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Abstract

We present a practical single-image framework to address uncontrolled global and local illumination effects in flash photogra-
phy for improved albedo estimation and color projection onto 3D cultural heritage models. Our approach leverages an inverse
rendering pipeline to process a single registered flash photograph and models ambient illumination due to environmental reflec-
tions and local interreflections. By compensating for direct and indirect light contributions, we recover a more reliable albedo
signal for color projection onto the 3D model. We validate our method through extensive evaluations on two synthetic datasets
and real-world acquisitions in conservation and museum settings, demonstrating its effectiveness in improving photometric
accuracy and support for relighting, and proper integration of optimized color data into existing 3D models.

CCS Concepts

» Computing methodologies — Reflectance modeling; Computational photography; Appearance and texture representations;

Reconstruction;

1. Introduction

The production of high-quality colored 3D digital models plays a
crucial role in the documentation, analysis, and dissemination of
cultural heritage (CH) assets. These models enable accurate preser-
vation, virtual restoration, and interactive visualization, support-
ing scholarly research and public engagement [PDC*19, Sco21,
FAB*24]. Advances in 3D digitization techniques, including pho-
togrammetry, structured light scanning, and multi-light imaging,
have significantly improved the geometric accuracy and color fi-
delity of digital replicas. However, achieving high spatial resolution
and photometric accuracy remains a challenge, particularly when
dealing with complex geometries and uncontrolled lighting condi-
tions during acquisition outside laboratory settings.

A particularly challenging scenario arises when shape and color
acquisitions are decoupled. This occurs, for instance, for long-term
monitoring, where multiple color acquisitions are performed on-
site and over time. In this case, once the geometric model has been
acquired, only a single or a few images are captured at a particular
time, either for efficiency reasons (photogrammetry and multi-light
datasets require extensive acquisition time) or when only a small re-
gion of an object needs to be updated. In such situations, the newly
acquired color data must be seamlessly integrated into an existing
3D model, which is done through 3D image registration and subse-
quent color projection [PGCD17].

What is contained in the captured photograph, however, is not a
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surface property, but is influenced by both the surface reflectance
and the illumination environment. While projecting the apparent
color is often used in many production pipelines [PGCD17], shad-
ing and illumination removal is necessary, before projection, to ob-
tain a surface characterization, eventually comparable over time,
and to support different applications, such as relighting (i.e., ren-
dering the model under different illumination conditions), which is
often used for surface inspection [PDC*19]).

Flash photography in dark environments is commonly used for
repeatable surface color extraction and shading removal under
controlled lighting. While full reflectance recovery typically re-
quires multiple images (see Sec. 2), under a local illumination
prior, surface albedo can be efficiently estimated per pixel from
known light intensity, surface normal, and distance to the light.
This has enabled the creation of color estimation and projec-
tion pipelines that improve over simple apparent color mapping
(e.g., [LPC*00, BPV*15]). However, while the purely diffuse re-
flectance prior is verified for many surfaces of interest in CH, in-
direct lighting, such as environmental reflections and surface in-
terreflections, violates the local illumination assumption, distort-
ing the projected photometric signal and introducing artifacts. Al-
though dark fabric is sometimes used to minimize environmental
reflections, it is not always feasible during on-site captures. Inter-
reflections from concave surface portions, in particular, remain un-
avoidable.


https://orcid.org/0000-0003-1786-7068
https://orcid.org/0000-0001-7318-6377
https://orcid.org/0000-0003-3899-308X
https://orcid.org/0000-0003-0831-2458

20f 10 R. Pintus et al. / Inverse Rendering for Enhanced Albedo Estimation

In this work, we present a practical single-image framework to
address indirect global and local illumination effects in flash pho-
tography for albedo estimation and projection onto a given 3D
geometry. Our approach leverages an inverse rendering pipeline
that processes a single registered flash photograph, and it approxi-
mates ambient illumination from environmental reflections and lo-
cal interreflections. By compensating for direct and indirect effects,
we recover an image of the pure albedo, free from illumination
contributions. This refined signal serves as the input for a more
accurate matte color projection onto the 3D model. To validate
our method, we conduct extensive evaluations on both synthetic
datasets and real-world acquisitions performed in a routine conser-
vation/museum setting.

