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Abstract—We present a completely automatic and scalable
framework to perform query-by-example word-spotting on me-
dieval manuscripts. Our system does not require any human
intervention to produce a large amount of annotated training
data, and it provides Computer Vision researchers and Cultural
Heritage practitioners with a compact and efficient system for
document analysis. We have executed the pipeline both in a
single-manuscript and a cross-manuscript setup, and we have
tested it on a heterogeneous set of medieval manuscripts, that
includes a variety of writing styles, languages, image resolutions,
levels of conservation, noise and amount of illumination and
ornamentation. We also present a precision/recall based analysis
to quantitatively assess the quality of the proposed algorithm.

I. INTRODUCTION

In the last decade many museums and libraries around the
world have undertaken a massive digitization of vast corpora
of valuable handwritten historical documents, ranging from old
Greek texts to modern manuscripts. Well known examples are
George Washington’s papers at the Library of Congress and
Isaac Newton’s papers at the University of Cambridge Library.
Besides the goal of Cultural Heritage (CH) preservation, the
aim is also to make this data available to scholars, curators, and
the general public. To provide access and facilitate navigation
of such on-line databases, each captured document must
be labeled and indexed. Traditionally, the standard way to
perform this task is to manually create a structured meta-data
file for each book or collection. Automation is desirable, since
manual indexing is very expensive, and becomes impractical
as the size of repositories grows. An important, basic task that
is needed is the automatic recognition of characters or words,
to perform labeling, indexing, or transcription.

Unfortunately, although state-of-the-art techniques for Op-
tical Character Recognition (OCR) are very powerful when
applied to printed text, they are highly likely to fail on historic
handwritten documents, which are in general significantly de-
graded due to ink bleed-through, faded ink, stained paper, and
other aging factors. In addition, the high degree of variability
in handwriting, and the noise in such old manuscripts, has
forced humanities researchers to transcribe those pages by
hand. Thus, automatic handwriting recognition still remains
a very challenging problem for the Computer Vision (CV)
community.

In this scenario, word-spotting approaches try to overcome
the limits of the aforementioned text reading methods, by
relying on image matching metrics and more general object
recognition frameworks. Word-spotting considers a collection
of documents as a collection of word images, and tries to
group similar word occurrences into clusters. This class of
algorithms enables different technical solutions for document

analysis, e.g. a word retrieval system that requires neither a
previous transcription [1], nor a partial transcription tool that
helps scholars in a semi-automatic, incremental environment.
The power and reliability of word-spotting have been proved
in many application domains, ranging from automatic mail
sorting in modern handwriting, to historical document retrieval
given a single word image, on-line searching in CH collec-
tions, and book integration within a digital library [2].

There are many classes of handwritten manuscripts, each
with different features to be exploited and challenges to over-
come. As a result, there is no “one size fits all” method that is
optimal for all manuscripts. Our project, in collaboration with
humanist scholars, focuses on Western medieval manuscripts.
These have the advantage of regular, horizontal text lines.
However, they have the disadvantage of being primarily com-
posed of thick vertical strokes that are only slightly modified
to differentiate characters, making recognition tasks peculiarly
difficult. There are huge numbers of manuscripts of this type,
scattered through libraries around the world. There are a
large world-wide community of scholars interested in these
manuscripts for studying history, law, literature and art. Our
work is in an environment in which the manuscripts are being
scanned and processed to be made available in a web-based
service for a variety of cross-collection studies. Our approach
takes advantage of being able to segment manuscripts in a
pre-process that can facilitate the many types of study being
conducted by our humanist colleagues.

