
SliceNet: deep dense depth estimation from a single indoor panorama
using a slice-based representation

Giovanni Pintore
Visual Computing, CRS4, Italy
giovanni.pintore@crs4.it

Marco Agus
CSE, HBKU, Doha, Qatar

magus@hbku.edu.qa

Eva Almansa
Visual Computing, CRS4, Italy

evaalmansa@crs4.it

Jens Schneider
CSE, HBKU, Doha, Qatar
jeschneider@hbku.edu.qa

Enrico Gobbetti
Visual Computing, CRS4, Italy

enrico.gobbetti@crs4.it

Abstract

We introduce a novel deep neural network to estimate a
depth map from a single monocular indoor panorama. The
network directly works on the equirectangular projection,
exploiting the properties of indoor 360◦ images. Starting
from the fact that gravity plays an important role in the
design and construction of man-made indoor scenes, we
propose a compact representation of the scene into vertical
slices of the sphere, and we exploit long- and short-term
relationships among slices to recover the equirectangular
depth map. Our design makes it possible to maintain high-
resolution information in the extracted features even with
a deep network. The experimental results demonstrate that
our method outperforms current state-of-the-art solutions in
prediction accuracy, particularly for real-world data.

1. Introduction

Understanding the 3D layout of an indoor scene from
images is a crucial task in many domains [45, 23, 24]. Fast
depth estimation from single images is a fundamental sub-
problem, as associating metric information to visual data is
paramount for a variety of applications, including mobile
Augmented Reality platforms, indoor mapping, autonomous
navigation, 3D reconstruction, and scene understanding.

Since estimation of depth from single images is inherently
ambiguous, all solutions must rely on prior information to
guide reconstruction towards plausible architectural shapes
that fit the input. In this context, we have recently seen an
extraordinary development of data-driven methods that learn
these priors from example data.

Early approaches were designed for a camera with a con-
ventional limited field-of-view (FoV) (e.g., FCRN[14]). In
recent years, however, 360◦ capture has emerged as a very

appealing solution, since it provides the quickest and most
complete single-image coverage and is supported by a wide
variety of professional and consumer capture devices that
make acquisition fast and cost-effective [37]. Since adapt-
ing monocular depth estimation models designed for tradi-
tional images to 360◦ depth estimation has been shown to
produce sub-optimal results [44], specific 360◦ solutions
have been recently introduced. In this context, many recent
works [31, 44, 17] have adapted perspective depth estima-
tion methods to omnidirectional imagery by proposing vari-
ous types of distortion-aware convolution filters. However,
few of them have explored the large-FoV nature provided
by 360◦ images, which can provide, in one shot, the full-
geometric context of an indoor scene [41].

In this work, we introduce a novel deep neural network
solution, called SliceNet, which predicts the depth map of an
indoor 360◦ image leveraging the characteristics of a gravity-
aligned equirectangular projection of an interior scene. Since
gravity plays an important role in the design and construction
of interior environments, world-space vertical and horizon-
tal features have different characteristics in most, if not all,
man-made environments. Our network design starts from
the assumption that capture of the scene through an equirect-
angular image is aligned to the gravity vector (i.e., camera is
placed on an horizontal-ground plane), too, and, thus, it is
rational to assume that gravity-aligned processing of images
can directly exploit gravity-aligned world-space features [3].
In our network, an input equirectangular image is partitioned
into vertical slices by performing a contractive encoding to
reduce the input tensor only along the vertical direction, re-
sulting in a compact and flattened sequence of slices made of
a set of features. To preserve global information, we perform
slicing over four different resolution levels, concatenating
the result at the end (Sec. 3). This sequential representation
enables the use of a convolutional long short-term memory
(LSTM) network [26] to recover, with low computational



overhead, long- and short-term spatial relationships among
slices. Decoding proceeds symmetrically with respect to en-
coding, thereby increasing only the vertical resolution of the
feature map, until the target resolution is reached (Fig. 1(a)).