2. Related Work

Color mapping and blending are well-established fields with nu-
merous successful applications, particularly in the CH field. Exten-
sive research explored methods for aligning and integrating color
information onto 3D models, ensuring photometric consistency and
visual fidelity [PGCD17, PG15]. In this section, we focus on ap-
proaches closely related to our work, specifically those addressing
material modeling and global/local illumination estimation.

In the CH domain, standard pipelines for creating colored 3D
models often involve capturing images under uncontrolled lighting
conditions [Rem11], ranging from professional setups with diffuse
illumination to in-the-wild photography. The color is directly pro-
jected onto 3D models, typically within photogrammetric frame-
works [LLC23, FC17, Sch21, C*21], where geometry is derived
from dense multi-view stereo [FH15, WWL*21], or through ad-
vanced blending algorithms [PGCI11]. While widely used, these
methods lack a measurable and repeatable color signal. This lim-
itation is particularly critical in CH applications like monitoring
and preservation [SBG11], where quantitative surface characteri-
zation is essential. Our approach addresses lighting inconsisten-
cies due to an unsupervised capture setup by utilizing controlled
flash photography; this ensures a projected color signal that is both
more accurate and repeatable. Flash photography has been previ-
ously improved for color projections by pipelines that perform a
flash characterization (e.g., [DCC*09)), or that remove shading ef-
fects under a local illumination prior (e.g., [LPC*00, BPV*15]).
We extend those methods to account for indirect illumination ef-
fects from ambient contributions from an unknown environment
and inter-reflections from the object itself.

When aiming to recover accurate surface appearance, two gen-
eral strategies are commonly adopted: multi-image methods, par-
ticularly based on Multi-Light Image Collections (MLICs), and
single-image methods that often rely on recent deep learning frame-
works. These approaches attempt to extract not only appearance,
but also meaningful optical characteristics and lighting properties.

MLIC techniques [PDC*19] extract both geometry and color
parameters using approaches like photometric stereo [JLX*24]
or optical modeling [KHM*24]. These typically involve captur-
ing several images from a fixed viewpoint under different light-
ing directions. Some methods assume uniform or simple materi-
als [ASOS13, AWL13], while others leverage material dictionar-

ies [HS17] or clustering of appearance profiles [TGVGI12]. Al-
though effective, these techniques require extensive acquisition and
may often assume planar surfaces, making them less suitable for
objects with complex geometry. Additionally, recovery methods of-
ten neglect global and local indirect illumination effects. In con-
trast, our method, targeting matte objects as many color projection
methods do, uses only a single image, while accounting for both di-
rect and indirect illumination, simplifying acquisition and improv-
ing applicability.

Single-image color estimation has gained traction by enabling
material inference with minimal acquisition effort [DAD*18,
VPS21]. These leverage CNNs, adversarial training, and differen-
tiable rendering [ZGW™23] to infer spatially varying reflectance
properties. Hybrid supervision strategies [ZK21] and mobile-
friendly pipelines [LSC18] have also been explored. However,
these methods heavily rely on training data and often struggle
with generalization [SP23], especially when applied to objects
with significant geometric variation [GLT*21, SLS23]. Moreover,
learned priors can introduce artifacts or physically implausible re-
sults [LSBE24]. Instead of relying on data-driven priors, we em-
ploy a physically grounded inverse rendering strategy [ZSH*22],
which better supports the goal of consistent albedo estimation to-
gether with global and local illumination modeling for more accu-
rate surface color projection in CH scenarios.

3. Method

Our method takes as input a combination of geometric, photo-
graphic, and calibration data. Specifically, we use a 3D digital
model of the object to provide its geometric structure, along with a
single flash photograph capturing its appearance. Additionally, we
leverage comprehensive metadata related to the camera setup, in-
cluding intrinsic parameters, the relative position of the flash light
relative to the camera body, and the rigid-body transformation that
aligns the camera with the 3D model. By integrating these ele-
ments, our approach aims to better estimate the body color signal
and achieve more accurate color projection.

