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Abstract—Given a color image of a medieval manuscript page,
we propose a simple, yet efficient algorithm for automatically
estimating the number of its color-based pixel groups, K. We
formulate this estimation as a minimization problem, where the
objective function assesses the quality of a candidate clustering.
Rather than using all the features of the given image, we carefully
select a subset of features to perform clustering. The proposed
algorithm was extensively evaluated on a dataset of 2198 images
(1099 original images and their 1099 variants produced by
modifying both spatial and spectral resolutions of the originals)
from the Yale’s Institute for the Preservation of Cultural Heritage
(IPCH). The experimental results show that it is able to yield
satisfactory estimates of K for these test images.

Keywords—Medieval manuscript, color clustering, figure and
capital letter extraction

I. INTRODUCTION

Recently, massive numbers of historic manuscripts have
been digitized and made public. For massive collections,
automatic computer-assisted techniques are increasingly im-
portant [1], since they can offer efficient access to various types
of information in the documents. Most existing methods treat
classic issues in content analysis such as word spotting [2], [3],
[4] and text line segmentation [5], [6]. However, only a limited
amount of effort has been dedicated to automatically investi-
gating manuscript material properties, which are particularly
important for medieval manuscript analysis.

An important issue in studying material properties is to
obtain K, the number of colors used in a manuscript page.
Automatically obtaining expected K for medieval manuscripts
is by no means an easy task, in that variations in ink density
and aging result in a large number of different RGB or spectral
values on the page, while the actual number of colors is quite
small. Particularly, it is commonly agreed that K is of great
importance in pigment or ink-related applications such as (i)
identifying possible pigment changes that indicate changes in
scribal hand, (ii) identifying initials and differentiating between
types of initials and (iii) identifying pages, from massive
numbers of historical documents, that have unique features
and thus require special attention, by analyzing their K (those
pages are probably associated with particular values of K).

Estimating K is closely related to clustering. Existing
methods using clustering techniques for analyzing historical
handwritten document images include [1], [6], [7]. By using
the SVM (Support Vector Machine), Grana et al. [1] propose
a system for automatically extracting graphical elements from
historical manuscripts, as well as identifying significant pic-
tures from them. Recently, Pintus et al. [6] train an SVM
classifier using the features of images with salient features and

then obtain text blocks and lines. Again with the SVM, Chen
et al. [7] develop a method to classify pixels into periphery,
background, text block and decoration categories. All these
methods provide a high-level clustering, meaning that they
can only group pixels into few broad classes, but are unable
to fully satisfy scholar’s expectations such as distinguishing
normal and historiated initials. Note that image clustering and
segmentation are closely related, but not identical. The former
emphasizes pixel similarity or dissimilarity from a global
perspective, while the latter generally involves integrating and
clustering features over local image patches [8], [9].

While K can indeed be obtained manually by inspecting
each manuscript page of interest, this is very inefficient and
often infeasible, when a lot of pages are involved. This
motivates us to propose, to best of our knowledge, the first
completely automatic K estimation method, assisting scholars
in analyzing manuscript material properties. Moreover, another
advantage of using a pre-computed K is the possibility of it
making some semi-automatic, K-dependent manuscript anal-
ysis systems fully automatic. We demonstrate in Section IV-B
the need for and use of K in an application, where an
automated technique is particularly important. We are here
interested in color number, but the idea can be extended to
obtain the number of other characteristic-based pixel groups.

Contribution. The main contributions are: (i) to the best of our
knowledge, the first, domain-specific algorithm for estimating
K; (ii) an extensive evaluation on more than 2000 images of
pages of 7 different manuscripts and (iii) a demonstration of
the importance of using K in a practical application.

Limitation. Our method is tailored to medieval manuscripts
written in western languages (bar-like text). Nevertheless, a re-
design of the template image and/or template matching strategy
could adapt our pipeline to a broader range of documents.