We present a completely automatic and scalable frame-
work to perform query-by-example word-spotting in medieval
manuscripts. In particular, we do not require any manual
intervention of the user to produce a large amount of annotated
data to train the algorithm. Given a set of images from a
handwritten book and an image of a query word, the algorithm
first segments each page into text lines [3], to remove all the
irrelevant non-text data. Then, it performs a decolorization
that enhances image contrast before feature extraction and
image matching. Finally, we adopt, modify and integrate
the state-of-the-art approach of Almazán et al. [4], which
finds the occurrences of the query word by searching similar
regions across each single line separately, based on Histogram
of Oriented Gradients (HOG) descriptors. The results are
exported in a lightweight, open, data-interchange annotation
format [5]. Compared with previous word-spotting systems,
the proposed paper and approach provides the following major
contributions:

• Automatic and scalable word-spotting framework. Our
novel automatic word-spotting framework exploits the au-
tomatic computation of average text leading value. All
parameters are automatically computed, and we do not
require any user intervention for a manuscript dependent



tuning. We feed the word-spotting algorithm with the
automatically segmented text lines. This allows us to get
rid of all non-text data, and reduce the system in-core
memory footprint, making the framework, designed to be
compliant with the standards of document layout analysis
web services, scalable to very large image databases.

• Cross-manuscripts search. Relying on text leading infor-
mation makes the proposed algorithm independent from
the size of the text and the image capture resolution. The
adaptive nature of our framework allows us to perform
cross-manuscript word-spotting, by taking the query from
a book and searching for occurrences in another.

• Evaluation. In addition to presenting an improvement
over the state-of-the-art, we present an extensive study
of algorithm performance, to evaluate our pipeline with
a heterogeneous corpus content, that includes different
classes of writing styles, languages, image resolutions, lev-
els of conservation, noise and amount of illumination and
ornamentation. Our precision/recall-based analysis quanti-
tatively assesses the quality of the proposed algorithm.

Although not all the techniques presented here are entirely
novel in themselves, their elaboration and combination in a
single, completely automatic, unified system is non trivial, and
represents a substantial enhancement to the state-of-the-art.
The proposed approach allows us to produce a particularly
compact and efficient system for document analysis. It is
very simple for CV researchers to implement and integrate
it into a local or web-based applications (e.g., transcription
environment), and it can be a very helpful tool for daily
work of scholars, curators and CH practitioners in the field
of historic document study and interpretation.

II. RELATED WORK

The word-spotting problem has always attracted the inter-
est of the pattern recognition community; the seminal works
in the field were in speech recognition [6], while the first
application of word-spotting to handwritten text was presented
a little later by Manmatha et al. [7]. Since then, the importance
of indexing and browsing old handwritten books leads to a
numerous interesting contributions [8], [9], making it an active
area of research. Space does not allow an exhaustive review
of the literature. Instead, we only discuss in detail the state-
of-the-art techniques closely related to ours.

Two major classes of handwritten word-spotting ap-
proaches are: template-based and learning-based. Template-
based approaches compute the similarity between the image
of a query word with a set of labeled template images [10].
Although performance is independent of the complexity of
the language or the alphabet, it is difficult to extend to a
general case (e.g., with an unknown out-of-vocabulary word).
Learning-based approaches are more robust and more gener-
alizable [11]–[13]. Rodriguez et al. [14] presented a statistical
word-spotting framework, which uses two types of Hidden
Markov Models(HMMs) to characterize words, and a Gaussian
Mixture Model (GMM) to compute the score normalization.
These techniques have been applied to a wide variety of input
writing styles. Leydier et al. [15] introduced a text search
algorithm designed for ancient books, and, in particular, for
medieval handwritten text in Latin and Semitic alphabets.
They compute local differential features, and use a cohesive
elastic matching method to find similar regions that share the

same informative parts. Fischer et al. [16] propose a learning-
based word-spotting system that uses character HMMs to find
word occurrences in a medieval manuscript. Although they are
efficient approaches, the main problem with those methods
is that they require a significant manual effort to produce
annotated data to train the Hidden Markov Models [17] or the
Neural Networks [18]; moreover state-of-the-art evaluations
have been carried out with relatively small databases, with a
low number of input pages or lines. Conversely, we adopt
the recent word-spotting algorithm of Almazán et al. [4],
and we modify it to make it adapt to the text size and
the acquisition resolution of the input. Their approach is
particularly efficient, since it does not need any user defined a-
priori segmentation or annotated data. It takes the query word,
automatically computes the learning model, and outputs the
word occurrences in the book, and it is based on the use
of compressed HOG descriptors, and on Exemplar Support
Vector Machines (SVMs) coupled with Stochastic Gradient
Descent (SGD) solvers. This method requires the user to define
the best cell size for HOG computation, which depends on the
text character dimension and the image capture resolution. By
exploiting the text leading value computation, which gives us
an estimation of text size in pixel, we modify the original
Almazán’s technique to make the choice of cell size com-
pletely automatic and, more important, adaptive wrt the input
manuscript. Compared to the current state-of-the-art methods,
this automatic, adaptive behavior improves the applicability of
our framework, by further enabling a cross-manuscript word-
spotting. Moreover, we propose to feed the word-spotting
algorithm with the automatically segmented text lines [3]. By
getting rid of all non-text data (background, parchment areas,
figures and ornamentation), we are able to drastically reduce
the in-core memory footprint of the original pipeline. This
modification makes the framework more scalable to work with
larger image sets.

