMA F., MITSUNAGA T., ISO D., NAYAR S.: Generalized
assorted pixel camera: post-capture control of resolution, dynamic range,
and spectrum. Tech. Rep. CUCS-061-08, CS Dept., Columbia University,
2008. 9

© 2025 The Author(s)
Eurographics Proceedings © 2025 The Eurographics Association.

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-829-2020
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-829-2020
https://doi.org/10.1007/s00371-020-01910-9
https://doi.org/10.1007/s00371-020-01910-9
https://github.com/dhlab-basel/rti.js
https://doi.org/10.2312/stag.20241340
https://doi.org/10.2312/stag.20241340
https://doi.org/10.2352/ISSN.2470-1173.2017.8.MAAP-284
https://doi.org/10.1186/s40494-024-01139-y
https://doi.org/10.2312/EGWR/EGSR04/321-330
https://doi.org/10.2312/EGWR/EGSR04/321-330
https://doi.org/10.1145/3430846
https://doi.org/10.1145/3430846
https://doi.org/10.1111/cgf.12466
https://doi.org/10.1145/3531019
https://portablelightdome.wordpress.com/software
https://portablelightdome.wordpress.com/software
https://doi.org/10.2312/gch.20181353
https://doi.org/10.2312/gch.20181353
https://github.com/caddyserver/caddy
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://doi.org/10.1145/383259.383320
https://doi.org/10.1145/383259.383320
https://doi.org/10.1145/3527619
http://www.seadragon.com/developer/creating-content/file-formats/
http://www.seadragon.com/developer/creating-content/file-formats/
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://github.com/cnr-isti-vclab/openlime
https://github.com/crs4/openlime
https://vcg.isti.cnr.it/~palma/rti/rtiviewer.php
https://vcg.isti.cnr.it/~palma/rti/rtiviewer.php
http://vcg.isti.cnr.it/rti/webviewer.php
http://vcg.isti.cnr.it/relight/
https://iipimage.sourceforge.io/
https://doi.org/10.1145/1841317.184132
https://doi.org/10.1145/1841317.184132
https://doi.org/10.1111/cgf.13664
https://doi.org/10.1145/3208806.3208820
https://doi.org/10.1111/cgf.13732
https://doi.org/10.1111/cgf.13732
https://doi.org/10.1117/12.2184840
https://doi.org/10.1117/12.2184840
https://doi.org/10.1111/cgf.12668
https://doi.org/10.1145/3690390
https://doi.org/10.1111/cgf.14022
https://doi.org/10.1057/s41599-024-03567-4
https://doi.org/10.1007/978-3-030-26756-8_7
https://doi.org/10.1007/978-3-030-26756-8_7
https://www.libvips.org/
https://www.libvips.org/
https://www.heritage-visualisation.org/pixelplusviewer.html
https://www.heritage-visualisation.org/pixelplusviewer.html
https://www.w3.org/TR/pointerevents4/