II. PROBLEM FORMULATION

Our algorithm is built upon the observation that the text in a
manuscript page image I generally have the same color assign-
ment (perceptually), but are colored distinctively from non-text
pixels. Note that we only consider the foreground pixels within
the main text blocks, which are computed using [6].

Let F denote the features extracted from I and C1, C2,
. . . , CK̃ denote the clusters obtained from applying one un-
supervised clustering algorithm to F. We measure the quality
of the clustering result using the widely used Davies-Bouldin
criterion [10]:

ε(K̃, C1, C2, . . . , CK̃) =
1

K̃

K̃∑
k=1

max
k′ 6=k

{
d̄k + d̄k′

dk,k′

}
, (1)



Fig. 1. Pixel candidates selection. Left to right: matching the template T and
image I, we obtain matching scores S and S′. Then the mask P is produced
and pixels are selected for computing the features F. High and low matching
scores are shown in red and blue, respectively (zoom in to observe details).

where d̄k is the average Euclidean distance between each point
in the k-th cluster Ck and the centroid of Ck and dk,k′ is
the Euclidean distance between the centroids of Ck and Ck′ .
The smaller ε(·) is, the better the clustering quality. Thus, we
estimate K as

K = arg min
K̃∈[Kmin, Kmax]

{ε(K̃, C1, C2, . . . , CK̃)}. (2)

Kmin and Kmax define the range of K̃, i.e., the number of
colors that manuscripts generally use. We fix Kmin = 1 and
Kmax = 7.

Rather than using all the foreground pixels when comput-
ing F, we consider a subset. The reason is that an unbalanced
data distribution (there are generally significantly more text
than other foreground pixels) could make both the clustering
algorithm used and quality measure in Eq. 2 fail. Thus, we
propose a text-identification strategy (see Section III-B) to
address the data dominance issue, ensuring the pixels used
for F computation are selected from non-text pixels.

III. APPROPRIATE K ESTIMATION

A. Pre-processing: Image Binarization

We start from converting the R, G, and B components of
I into the grayscale values according to 0.2989 ·R+ 0.5870 ·
G + 0.1140 · B. For a multi-spectral image I, we can obtain
its R, G, and B values by downsampling the spectral data.

Next, a 256-bin histogram of the grayscale values is
constructed and subsequently averaged using the nearest n
data. We deem foreground pixels as those whose corresponding
grayscale values are within [0, ĩ− δ], with

ĩ = arg max
i

{hi : i ∈ {η, η + 1, η + 2, ..., 255}}, (3)

and consequently assign to them 0 in the binary image B;
otherwise background pixels with 1 in B. Here, hi denotes the
number of elements in the i-th bin of the averaged histogram.

B is produced after performing median filtering of B using
S×S neighborhood. The intention is to remove noise or outlier
pixels. We experimentally found that the proposed binarization
with n = 20, δ = 40, η = 64 and S = 8 provides satisfactory
results and outperforms the well-known method [11].

B. Pixel Candidates Selection

The selection of pixels used for computing the features F
has three steps as shown in Fig. 1.

Template image T: Let H and W denote the text
height/leading and text stroke width, respectively. We define
the text-stroke-like T as an H×2W -sized matrix: T(i, j) = 0,
if αH ·H ≤ i ≤ βH ·H and αW ·W ≤ j ≤ βW ·W ; otherwise,
T(i, j) = 1. The parameters αH , βH , αW and βW are used to
control the size of the black rectangle in T. See Fig. 1 (left).

The text height H is computed by Pintus et al.’s
method [12]. To obtain the text width W , we consider the lines
that are produced by applying the LSD [13] to B and whose
angles with respect to the y-axis are smaller than 8 degrees. We
define the line-to-line distance d(i, i′, j) = 0.5·abs {x1(i′, j)+
x2(i′, j)− x1(i, j)− x2(i, j)}, where x1(i, j) and x2(i, j) are
the x coordinates of the two end points of the i-th line from the
j-th text line segment by [6]. By taking the single stroke width
as W (i, j) = mini′,i′ 6=i d(i, i′, j), we obtain W by averaging
all W (i, j) corresponding to the peak of the histogram of all
W (i, j) with 2 · dmaxi,j W (i, j)−mini,j W (i, j)e bins. Here,
d·e denotes the mathematical ceiling function.