As in many vision techniques, the vast majority of previous
methods require a pre-processing of the input images, to
prepare and adapt the signal to particular algorithmic re-
quirements. A lot of image-matching based pipelines apply
a color space conversion, and in particular a dimensionality
reduction to luminance space. A simple conversion might
remove some important gradient-based features that are key
for matching, so more advanced techniques are needed. Color-
to-gray conversion can be performed locally or globally.
Locally, the algorithm considers iso-color pixels differently to
enhance local contrast [19]–[21]. The main drawback of local
approaches is that they could produce a strong appearance
bias in constant color regions, which might be converted in-
homogeneously [22]; this makes local methods unsuitable for
our pattern recognition task. A global decolorization technique
is preferable [22], [23], which takes an image as a whole,
and applies a color-to-gray mapping function to all the pixels.
In particular, we rely on the global decolorization method
presented by Grundland et al. [24], which is very efficient
in terms of computational time, and proved to be very suit-
able for matching or recognition algorithms when gradient-
based features are extracted [25]. We modify Grundland’s
original approach to better fit our problem. The algorithm
automatically computes the average text leading for each
page [26], and we use this value to drive the decolorization,
since it is proportional to the size of the relevant color contrast



Fig. 1. Pipeline Overview. Our pipeline is completely automatic, and it does not require any user intervention or user defined parameter. Operations in the
shaded region are performed only once per book, independent of the number of queries. The input are a book and a query image. First we segment the book
in text lines. We use the average text leading to drive the decolorization step and the word-spotting algorithm. We export retrieved words data as a text file in
the JavaScript Object Notation (JSON) format.

features we want to preserve after the color-to-gray conversion.
Although Grundland’s method was recently used for printed
text recognition in natural images [27], [28], to the best of our
knowledge, it is the first time it was tested in an ancient hand-
writing recognition framework. Further, to be more convenient
for scholars, our framework has been designed to be compliant
with web systems like the well known Mirador [29] developed
by the Stanford University, which is an open source image,
Javascript and HTML5 viewer that delivers high resolution
images in a workspace that enables comparison of multiple
images from multiple repositories. It is fully compatible with
the International Image Interoperability Framework (IIIF [30]).

III. FRAMEWORK OVERVIEW

Fig. 1 depicts an overall view of the pipeline of the
proposed word-spotting framework. The algorithm is given
an entire book as a set of images, and a sub-region from
one of those pages that contains the user selected query word
(e.g., the word Amen). First we automatically compute the
average text leading of the book [26], then we apply an
automatic segmentation step to extract text lines from the
input manuscript [3]. We first scale query and line images
to a canonical size. In a decolorization step we convert them
to a high contrast monochromatic signal, and we compute
their compressed HOG descriptors. The highlighted part in
the figure is executed just once per-book. Then for each
query word the word-spotting algorithm takes those gray-
scale images and returns a ranked sequence of lines, which
contain the query word, together with the region of the
line surrounding that word. The automatically computed text
leading value is used to adaptively set parameters in the
text line extraction, scaling, decolorization and word-spotting
steps. We export annotations about retrieved words in the
JavaScript Object Notation (JSON) format, for lightweight
data sharing purposes.