The image formation model employed in our approach takes into
account multiple factors that contribute to the observed pixel color.
Specifically, we consider a diffuse Lambertian surface reflectance,
which is determined by the albedo p, the surface normal n, and the
light direction 1. The illumination consists of two primary compo-
nents: a direct point light source with intensity L, representing the
flash, and an ambient illumination component L, which originates
from a distant environment and is integrated over the hemisphere
Q of incoming directions ®. This ambient contribution can be in-
dependent of the flash or result from multiple bounces of the flash
light within the surrounding geometry. Additionally, we account for
local interreflections I, capturing light bouncing from nearby sur-
faces. Finally, a residual term I models any remaining signal not
explicitly described by the previous elements. Based on this image
formation model, the observed radiance I at a given surface point x
is expressed as:

I(x) = p(x) [L,,(ml)+/9La(0))(n~0))du)+lr(x) +Ie(x) (1)
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Figure 1: Overview of the proposed pipeline. The process starts with a 3D model and a flash photograph with its metadata and a precomputed
mask. The input image is initially projected onto the geometry to provide an initial color estimate. This serves as input for the optimization
process, which refines the albedo p. The final per-vertex color is then updated through an additional photo projection and blending step.

where the expression max(0,n-...) is implicitly assumed in the nor-
mal dot products and omitted to enhance the readability and clarity
of the equation.

The unknown values we want to recover from a single image
using the proposed inverse rendering approach include the inten-
sity of the point light Ly, the ambient illumination intensity Ly,
the interreflection I, and residual I signals, as well as the albedo
p at all object points. We derive these signals by leveraging only
the known input geometry and flash photograph, and the goal is the
optimization of a cost function which is based on the mean squared
error (MSE) between the observed flash photograph T and the mod-
eled radiance I. Since the inverse rendering procedure operates on
pixel-based images, the modeled radiance I is computed per pixel.
According to Equation (1), this implies that I(p) corresponds to
the integral of all radiance values I (x) across the surface patch pro-
jected onto pixel p through the camera’s projective geometry. Con-
sequently, the minimization problem is defined on a per-pixel basis
as follows:

1 = 2
" = argmin = ¥ [[L(p) —1(p)]| )
p.Lp, Lo, LYY pep
where N is the number of pixels p belonging to the set P of image
pixels defined by the precomputed mask. The residual I¢ is equal
to (I —T), where I'" is the optimized computed radiance.

Figure 1 illustrates the complete workflow of our proposed ap-
proach. The process begins with a 3D model, a flash photograph
along with its metadata, and a precomputed mask as inputs. To ini-
tialize the color signal, we project the input image directly onto the
3D geometry (see Sec. 3.1 for further initialization details). This
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initial colored model, along with the reference photograph, serves
as the foundation for the optimization process described in Equa-
tion 2. Once the optimization is complete, we extract the estimated
albedo p and use it to update the per-vertex color through a second
color projection step.

3.1. Implementation

The input flash photography data is captured as a raw linear signal,
which has been previously calibrated using a color checker to en-
sure that the flash chromaticity appears as a perfect gray, allowing
us to focus solely on determining the intensity of the light. The lin-
ear nature of the data is crucial for the computational process, as it
ensures more precise modeling. Additionally, we store the data in a
high dynamic range (HDR) image format, which helps mitigate nu-
merical issues arising from quantization and ensures more precise
calculations.

For the albedo signal, we treat it as a multi-spectral entity; in
our case, we use the classic RGB color spectra. During our exper-
iments, we determined that modeling the ambient environmental
light as a constant sphere is sufficient for the flash photography
setup. This approach yields good minimization results. Given the
inherent ambiguity in distinguishing between completely uncon-
strained ambient light and per-vertex chromaticity, we also con-
strain the chromaticity of the ambient light to be gray, reducing
ill-posed issues in the optimization process.