Obtaining αH and βH exploits the fact that the text strokes
in I can be considered as the connected components in B
(corresponding to black pixels). For the i-th text line segment,
we compute αi

H and βi
H as the averages of all the minimum

and maximum row indices of the pixels within the valid
components. A component is deemed valid if it is not too
small, i.e., its height and width must be larger than dH/3e and
d0.8 ·W e, respectively. Finally, all αi

H and βi
H are separately

averaged over all the text line segments, yielding αH and βH .
As W already represents the stroke width, we set αW = 0.5
and βW = 1.5 based on empirical observation to include
background information in T.

Template matching: Given B and T, we match them in the
frequency domain using the FFT-based correlation, resulting
in a matrix S of matching scores normalized to [0, 1].

We update S, yielding S′ with large scores being assigned
to text. Let κ be the threshold differentiating high and low
scores. For each S(x′, y′) ≥ κ, an H × 2W rectangular
window, centered at (x′, y′), is computed. S(x, y) = S(x′, y′)
is repeatedly applied to every within-window foreground pixel
if S(x, y) < S(x′, y′), i.e., S(x, y) = max(x′,y′)∈Ψ {S(x′, y′) :
S(x′, y′) ≥ κ}, where Ψ is the set of positions whose
corresponding windows contain the pixel at (x, y).

Pixel selection: Preliminarily, the pixel candidates are selected
as those with S′(x, y) < κ (κ = 0.75) and their positions are
indicated by the zero-valued elements in P: P(x, y) = 0, if
S′(x, y) < κ and B(x, y) = 0; otherwise, P(x, y) = 1.

Considering that there could still exist some text in the
preliminary selection, we apply the k-means (k = 2) to the
numbers or densities of the connected pixels and then prune
the pixels (likely text) whose corresponding group has a lower
density, producing the final pixel candidates for F computation
as described blow.

C. F Computation

For each pixel candidate, we compute an N -dimensional
feature Fi. Here, N varies, depending on image type, e.g.,
N = 60 for RGB images, while, for 8-channel multi-spectral
images, N = 68 to include data from distinct bands.

The first 9 components of Fi are the color information,
including H, S, V (hue-saturation-value), R, G, B, R∗, G∗ and
B∗. Here, R∗ is the normalized R, i.e., R∗ = R/(R+G+B).
Analogously, G∗ and B∗ can be computed. Note that we ex-
perimentally found that combining information from multiple
color spaces can make Fi more discriminative and hence K
more accurate.



We also take into account the relationship between neigh-
boring pixels when computing Fi. For a varying size {H×n ·
W : n = 2, 3, 4} window centered at each pixel candidate,
we obtain the H, S, V components of all the foreground
pixels within it and separately compute the mean, standard
deviation, skewness, energy and entropy, thus creating another
45 components of Fi. The final 6 components are from
intensity perspective, i.e., they are the numbers of the within-
window zero-valued pixels of P with κ = 0.7.

To improve classification, each type of feature in F is
scaled into [0, 1] so that the features with large numerical
ranges do not dominate those with small numerical ones [14].

D. K Computation

Given the features F, we can compute K. Rather than
employing Eq. 2 directly, we use a variant defined as follows:

K = 1 + arg min
K̃∈[Kmin, Kmax]

{ε(K̃, C1, C2, . . . , CK̃)}, (4)

due to the fact that F used for clustering is text-independent.
By adding 1, we create an extra group for the “ignored” texts.