IV. METHOD

Input data. The proposed word-spotting framework has
two main inputs: the set of all page images from an hand-
written book; the query image, which is a sub-region of one
manuscript page that contains the user selected query word.
It does not require any limiting constraints on the nature
of that data; the layout of the input images may contain

portraits, capital letters, figures, ornamentation, overlapping
lines and touching characters. The condition of the page is not
restricted: the manuscript could be degraded by background
noise, bleed-through or faded-out ink, stained, or affected by
other kinds of damage and aging. We only rely on two minor
assumptions that are typically met in a general scenario, and
that are required to apply the per-page text leading computa-
tion [26] and the text line segmentation [3]. First, text must
be quasi-horizontal, or a pre-processing step (e.g., Papandreu
et al. [31]) must be performed to correct its orientation
before being used within the framework (note in extending
to other languages this requirement could be quasi-vertical,
e.g., Chinese language). Generally, this is also a classic choice
in the capture setups and the page visualization systems of
museums and digital libraries. Secondly, the variability of the
per-page text leading (inter-line distance) across the book is
assumed to be Gaussian, i.e., it is reliable to model it as a
mean value and a variance. Moreover, as opposed to many
word-spotting frameworks, we do not need any data previously
annotated by the user. Given these assumptions, our pipeline
is completely automatic, without any manuscript dependent
parameters tuned manually by the user. This enables our
framework to be integrated into an unsupervised system, such
as a web service. For display purposes only, throughout this
section we use and show pages from the book BeineckeMS310
available at the Yale University’s Beinecke Rare Book and
Manuscript Digital Library [32].

Text leading computation and text line segmentation.
We pre-process each input page in order to extract the average
text leading [26] TL for the book. This gives an estimation
of the text size, which will be used to drive all the steps
in our pipeline, text line extraction, adaptive scaling, image
decolorization and word-spotting, making them completely
automatic and avoiding any type of user defined input (see
Fig. 1 and below). For each page, we extract the lines of text
by using the method of Pintus et al. [3]. It first computes a text
region segmentation, and extract main text blocks. Then, for
each block, it uses a Projection Profiles (PP) approach [33],
which has been applied only to text features (SIFT [34]), to
robustly extract text lines. In word-spotting applications a pre-
segmentation of the data is generally not preferable, since
a dataset with a arbitrarily complex layout might results in
bad region classification [4]. However, for a huge number



of layouts that are similar to those used in handwritten
medieval manuscripts, line retrieval has proven to be very
robust and reliable, with an average Precision value > 96%,
and an average Recall value > 98% [3]. Line retrieval allows
us to remove irrelevant data, such as background, figures
without text, and ornamentation. Converting the input data
from a series of document images to a series of line images
also reduces memory occupancy and computational time. By
applying an adaptive scaling factor χ to the query image and
to all text line images, we transform them into a canonical
size. The scaling factor is proportional to the text leading, and

in all our experiments we set χ =T̃L /TL
, where the canonical

text leading T̃L = 100.

(a) (b) (c)
Fig. 2. Decolorization. Comparison between color-to-gray conversions: the
original RGB color image (a); the luminance (b); the higher contrast signal
obtained with the decolorization step (c).

Decolorization. Before passing the query image and all
text lines to the word-spotting algorithm, we convert them to
a gray-scale signal. Since the word-spotting method is based
on HOG features, we would like to obtain a single channel that
is more suitable and efficient when coupled with a gradient-
based descriptor. We adopt the decolorization technique of
Grundland et al. [24]. It is a real-time conversion that proposed
a new dimensionality reduction strategy, i.e., Predominant
Component Analysis. It results in the estimation of a predom-
inant chromatic axis, which captures, in a mono-dimensional
space, the contrast information that would be otherwise lost
in the luminance. The decolorization algorithm is controlled
by three parameters: the degree of image enhancement (λ),
which specifies how much the chromatic contrast will be taken
into account, or how much the predominant chromatic channel
will influence the final picture (if λ = 0 the gray-scale signal
corresponds with the luminance value); the size of relevant
image features in pixels (σ); the proportion of outlier pixels,
which is related to image noise (η). As in [24], we set λ = 0.5,
which represents a quite high improvement of the chromatic
contrast. Our manuscript images are acquired in a professional,
almost noise-free, setup, so in our experiments we always
set η = 0.001. Generally, the default size of color contrast