The initial guess for the color of the surface depends on the sce-
nario. If the image is the first color signal to be projected onto the
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3D geometry, and the geometry lacks any color information, we ini-
tialize the surface color directly from the original flash photograph,
without any light compensation. However, if we are accumulating
additional images, the initial guess is based on the already exist-
ing color signal on the 3D model, ensuring consistency in the color
representation. For the ambient light, we initially set its value to
zero, assuming no ambient light at the start. To improve conver-
gence and mitigate the well-known scale ambiguity between the
global brightness of the albedo and the intensity of the illuminators,
our differentiable rendering-based optimization follows a two-step
approach. We begin by performing a preliminary one-dimensional
search to estimate an initial value for the flash light intensity. This
step leverages prior knowledge of the average distance between the
flash and the object, as well as radiometric calibration data obtained
via the color checker, as described earlier. These constraints de-
fine a plausible absolute radiometric range for the flash intensity.
Within this range, we execute a series of lightweight optimization
steps to identify a suitable initialization value that best aligns the
rendered appearance with the observed image. Once this initializa-
tion is established, we proceed with the full local optimization of all
unknown parameters, including the flash and ambient illumination
components as well as the per-vertex albedo values. This two-stage
process ensures a stable and physically meaningful convergence of
the inverse rendering pipeline. Our experiments show that this pro-
cedure achieves comparable or better results than directly optimiz-
ing all variables at once while significantly reducing the number of
optimization iterations, leading to faster convergence.

The inverse rendering framework is built around a basic path
tracer with six light bounces. This number of bounces strikes a
balance between ensuring high-quality minimization and control-
ling the computational complexity, as increasing the number of
bounces indefinitely would significantly increase the computational
load. The framework employs the Adam optimizer with a learning
rate of 0.05. To improve the stability of the optimization process
and mitigate issues related to numerical divergence, ill-posedness,
and inherent ambiguities, we enforce specific constraints on the op-
timized parameters throughout the iterative procedure. Since the
flash illumination is pre-processed through white balancing, its
chromaticity can be assumed to be neutral. This greatly simplifies
the inverse rendering process by eliminating a key ambiguity be-
tween the color of the direct illumination and the rest of radiometric
components. Additionally, constraining the ambient component to
remain achromatic further mitigates potential sources of ambiguity
and enhances the stability of the estimation process. Since the opti-
mization operates directly on RGB spectral values, we then regular-
ize both flash and ambient illumination by enforcing achromaticity
at each iteration; their RGB components are averaged to maintain
a consistent gray chromaticity. Furthermore, we apply clamping to
bound the range of the optimized variables: RGB albedo values and
ambient illumination components are restricted to the normalized
[0, 1] range, ensuring physically plausible reflectance values; the
flash intensity is clamped within an absolute range derived from
the radiometric calibration, as previously described. These regu-
larization strategies help guide the optimization toward physically
meaningful solutions and prevent degenerate behaviors.

4. Results

We present an evaluation of our proposed solution through both
controlled synthetic experiments and real-world CH assets ac-
quired in a museum setting. The evaluation is conducted on a high-
performance computing platform equipped with an Intel® Core™
19-14900KF CPU with 32 cores, an NVIDIA GeForce RTX 4090
GPU, and 188GB of RAM. The inverse rendering framework is
implemented in Python using the Mitsuba library [JSR*22], en-
suring physically-based simulation of light transport. Additionally,
for the color projection step, we employ an efficient and scalable
streaming technique designed to map high-resolution color infor-
mation onto extremely dense point clouds [PGC11]. RAW color
images from the camera are handled using the dcraw 9.28 library.
With the current hardware and software configuration, the initial
estimation of the flash intensity—performed via a brute-force one-
dimensional search—takes less than one hour, while the subsequent
full local optimization completes in about five minutes for each
photograph. It is important to note that the flash intensity estima-
tion is required only once per acquisition session, regardless of the
number of images processed. As a result, its computational cost
becomes progressively amortized as more images are incorporated.
While the initial estimation could be significantly accelerated us-
ing established techniques commonly employed in production en-
vironments, such engineering optimizations lie beyond the research
objectives of this work.

The results are structured as follows: first, we assess the
method’s performance in a controlled synthetic environment, al-
lowing for a precise analysis of its ability to model and compensate
for complex illumination effects (see Sec. 4.1). Then, we demon-
strate the applicability of our approach on real CH artifacts (see
Sec. 4.2), highlighting its effectiveness in practical scenarios where
uncontrolled lighting conditions and intricate surface details pose
additional challenges.