However, if F is text-dependent (due to the existence of text
in the pixel candidates), Eq. 4 might yield an over-estimated
K. To deal with this issue, we apply an unsupervised learning
method to classify all the foreground pixels into K clusters
given their features computed by the method in Section III-C.
Considering the significant number of the text pixels, we
easily identify the text-cluster that contains text. For each
non-text cluster, we compare its averaged 9 color components
against those of the text-cluster and keep K intact if the color
information is dissimilar, i.e., there are four or more difference
values larger than 45, which we found reasonable in our tests;
otherwise, K = K − 1. Note that these 9 color components
are scaled into [0, 255] for comparison. To avoid confusion,
we shall use Kbf (before update) and Kaf (after update) to
denote K computed directly from Eq. 4 and after addressing
the potential over-estimation issue, respectively.

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated on the images from
the Yale’s Institute for the Preservation of Cultural Heritage
(IPCH) including 1027 RGB and 72 8-band multi-spectral
images of pages of 7 different manuscripts1, as well as their
1099 variants produced by modifying their spatial and spectral
resolutions. Since we observed that the two unsupervised learn-
ing methods (k-means and Expectation-Maximization (EM)
algorithm for the Gaussian mixture model) have similar per-
formance in K estimation, we only show the results from
the EM method. Note that although numerous methods have
been proposed to analyze medieval manuscripts, they have
completely different focuses as ours and thus we will not
provide any comparison results.

A. Accuracy of Estimated K

To compute the estimation accuracy, we obtain the differ-
ence ∆KEM = KEM−Ke between the automatically generated
KEM by the EM method against the ground truth data Ke,

1Publicly available at: http://hdl.handle.net/10079/cz8w9v8
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Fig. 2. The triple (Kbf

EM,KAF
EM,Ke) is (4, 3, 3), (6, 6, 6), (4, 4, 4), (4, 4, 4),

(4, 3, 3), (6, 5, 5), (6, 3, 3) and (5, 5, 3) for few images (zoom in to observe
details). The two right-most images are multi-spectral data.
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Fig. 3. Accuracy of K for the original 1027 RGB images (left) and for the
same 1027 RGB images at lower spatial resolution with a scaling factor of
0.25 (right).
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Fig. 4. Accuracy of K for the original 72 8-channel multi-spectral images
(left) and for the same 72 images converted to RGB only (right).

which were established through manually inspecting all the
test images. Fig. 2 shows the estimated Kbf

EM, Kaf
EM and Ke

for few challenging pages.

Accuracy w.r.t spatial resolution. Fig. 3 (left) plots the
histograms of ∆Kbf

EM and ∆Kaf
EM for the original 1027 RGB

images. We obtain perfect K (∆K = 0) for up to 70% of the
test images and |∆Kaf

EM| ≤ 1 for 89%, demonstrating high-
level reliability of our method. Also, the figure demonstrates
that updating K yields improved estimation performance, since
there are more ∆Kaf

EM = 0 than ∆Kbf
EM = 0.

Fig. 3 (right) illustrates the results for the same 1027 RGB
images at lower spatial resolution. Still, we are successful in
obtaining satisfactory K, as we have both |∆Kbf

EM| ≤ 1 and
|∆Kaf

EM| ≤ 1 for about 70% of the test images. Indeed, the
performance degrades slightly, but this is expected as higher
resolution means more useful information available.

Accuracy w.r.t spectral resolution. Fig. 4 shows the results
for images with different spectral sampling. As expected, we
have greater chance of success for the multi-spectral data
than their spectral resolution-reduced RGB due to their larger
volume of useful information.

For multi-spectral data, we can have similar conclusions
as made for the original RGB images, i.e., successful K esti-
mation and improved performance due to K update. However,
note that it is not reasonable to compare the results in Figs. 3
and 4, since the RGB and multi-spectral data were produced
from digitizing different manuscripts. As Fig. 2 shows, the
multi-spectral images are far more challenging than RGB, in
terms of both layout structure and text shape.



Fig. 5. The figures, capital letters and line fillers extracted from challenging
pages are highlighted using red rectangular boxes (zoom in to observe details).

TABLE I. FIGURES, CAPITAL LETTERS AND LINE FILLERS EXTRACTED
FROM ALL THE ORIGINAL 1027 RGB IMAGES. TP, FP AND FN INDICATE
TRUE POSITIVE, FALSE POSITIVE AND FALSE NEGATIVE, RESPECTIVELY.