feature is set to σ =
√

2min (im width, im height), where
im width and im height are the number of image columns
and rows. However, in our case we have the value of the
average text leading TL (inter-line distance). We modify the
original Grundland’s approach [24] by exploiting this a-priori
knowledge about the text size, and we adaptively set the
value of σ =1 /αTL, where α has been estimated in a data-
driven manner from several ground truths (see section V).
The comparison between color-to-gray conversions in the case
of a manuscript image is in Fig. 2, where we show the
original color image (Fig. 2(a)), the luminance (Fig. 2(b)),
and the higher contrast signal obtained with the decolorization
step (Fig. 2(c)). In the simple example, it is very easy to
see how the gradient between the capital letter ‘C’ in the
word ‘Credo’ and the background has been increased by the
proposed decolorization algorithm.

Word-spotting. The word-spotting algorithm takes as in-
put the gray-scale version of the segmented text lines and
the monochromatic converted query image. We modify the

(a) (b) (c) (d) (e) (f)
Fig. 3. User query variability. The size of the manual query, which depends
on the background discarded by the user (a)-(d), capital letters (f), or ascenders
and descenders (e).

Fig. 4. Word-spotting. Example of the word-spotting pipeline applied to
the word ‘Amen’. We show one original image with the zoomed version of
the query word, and a ranked list of retrieved word occurrences. ‘Green’ lines
are true positive outcomes, while ‘red’ lines are the false positives.

approach of Almazán et al. [4] to make it adapt to the
text size and the acquisition resolution of the manuscript.
To encode local gradient, the query image and the lines
are characterized by HOG descriptors. They are particularly
reliable for object detection and image retrieval [35]–[37],
they are very fast to compute and to compare, and they
are very suitable for a search technique based on sliding
window. To save memory, the HOGs are compressed by using
a combination of Principal Component Analysis (PCA) and
Product Quantization (PQ) [38]. These compressed descriptors
are used to train a classifier for the query word in an Exemplar
Support Vector Machine (Exemplar SVM) framework [39],
[40]. One of the most important parameters is the size of the
cell for the computation of HOGs, which defines the optimal
scale of the most relevant features in the text. This value is
crucial to properly drive the machine learning process for a
good query classification. In the original paper [4] the authors
manually chose a fixed size of 12 × 12 pixel. Here, we are
interested in a computation of the cell size that is completely
automatic and independent of both the character size and
the manuscript acquisition resolution in pixel. We exploit the
computation of the text leading across the book, since the cell
size (and so the size of the relevant features) must be correlated
with the dimension of the text, or, more precisely, of the
character strokes. Undersized cells will capture very variable
signal, depending more on image noise or writing variability;
oversized cells will produce very similar gradient histograms,
which makes it difficult for the classifier to separate the
classes and to reach a convergence. Therefore, we modify the
algorithm to take into account the text leading value computed
in the pre-processing step. Given the canonical text leading

T̃L = χTL, we use a cell size equal to 1/αT̃L. The unique
and manuscript independent value of the scaling factor α has
been computed from several ground truth datasets of medieval
manuscripts (Sec. V). Another way to compute an estimation



of the HOG grid cell is to measure the height of the user
selected area of the query word. However, this value can vary
randomly for several reasons, e.g., the changing ratio between
the inter-line distance and the height of characters, the user’s
decision to discard the background space between text lines
(reducing the height of the selected area), or the presence of
capital letters, and, more important, ascenders or descenders
(Fig. 3). So, given the assumption of a Gaussian text leading
distribution across the book [3], relying on an automatic
estimation of the text leading is preferable. We also modify the
Almazán’s technique to exploit the advantages of the text line
segmentation. First, we restrict the user selection to lie within
the corresponding line; the query word image will be the
intersection between the user selected area and the rectangular
box of the corresponding line. In this way, we apply a clipping
constraint on the manual intervention, and we more properly
limit the variability of user input. Moreover, compared with the
original method, we also improve performance by feeding the
word-spotting pipeline only with relevant image regions, i.e.,
segmented lines of text. By discarding non-text regions such
as background, figures or ornamentation, we greatly reduce
the memory footprint as well. As an example of the word-
spotting results, we selected the query word image ‘Amen’
from one page, and the algorithm will return all the lines
where the same word occurs (Fig. 4). The ‘green’ lines are
the true positives, while the ‘red’ lines are false positives. As
it is easy to appreciate, the algorithm wrongly retrieves words
such as ‘Ave m(aria)’, whose character sequence has a very
similar appearance to the query.