Our contributions are summarized as follows:
• We introduce a slice-based representation of an omni-

directional image that directly exploits the character-
istics of the equirectangular projection of an indoor
scene, without the need for distortion-aware convolu-
tion and transformation [44, 33], multi-branch architec-
tures [33, 11] or additional information and priors [11].
Our representation based on vertical slices is very ro-
bust, as demonstrated by the important advantage in
performance achieved in real-world cases (e.g., Stan-
ford2D3D [27] and Matterport3D [19]), where a large
area around the poles of the panorama is not acquired by
the instrument (see Sec. 5.2 for details).

• We specialize and refine feature flattening, which has
proven to be effective to regress one-dimensional ten-
sors [30], for bi-dimensional depth encoding. In par-
ticular, we introduce an asymmetric contraction of the
input tensor based on vertical slicing at different res-
olutions, so that the resulting feature map is flattened
along a single direction (in our case, the sphere horizon),
and we merge slices at different resolutions, so as to ex-
ploit deeper levels with larger receptive fields to capture
global information, while at the same time exploiting
higher resolution layers to preserve high-frequency de-
tails (Sec. 3). Our ablation study (Sec. 5.3) demonstrates
the advantages of our approach.

• We introduce, for depth estimation from a single image,
a LSTM multi-layer module to effectively recover long
and short term spatial relationships between slices in the
presence of a large number of features per slice due to
the concatenation of multiscale representations. With
this architectural choice, the decoder is simple and fol-
lows the same multi-layer scheme of the encoder with a
vertical upsampling rather than a vertical reduction. We
do not need, in particular, the chaining of up-projection
blocks [10], making it easier to scale the method to dif-
ferent input resolutions. The ablation study (Sec. 5.3)
confirms the benefits of the method by comparing differ-
ent decoder configurations with or without LSTM and
chaining up-projection blocks.

We tested our network on both synthetic and real datasets [27,
19, 44, 43, 42]. Our experimental results (Sec. 5) demon-
strate that our method outperforms current state-of-the-art
methods [14, 44, 33] in prediction accuracy, especially when
working on real-world scenes. Exploiting gravity alignment
leads to an efficient network structure, without significant
limitations on the applicability of the approach. As men-
tioned, gravity-aligned capture is a very common setup, and,
as determined by our tests, Sec. 5.3, all the public 3D in-

door datasets commonly used for training and testing recon-
struction solutions, both synthetic [43, 42] and real [27, 19],
appear to have very small orientation deviations. Even in
cases where this assumption is not verified at capture time,
several orthogonal solutions exist to gravity-rectify images
in a pre-processing step (e.g., [34, 12, 3]), simplifying the
practical application of gravity-oriented methods. Moreover,
as demonstrated by our ablation study (Sec. 5.3), our method
is robust to small variations of the inclination.

2. Related work
Depth estimation from monocular input and 3D recon-

struction of indoor environments are fundamental computer
vision problem, which have recently attracted renewed inter-
est with the emergence of deep learning techniques. A full
review is beyond the scope of this paper. Here, we focus on
the solutions most closely related to our work.
Depth from perspective images. Learning-based monocu-
lar depth estimation was introduced over a decade ago (e.g.,
Make3D [25]). The emergence of deep learning, as well as
the availability of large-scale 3D datasets, has contributed
to significant performance improvements. Eigen et al. [6]
were the first to use CNNs for regressing dense depth maps
from a single image in a two-scale architecture, where the
first stage—based on the AlexNet feature encoder—produces
a coarse output and the second stage refines the prediction.
Their work was later extended to additionally predict nor-
mals and labels with a deeper and more discriminative model,
based on VGG features encoder, and a three-scale architec-
ture for further refinement [5]. Laina et al. [14], instead,
combined ResNet [10] with an up-projection module for up-
sampling. They also proposed the reverse Huber [15] loss
to improve depth estimation. This baseline, named FCRN,
has become of common use even in the case of panoramic
images. Lee et al. [16], instead, predicted depth from several
cropped images combined in the Fourier domain. Condi-
tional random fields (CRF) are also often exploited to refine
prediction [18, 21, 1, 35]. Fu et al. [7] use dilated convo-
lution to increase the receptive field and apply the ordinal
regression loss to preserve the spatial relation among neigh-
boring classes. Unsupervised training for depth estimation
is instead performed using photometric loss [8, 40]. Di-
rectly adopting monocular depth estimation solutions for
360◦ depth estimation produces sub-optimal results [44],
since several characteristics of panoramic images are not
exploited, e.g., the fact that they capture global information
which can improve reasoning.
Depth from a single omnidirectional image. One of the
main limitation of single-image methods lies, in fact, in
the restricted field of view (FOV) of conventional perspec-
tive images, which inevitably results in a limited geometric
context [41]. With the emergence of consumer-level 360◦