Manuscript Name TP FP FN Precision Recall
BeineckeMS10 642 89 5 87.82% 99.23%
BeineckeMS109 1253 162 55 88.55% 95.80%
BeineckeMS310 2363 262 90 90.02% 96.33%
BeineckeMS360 3125 52 350 98.36% 89.93%

# Manuscripts — 4 7383 565 500 92.89% 93.66%

B. Application in Segmentation

We demonstrate the need for and use of K in automatic
extraction of special symbols (here, figures, capital letters and
line fillers), which are generally colored distinctively from
texts. For scholars, figures and capital letters are important in
differentiating penwork and painting and line fillers identify
litanies.

Analogous to the K update process, the extraction starts
from obtaining K = Kaf

EM groups and then considers all the
K − 1 clusters rather than the text-cluster, in that they likely
correspond to the figures, capital letters and line fillers. After
creating the binary image M, where 0 is assigned to all the
pixels within the K−1 groups of interest and 1 otherwise, we
extract from it a set of candidate connected components {Ti}
that meet HTi ≥ b0.2 ·Hc and WTi ≥ 2 ·W . b·c stands for the
mathematical floor function; HTi and WTi , respectively, denote
the height and width of Ti. Then, we update M by assigning
1 to all the pixels that do not belong to {Ti}, yielding M(1).
Next, we compute the horizontal-direction distance maps for
M(1) by:

DH(x, y) = min
y′
{|y − y′| : M(1)(x, y′) = 0}. (5)

We set DH(x, y) to be the image width if M(1)(x, y′) = 0,
∀y′ does not exist. The binary image M(2)

H is generated with
M(2)

H (x, y) = 0 if DH(x, y) ≤ 2 · W ; M(2)
H (x, y) = 1

otherwise. Similarly, we obtain the vertical-direction distance
map DV (x, y) and its corresponding binary image M(2)

V with
the threshold bH/4c. Given M(2)

H and M(2)
V , we generate

M̃ after performing element-by-element bitwise AND (&)
operation between M(2)

H and M(2)
V , i.e., M̃ = M(2)

H &M(2)
V .

Finally, we extract the figures, capital letters and line fillers
as the connected components Ti in M̃ that satisfy (i) the zero-
valued (non-text) pixels occupy more than 1/10 of the total
pixels embraced by a Ti; (ii) the zero-valued pixels is at least
2 times the texts embraced by Ti in terms of pixel number; as
well as (iii) either of HTi ≥ b0.6 ·Hc and WTi ≥ 4 ·W , or
HTi ≥ b0.3·Hc and WTi ≥ 6·W . Note that producing M̃ is to
fill the “holes” between the isolated parts from a figure, capital
letter or line filler and also that the numerical values used
are set based on empirical observation to the general physical
layout and structure of various manuscripts.

Table I shows that we can achieve a precision of up

to 98.36% and a recall of up to 99.23%, indicating that
reasonable K is critical for the clustering algorithms to succeed
in manuscript analysis. Fig. 5 visualizes the figures, capital
letters and line fillers extracted from some challenging pages.

V. CONCLUSION

We have presented an automatic method for obtaining K
for medieval manuscripts. The proposed template matching-
based strategy that distinguishes text and non-text pixels con-
tributes greatly to the success of obtaining K. Our method
has been evaluated on 2198 images of pages of 7 different
manuscripts and the results show that it can find expected
K with a high likelihood, i.e., we achieve K = Ke and
|K − Ke| ≤ 1 for up to 70% and 92% of the test images.
K can be used in various scenarios such as detecting ink
changes, differentiating between painted and penwork initials
and identifying litanies. Our method has been tested mainly
on the manuscripts with straight stroke-like text; however, the
general idea can be extended to work for the manuscripts with
other style-shaped texts via re-designing the template image
or matching strategy. This extension will be one direction of
our future work.
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