4.1. Synthetic Datasets

To assess the effectiveness of our approach in a controlled en-
vironment, we conducted evaluations using two simple synthetic
datasets: a sphere and a V-shaped pair of planes. Both models were
assigned the same uniform color and we study our approach in a
controlled setting by isolating various effects of illumination vari-
ations. The sphere was chosen due to its convex topology to ana-
lyze mostly how ambient global light influences the color projec-
tion process and to evaluate the ability of our method to correctly
estimate and compensate for this effect. On the other hand, the V-
shaped planes were selected to investigate the impact of interreflec-
tions and assess how well our approach can account for these local
and indirect lighting effects. In fact, the sharp intersection between
the two planes creates a challenging case where light bounces be-
tween surfaces, introducing color bleeding that must be modeled
and corrected. This setup provides a well-defined scenario where
indirect illumination plays a significant role in the observed ap-
pearance.

Figure 2 illustrates the ground truth models used in these ex-
periments, and the performance evaluation results. For the Sphere
dataset, we analyze three different conditions. In the first scenario,
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Figure 2: Evaluation on synthetic datasets. The left images show the two synthetic datasets. A Sphere is used for ambient light analysis and
V-Shaped Planes for interreflection correction. The group of images in the middle shows evaluation results for the Sphere dataset, while the
rightmost ones correspond to the V-Shaped Planes. Columns represent direct illumination (leftmost), indirect global or local effects (middle
columns), and our optimized approach (rightmost). Rows display input images, colored 3D models, and color projection errors. Our method
compensates for local and global illumination effects, ensuring more accurate albedo projection with minimal error, even in challenging

scenarios.
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Figure 3: We compare the original flash photograph of the Torre Quadrata with two virtual renderings from the same viewpoint. The
second column shows a rendering using the standard albedo estimate with only direct flash illumination, while the third column presents
the result using the optimized albedo and illumination model, accounting for both direct flash, and indirect global ambient light and local
interreflections. \LIP error maps highlight discrepancies due to indirect lighting effects, which are effectively compensated by our method,

resulting in a more accurate match to the original photograph.

shown in the left column, we simulate an ideal case where the flash
photograph contains only direct illumination. In the second case,
presented in the middle column, we introduce indirect lighting ef-
fects, resulting mostly from global illumination from the surround-
ing environment. Finally, in the right column, we apply our pro-
posed inverse rendering optimization to compensate for direct and
indirect illumination before projecting the color onto the 3D model.
The rows in the figure respectively show the input images used for
color projection, the resulting colored models, and the error maps
that highlight the difference between the projected colors and the
ground truth. For the error maps we used the CubeHelix colormap,
which is a perceptually uniform colormap designed for information
visualization that maintains a monotonic luminance increase and
avoids abrupt jumps in brightness that distort perception [Grell1].
In the case of the Sphere, the convex nature of the surface makes
the contribution of environmental lighting particularly evident, es-
pecially in the outer ring regions, where the surface is foreshort-
ened relative to the viewing direction. This effect causes a notice-
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able darkening in the absence of indirect illumination, as less light
is scattered back toward the viewer. In the second scenario, global
illumination counterbalances this effect, brightening those regions.
Under purely direct illumination, the image formation process can
be easily modeled, allowing for an accurate color projection that
properly compensates for the interaction between light and the sur-
face. As a result, the difference between the projected color and the
original ground truth remains minimal. However, when unknown
global indirect illumination effects are present, correcting only the
flash contribution leads to increasing errors, particularly in areas
with strong foreshortening. In these regions, the expected light in-
tensity is lower, and attempting to counterbalance it without ac-
counting for indirect effects results in an overcompensation, pro-
ducing significant color projection errors. By incorporating both
direct and indirect illumination into the optimization process, our
approach effectively compensates for these effects. The adjusted
colors are then projected onto the geometry, leading to a final col-
ored model with significantly reduced error and improved accuracy.
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Figure 4: Albedo comparison for Torre Quadrata. The optimized
albedo (right) is more uniform and less influenced by geomet-
ric variations than the direct flash-based estimate (left), reducing
baked-in shading effects and albedo overcompensation.