cameras, a wide indoor context can now be captured with
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Figure 1. Network architecture. Our architecture is scalable with respect to the input resolution. In Fig. 1(a), to simplify comparison
with other methods, we show an example with an input image having size 3× 256× 512. A ResNet50 encoder [10] extracts four layers at
different resolutions. From each resolution layer we obtain a sliced feature map of 256× 512 (purple blocks in Fig 1(a), details in Fig. 1(b)).
By concatenating the resulting four layers we obtain a single bottleneck with 512 slices and 1024 features, which is refined using a RNN
scheme (cyan blocks). The decoder proceeds symmetrically, producing a depth map at the same input image resolution.

one or at least few shots. As a result, much of the research
on reconstruction of indoors from sparse imagery is now
focused in this direction, even for directly recovering the
room layout under specific conditions [46, 36, 30, 22]. In
the specific case of depth estimation, a first approach is
to convert an omnidirectional image into a cubemap [2],
both to deal with the distortion of equirectangular projec-
tion and to take advantage of the consolidated monocular
estimation techniques mentioned above. To make the net-
work aware of the distortion, spherical convolution methods
have been also proposed [29, 31, 20, 28]. Following this
trend, Zioulis et al. [44] adopted the spherical layers of Su
et al. [29] for depth estimation in the indoor environment,
and proposed a large-scale synthetic dataset consisting of
22,096 re-rendered images from four existing datasets [43].
Wang et al. [33], which at the time of this writing provide
the best results in terms of accuracy, proposed a two-branch
network, respectively for the equirectangular and the cube-
map projection, based on a distortion-aware encoder [44]
and the FCRN decoder [14]. Recently, several orthogonal
works [4, 38, 11, 39] exploit the correlation among depth,
room layout, and semantics to improve prediction. Such
promising solutions require much additional input for train-
ing (e.g., annotated room layout, normal maps and semantic
segmentation), and exploit a depth estimation baseline based
on one of the above-cited approaches. All the above methods
bring back the spherical projection to a standard projection to
apply encoding-decoding schemes designed for conventional
images (e.g., FCRN [14]), while we introduce a scheme de-
signed for equirectangular projections of indoor scenes.

3. Network architecture

Almost all CNNs for this task follow an encoder-decoder
architecture [14]. Such a structure contains a contractive
encoding part that progressively decreases the input image

resolution through a series of convolutions and pooling op-
erations, giving higher-level neurons large receptive fields,
thus capturing more global information. As the target depth
map is a high resolution image, the decoder regresses to the
desired output by upscaling this representation. Our work
introduces several important novelties in this structure.

Figure 1(a) illustrates the structure of our network for a
256× 512 input. Note that our architecture is scalable with
respect to the input resolution. In Sec.5 we provide results
with the same input sizes adopted by recent state-of-the-art
methods [14, 44, 33], including 512× 1024 resolution.