Fig. 5. JSON annotation. JSON annotation structure for the first two
ranked occurrences of the word ‘Amen’. JSON is an open standard, ideal
data-interchange language, which is very suitable for digital library websites.

Annotation. Finally, we export the word-spotting results
in a JSON annotation format [5], which includes all the
information about the retrieved words. JSON is an open stan-
dard, ideal data-interchange language, since it is a text format
that is completely independent of any other programming
languages. It is based on universal data structures supported by
the majority of other programming languages. It is typically
employed in data transmission between a server and a web
application and so turns out to be very suitable for digital
library websites, e.g., to manage user requests and to return
areas of a manuscript in response to a query. For this reason
it is preferred over XML.

Fig. 5 reports the JSON annotation structure for the first
ranked occurrence of the word ‘Amen’ in Fig. 4. The first
six digit number is the ranking position. Then, we have three

elements: i.e. originalImage, line, and word. The originalIm-
age is the name of the page image in the book containing
the occurrence. In line we report its numbering in the page
(#), and its physical location in the image, i.e., the upper-
left corner (x, y) of the rectangular block that contains the
line, and its width and height (w, h). Similarly, word contains
the corresponding ASCII text, the computed matching score
with the query word, and the location (rectangular area) of the
retrieved occurrence in page and line coordinates.

V. RESULTS

The algorithm has been tested on medieval manuscripts
made available by the Yale University’s Beinecke Rare Book
and Manuscript Digital Library [32]. Those books are very
heterogeneous, in terms of level of conservation (e.g., aging,
ink bleed-through, noise), capture resolution, languages, writ-
ing styles and the amount of figures and ornamentation. In all
contain about 270 pages and about 5000 lines. Our technique
was implemented on Linux using MatLab, and tested on a
Laptop PC with 4 Intel Core i7-4510U CPU @ 2.00GHz
processors, and 8GB RAM. When the dataset is ready after the
pre-processing step, which has been done once (highlighted
part in Fig. 1), the speed of word-spotting (learning the
query word and evaluating possible matches) is critical for
integration into a web service. The time our algorithm takes
to learn the query model and to evaluate possible occurrences
is less than 5 seconds.

The validation of our pipeline in a quantitative way re-
quires some ground truth data. Although some public ground
truths exist, e.g., the most used are the George Washington
(GW) [8], [41] and the Lord Byron (LB) dataset [42], they
are relatively recent and, in the case of Lord Byron, ma-
chine printed. No ground truths are available for medieval
manuscripts similar to ours, wuth challenges in terms of
level of conservation, noise and amount of text and figures
in each page. Hence, we manually produced segmented data
for ground truth. In generic Information Retrieval evaluation,
Precision and Recall are used. They are single-value metrics,
which rely on a set of documents/items returned by the
process. In our framework, the pipeline returns a ranked list
of word occurrences, and, in order to take into account this
ranking, it is preferable to use the Average Precision (AP)
metrics instead. Given n retrieved words, the AP is computed
as:

AP =

∑

n

k=1
(P (k)× rel (k))

RW
(1)

where P (k) is the Precision at cut-off k in the list, rel (k) is
a function equal to 1 if the item at rank k is a relevant word
(otherwise 0), and RW is the number of all relevant words.

As mentioned in section IV, the algorithm adaptively set
the HOG cell size proportional to the canonical text leading

value T̃L, i.e., 1/αT̃L. We need to find a good and reliable
estimation of α. In order to do so in a data-driven manner, we
use the ground truth datasets, and launch the word-spotting
algorithm for a range of α values. For each of them we
compute the resulting AP. Then, we compute the best value
α̂ as

α̂ = argmax
α

f (α) :=

N
∏

i=0

APi (α) (2)



TABLE I. WORD-SPOTTING STATISTICS.