In the V-Shaped Planes dataset, the first scenario remains un-
changed, consisting solely of direct illumination from the flash.
However, unlike the Sphere dataset, here we analyze the effects
of indirect lighting in two separate stages: first, we introduce only
local interreflections (second column), and then we incorporate
global environmental illumination as well (third column). As in
the case of the Sphere, the final column presents the results ob-
tained with our proposed method. In this setup, interreflections be-
come particularly evident near the junction where the two planes
meet, leading to a noticeable increase in brightness due to mul-
tiple light bounces between the surfaces. This phenomenon is a
well-documented effect of local indirect illumination. Similar to
the foreshortened regions observed in the sphere dataset, the naive
compensation of illumination in the presence of interreflections re-

sults in an overestimation of color brightness, causing an excessive
brightening in these areas and an increasing projection error. The
introduction of environmental illumination further amplifies this is-
sue, as seen in the third column, where both global and local in-
direct lighting contribute to additional distortions in the projected
color. Despite these challenges, our method effectively models and
compensates for both local and global illumination effects before
projecting the estimated albedo onto the 3D model. As a result,
even in the complex case of the V-Shaped Planes, the final pro-
jected colors exhibit a significantly reduced error.

These two synthetic datasets have been carefully designed to
evaluate our approach under two geometrically challenging sce-
narios: one featuring highly foreshortened surface regions, and the
other characterized by a deep concave structure prone to multiple
light bounces. To isolate and clearly observe the effects of lighting
and the impact of our correction strategy, the datasets are deliber-
ately kept simple, most notably by employing uniform surface col-
ors. This design choice allows for a more transparent assessment
of our method’s effectiveness in managing complex illumination
phenomena and correcting related artifacts.

4.2. Cultural Heritage Datasets

In this section, we evaluate our method on a real-world CH dataset
featuring two remarkable statues from the Mont’e Prama complex,
a collection of Neolithic stone sculptures discovered in Western
Sardinia. Created by the Nuragic civilization between the 10th and
7th centuries BC—an exact timeframe still debated—these sculp-
tures rank among the most significant archaeological finds in the
Mediterranean. Carved from local limestone, they reflect the unique
artistic and architectural heritage of this ancient culture. The se-
lected artifacts represent stylized models of Nuragic towers, the
imposing megalithic structures that once shaped Sardinia’s land-
scape. Referred to here as Torre Quadrata and Nuraghe, these stat-
ues, with their intricate carvings and weathered surfaces, offer an
ideal testbed for assessing our method under real-world conditions.

Fig. 3 showcases a comparative evaluation of our method ap-
plied to the Torre Quadrata object. We juxtapose the original flash
photograph with two virtual renderings generated from the same
viewpoint, using identical intrinsic and extrinsic camera param-
eters. The first rendering (second column) is obtained using the
albedo estimated by a standard pipeline that assumes only direct
flash illumination, disregarding indirect lighting effects. This re-
sults in an image formed by combining the estimated albedo with
the simulated flash lighting. The second rendering (third column)
is generated using our optimized albedo, obtained through differ-
entiable rendering, along with an illumination model that accounts
for both the direct flash light and the optimized indirect ambient
illumination and interreflections. To quantitatively assess the accu-
racy of our approach, we compare the original photograph and the
two renderings using three image quality metrics: PSNR, SSIM,
and HLIP. PSNR (Peak Signal-to-Noise Ratio) [HTGO8] provides
a pixel-wise measure of similarity, with higher values indicating
greater fidelity. SSIM (Structural Similarity Index) [WBSS04] and
HLIP [ANAM®20] are perceptual metrics that evaluate image dif-
ferences based on human visual perception, capturing structural
and contrast-based variations more effectively than PSNR. The
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Figure 5: We compare the original flash photograph of the Nuraghe with two virtual renderings from the same viewpoint. The second column
shows a rendering using the standard albedo estimate with only direct flash illumination, while the third column presents the result using the
optimized albedo and illumination model, accounting for both direct flash, and indirect global ambient light and local interreflections. \LIP
error maps highlight discrepancies due to indirect lighting effects, which are effectively compensated by our method, resulting in a more

accurate match to the original photograph.

Standard
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Figure 6: Albedo comparison for Nuraghe. The optimized albedo
(right) is more uniform and less influenced by geometric variations
than the direct flash-based estimate (left), reducing baked-in shad-
ing effects and albedo overcompensation.