Book Name Word Relevant True False False Average

Words Positives Positives Negatives Precision

BeiMS310 ‘Amen’ 55 51 369 4 84.5%

‘Oratio’ 31 31 969 0 74.3%

‘nobis’ 113 93 296 20 69.7%

‘pro nobis’ 35 30 47 5 78.6%

‘ora pro nobis’ 13 10 19 3 76.2%

BeiMS360 ‘god’ 121 99 901 22 62.2%

‘lord’ 177 155 440 22 82.7%

BodMS 2 11 ‘Per’ 45 31 969 14 53.4%

‘psalmus dd’ 39 22 226 17 52.1%

Cross-manuscript

BeiMS310 → BodMS 2 11 ‘Amen’ 33 26 186 7 26.6%

BodMS 2 11 → BeiMS310 ‘Oratio’ 32 32 606 0 64.9%

BodMS 2 11 → BeiMS310 ‘nobis’ 114 64 8 50 52.3%

Fig. 6. HOG cell size estimation. Given a cell size equal to 1/αTL, we show on the left the behavior of the Average Precision value wrt the variation of α
in the case of input query words in table I. On the right we plot the cost function that we use to estimate the best α value (see eq. 2).

where N is the number of ground truths, and APi (α) is the
AP function for the ground truth i. In Fig. 6 we show on the
left all the APi (α) from the words in table I. The sensitivity
of the AP wrt α is quite variable between one word and the
other. On the right of the Fig. 6 we plot the cost function
f (α), with its maximum at α ≃ 8.33. We choose an adaptive

HOG cell size equal to 1/8T̃L.

(a) AP and query length (b) AP and decolorization

Fig. 7. Average Precision related to query length and decolorization. (a)
The Average Precision might depends on the query word length. We present
the results for three queries, i.e., ‘nobis’, ‘pro nobis’, and ‘ora pro nobis’.
The longer is the word, the better is the retrieval performance. (b) We plot
an example of the difference between the Average Precisions computed by
using our proposed decolorization algorithm and the standard luminance value.
Around the working value of α = 8, the gain is bigger than 10%. The
modified Grundland’s algorithm produces a higher contrast image than the
standard luminance.

In Table I we report word-spotting statistics. For each word
we request a ranked list of the most similar 1000 occurrences,
and we list in the table the number of Relevant Words, True

Positives, False Positives, False Negatives, and the resulting
AP. The word length ranges from 3 to 11 letters, and, apart
from one word in the cross-manuscript group, the AP ranges
from 52% to 85%. These results are comparable to, and
even better than, the state-of-the-art methods (see for instance
statistics in Almazán et al. [4]), which have AP values ranging
from 30% to 60% for the handwritten GW documents, and,
more important, from 40% to 80% for the machine printed LB
dataset. Moreover, our algorithm is capable of doing a cross-
manuscript search with good AP scores (last three rows of
Table I). The first book is the query provider, while the second
is the book where word occurrences are retrieved. Two of the
cross-manuscript AP values are comparable with the single
manuscript searches. The low value of AP ∼ 27% in the
word ‘Amen’ is due to a different way of writing the capital
‘A’ from one manuscript to the other; however, we are able to
spot 26 True Positives over 33 Relevant Words.

Generally, the AP values might also be dependent on the
query word length. In Fig.7(a) we compare the AP plots for
the words ‘nobis’, ‘pro nobis’, and ‘ora pro nobis’; we choose
these three examples because there is not only a increment of
the word length, but each query is also a subset of the next one,
so that we can measure the improvement due to the new added
part. We can easily appreciate how, across different values of
α, the longer the query, the bigger the AP. Compared to GW
and LB used by Almazán et al. [4], here we deal with both a
bigger database of images, and a more challenging medieval
handwriting style, which consists typically in a series of
vertical strokes that make the letters very similar to each other
(Fig. 8 and Fig. 3). This is the reason why some short words



like ’lord’ and ‘Per’ have respectively bigger AP values than
the word ‘nobis’ and ‘psalmus dd’ (up-left of Fig. 8(b)), which
does not contain enough strong distinguishing features. We
also show an example comparison between using a standard
color-to-gray conversion or the modified Grundland method.