HLIP error maps, shown in both full images and detailed insets,
highlight the regions where significant discrepancies arise. The
HLIP error maps were computed by masking out dark pixels that
were not colored by the color projection routine, ensuring that only
the relevant regions of the image were considered in the error eval-
uation. Most of the differences stem from local indirect lighting ef-
fects, particularly interreflections within small surface cavities (De-
tails #1 and #2) and areas illuminated by large neighboring surface
regions (Detail #3). Our method, as illustrated in the error maps of
the second row and last three columns, successfully compensates
for these indirect lighting effects, leading to a more accurate albedo
estimation and a virtual rendering that aligns more closely with the
original flash photograph.
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Another way to evaluate the improvement in color reconstruc-
tion quality is by analyzing the pure albedo signal, rendered with-
out any illumination, as shown in Fig. 4. On the left, we display the
albedo computed using only direct flash illumination. In this case,
brightness is significantly overcompensated in depth edges, where
the surface normal deviates from a front-facing orientation relative
to the camera. This leads to residual shading artifacts embedded in
the albedo. In contrast, the optimized albedo, shown in the right
column, displays a more uniform and consistent appearance that is
less influenced by geometric variations, highlighting the effective-
ness of our approach in mitigating these artifacts. The last row of
Fig. 4 offers an alternative viewpoint of the pure albedo, further il-
lustrating how the optimized version minimizes baked-in shading
effects, providing a more accurate and faithful color representation
of the surface.

Similar results are observed for the Nuraghe dataset, as shown
in Fig. 5 and Fig. 6. The comparative evaluation of virtual render-
ings and the albedo analysis follow the same reasoning as for the
Torre Quadrata object, with our method effectively compensating
for indirect lighting effects and producing a more accurate color
reconstruction, as reflected in the error maps and optimized albedo.

The quantitative performance of our method is further demon-
strated in Tab. 1, which presents the PSNR and SSIM values for
both the Torre Quadrata and Nuraghe examples. As shown in the
table, our approach achieves superior results in both metrics, out-
performing the standard pipeline in terms of both pixel-wise simi-
larity (PSNR) and perceptual quality (SSIM).

Torre Quadrata Nuraghe
PSNR | SSIM | PSNR | SSIM
Standard 44.07 0.98 39.26 0.95
Optimized | 46.73 0.99 41.74 0.96

Method

Table 1: PSNR and SSIM values for the Torre Quadrata and
Nuraghe datasets, showing improved performance with our method
compared to the standard pipeline.

In another experiment, we also assess the capability of our
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Colored Model Colored Model
Photograph Colored Model Colored Model
Error Map Error Map

Figure 7: Appearance prediction across novel viewpoints and light conditions. The first column shows original flash photographs, while the
second and fourth columns present virtual renderings using the standard and optimized methods. ALIP error maps (third and fifth columns)

highlight the improved consistency and accuracy of our approach.

Standard Albedo
Camera View Fixed View

Image #1

Image #2

Optimized Albedo
Fixed View Camera View

Figure 8: Evaluation of repeatability across viewpoints. The outermost columns show the estimated pure albedo from two flash photographs
captured from corresponding camera perspectives, using both the standard and our optimized method. The standard approach reveals
inconsistencies in areas that should exhibit the same albedo (indicated by purple arrows), whereas our method achieves significantly better
consistency across views (green arrows). The remaining columns illustrate the color projections onto the 3D model from a fixed viewpoint,
along with the corresponding \LIP error maps, underscoring the improved stability and repeatability of our approach.