In Fig. 7(b), we plot the difference
(

AP − ÃP
)

, where AP is

obtained with the proposed method, while ÃP results from the
same run but using the luminance instead. Around the working
value of α = 8 we obtain a gain in retrieval performance of
more than 10%. The reason is that the original query has a
color with a chromaticity close to the parchment, so that the
luminance signal has a lower contrast value than that computed
with the proposed modified Grundland’s algorithm (see small
figures in Fig. 7(b)).

We provide some insights about the algorithm behavior in
the case of False positives. In Fig. 9 we show some wrong
retrieved occurrences (red) with four query words (blue) in
table I: ‘god’, ‘lord’, ‘Amen’, and ‘nobis’. Some errors are
due to parts of the words that share a subset of query letters,
as ‘(E)go’, ‘(G)od’, ‘(L)ord’, ‘(w)ord’, ‘Ame’. Note that, even
if some of them represent the same word we are looking for
(e.g., ‘(G)od’, ‘(L)ord’, or ‘Ame’), we cannot include them
among True positives; from a computer vision point of view
we cannot consider the capitals ‘G’ or ‘L’ as characters similar
to their lower case versions. Similarly, a three character word
‘Ame’ cannot be treated as the whole query ‘Amen’. In other
cases, the found word differs just by one or few letters,
such as ‘goo(d)’, ‘gol(d)’, ‘(b)lood’ (both for query ‘god’
and ‘lord’), ‘(g)lori(e)’, ‘lon(g)’, and ‘(f)lood’. The group of
letters ’gdo’ within the word ’kyngdom’ probably has been
retrieved because of the three circles of the letters, ignoring the
ascenders and descenders. Another important point is the effect
on False positives of the aforementioned slight variability of
character appearance due to the medieval writing style, which
uses the vertical stroke as a basic graphical element. This is
evident in the queries ‘Amen’ and ‘nobis’. In the outcome
‘Aude v(irgo)’ the two strokes of ‘u’ and the first stroke of
‘d’ are considered the letter ‘m’; the second stroke of ‘d’
disappears in the letter ‘e’, and the two strokes of ‘v’ are
mis-interpreted as a ‘n’. The only slight and visible cues for
the human eye are the ascender of the letter ‘d’ and the
connection between strokes on the bottom of ‘v’; otherwise
the letter sequence is almost indistinguishable from the query.
The same thing happens with the words ‘Ave m(aria)’. Here
we have the same three letters, and the algorithm recognizes
the ‘v’ as a ‘n’. Similar visual interpretation errors occur with
the retrieved ‘Aude b(arbara)’, where the ascenders of ‘d’ and
‘b’ are too small to make a difference in the recognition. The
problem of the stroke usage explains well the bad matches for
the query ‘nobis’. The small ascender of ‘b’ makes the word
as a sequence of seven strokes followed by a letter ‘s’, causing
a lot of False positives.

Finally, we show some other word retrieval tests with
words, single characters and non-textual elements. For each
of them we depict the original image and the zoomed query,
together with a subset of the True Positives returned by the
algorithm. We choose a small word with three characters
(‘Per’), and a long seven-character word ‘Psalmus’ (Fig. 10).
We also demonstrate how the algorithm might work with other
type of query input. In Fig. 10 we also launch the algorithm

with a capital letter ‘H’, which is a single character, and a
drawing as query data, i.e., the so called ‘line filler’, which
indicates a region of the text with verses.

VI. CONCLUSIONS

We have presented a completely automatic and scalable
framework to perform word-spotting in medieval handwritten
books, in a single or cross-manuscript setup. The system has
better performance than the state-of-the-art, and, unlike current
solutions, does not require user intervention to manually define
tunig parameters or to provide a large amount of annotated
training data. This provides a simpe to implement pipeline
that could be used and integrated in an unsupervised system,
such as a web service associated with a digital library. We
have also presented a quantitative and qualitative evaluation of
the algorithm behavior in the case of an heterogeneous corpus
content, that includes different kind of input data. Future work
will focus better on improving the cross-manuscript capability,
and on the investigation of other local image descriptors that
might improve the final AP score.
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