method to predict the appearance of the colored object under novel
viewpoints and illumination conditions. Specifically, we evaluate
whether the colored model, obtained by projecting the optimized
albedo from a specific single flash photograph (i.e., the one pre-
sented in Fig. 3 and Fig. 4), can better reproduce the actual col-

ors captured from different viewpoints in other acquired flash pho-
tographs. Naturally, we conduct this experiment using that single
projected image to prevent error mitigation effects that could result
from blending multiple images onto the same surface region. So, in
Fig. 7 we present three new flash photographs acquired from view-
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points not used during the optimization process, ensuring that these
images are entirely unseen by the optimization procedure. For each
viewpoint, we first show the original flash photograph, followed
by two virtual renderings of the model, i.e., one generated using
the standard approach, where the albedo is estimated under the as-
sumption of direct flash illumination only, and another obtained us-
ing our optimized solution, which incorporates both the direct flash
light and the modeled indirect contributions from global and local
illumination. By examining the virtual renderings and correspond-
ing HLIP error maps, we observe that our approach consistently
improves the prediction of object appearance across multiple novel
viewpoints and illumination settings. Unlike the standard method,
which struggles with indirect lighting effects, our optimized model
provides a more stable and accurate reconstruction, better align-
ing with the actual captured images. These results highlight the
increased robustness of our approach in handling varying illumi-
nation conditions and demonstrate its effectiveness in enhancing
color fidelity under different viewpoints.

The final experiment evaluates the improvement in repeatabil-
ity achieved by our method compared to the standard approach.
We acquire two flash photographs from different viewpoints, cap-
turing approximately the same region of the object, and process
them using both pipelines. Fig. 8 presents a comparative analysis of
the resulting pure albedo maps. The outermost columns show the
pure albedo estimated from each corresponding viewpoint using the
standard and optimized methods. In the standard pipeline, signifi-
cant discrepancies appear in regions that should exhibit a consistent
albedo (highlighted by purple arrows), whereas our optimized ap-
proach ensures greater consistency across views, as indicated by
the matching regions marked with green arrows. Beyond the per-
view albedo comparisons, the remaining part of Fig. 8 visualizes
the assigned colors on the 3D model rendered by a fixed view-
point. To further assess consistency, we compute ILIP error maps
between the overlapping image regions, masking non-overlapping
areas. The results demonstrate that our method enhances the re-
peatability of color estimation across different viewpoints. While
the final model will be refined through multiple overlapping photo
blending, providing a more consistent and accurate albedo estima-
tion at this stage establishes a stronger foundation for blending,
ultimately yielding a higher-quality colored model.

5. Conclusions

In this work, we presented an improved inverse rendering pipeline
for flash photography-based albedo estimation, addressing the chal-
lenges posed by indirect illumination effects. Our method refines
albedo estimation by accounting for both global and local light in-
teractions, leading to more accurate color reconstruction and im-
proved consistency across multiple viewpoints. Through controlled
synthetic experiments, we demonstrated how our approach effec-
tively compensates for interreflections and shading artifacts, signif-
icantly reducing color distortions that arise in standard pipelines.
We further validated our method on real-world CH assets, show-
ing its robustness in complex, uncontrolled environments. Quanti-
tative evaluations using PSNR, SSIM, and ALIP metrics confirmed
that our optimized albedo estimation produces more faithful rep-
resentations compared to the standard approach. Additionally, we
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assessed the stability of our method across different viewpoints and
illumination conditions. Results showed that our approach consis-
tently improves repeatability, ensuring that the same surface re-
gions exhibit minimal color variations across different acquisi-
tions. This property is particularly beneficial for photometric blend-
ing techniques, as it provides a more reliable input for generating
high-quality, fully textured 3D models. The proposed solution con-
tributes to a more reliable and detailed reconstruction of heritage
artifacts, advancing the broader field of digital preservation and 3D
modeling.

While our method has been designed for single-image opti-
mization, its extension to a multi-image framework presents a
compelling avenue for future research. By incorporating multi-
ple views, each contributing to the optimization of vertex colors
under varying illumination conditions, we could enhance robust-
ness and accuracy. However, this shift would also introduce com-
putational challenges, necessitating the development of more effi-
cient optimization strategies. Further improvements could also be
achieved by refining the illumination modeling process. In partic-
ular, integrating advanced techniques to better account for specu-
lar reflections and material variations would enhance the fidelity of
the reconstructed material. Finally, a more sophisticated treatment
of environmental lighting remains an open challenge. While our
current model assumes a uniform ambient contribution, exploring
non-uniform illumination conditions and inferring geometric con-
straints of the surrounding environment could strengthen the re-
lationship between flash lighting and global illumination effects,
further improving the accuracy of the relighting process.
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