The first part of our network is devoted to extracting
relevant low/mid/high-level features from the input tensor.
To do that, we exploit ResNet-50, a deep neural network
that supports, through a residual learning framework, the
training of very deep networks without degradation prob-
lems [10]. Differently from other approaches [14, 44, 33],
we exploit not only the deepest layer of ResNet, but the last
four layers, processing them in parallel, in order to build a
multi-resolution spatial representation, discussed in detail
below. Following our gravity-aligned model, we recover
from these 4 layers (Fig. 1(a), red), 4 representative slice lay-
ers (Fig. 1(a), green), having all the same size of 256× 512
(i.e., 256 features for 512 slices). Figure 1(b) illustrates
how we produce the sliced representation from the ResNet
layer. First, we reduce the vertical dimension by a factor
of 8 through an asymmetric convolution module with stride
(2, 1) (A-Conv), applied 3 times, contains a 2D convolution,
a batch normalization module and a Parametric Rectified
Linear Unit [9] PReLU(x) := max(0, x) + a ∗min(0, x),
where a is the coefficient of leakage learned during training.
We selected PReLU instead of commonly adopted ReLU and
Leaky-ReLU to minimize the vanishing gradient problems
that are common in depth estimation. This kind of adap-
tive activation leads to convergence even on datasets with
very different characteristics (e.g., real-world acquisition



with missing parts or synthetic rendering whih high levels
of noise). Sliced encoding is then completed by horizontally
interpolating each feature map to have the same number of
slices (i.e., 512), and by vertically reshaping the features to
the target size (i.e., 256).

Finally, the for layers are concatenated in a single se-
quence (i.e., 1024× 512), obtaining 1024 features for each
of the 512 vertical slices of the input sphere. In this way, we
obtain a bottleneck representation that exploits deeper levels
with larger receptive fields to capture global information, and
higher resolution layers to preserve high-frequency details.

It should be noted that both indoor scenes and equirectan-
gular projections have particular properties that we exploit in
our design. For example, vertical lines are very common in
the scene, and are practically not deformed in the projection
while the horizontal ones are more so. Because of these char-
acteristics, we expect each slice sequence along the dominant
vertical direction be related to the others by both short-term
and long-term spatial dependencies [32, 30, 22]. Thus, we
start our decoder by feeding such a sequence to a RNN multi-
layer block [26]. In our case, we use a bi-directional LSTM
(long-short term memory) having 512 hidden layers, which
outputs a timestep of size 2× 512 for each of the 512 slices,
so that the final output is a feature map having the same size
of the RNN block input, i.e., 1024 × 512. Once reshaped
to 1024× 1× 512, this flattened representation can be up-
sampled to the desidered output size (i.e., 1 × 256 × 512)
by following steps symmetrical to those used for encoding
reduction. Actually, thanks to the flattened encoding and
RNN features refinement, our network does not require the
chaining of skipping up-projection blocks for upsampling,
such as FCRN [14], also common in other recent works [33].
Our decoder, instead, consists of n layers, where for each
layer we perform an upsampling of a factor of two of the
height only, followed by a convolutional module A-Conv
identical to that of the reduction phase (2D convolution and
PReLU activation), but with stride (1,1). In the example of
Fig. 1(a), the decoder consists of n = 8 layers, in order to
achieve the targeted vertical resolution (i.e., 2n = 256), and
the resulting map is a tensor of 1 × 256 × 512 represent-
ing the depth prediction for each of the input pixels. We
also tested different upsampling modules adapted to our data
encoding, (e.g., FCRN [14]) but experiencing lower perfor-
mance, given our particular slice-based model. Numerical
details are exposed in the ablation study in Sec. 5.3.

4. Loss function and training strategy
Similarly to other recent state-of-the-art solutions (e.g.,

BiFuse [33]), we build our objective function on top of the
robust Adaptive Reverse Huber Loss (BerHu) [15]:

Bc(e) :=

{
|e| |e| ≤ c

e2+c2

2c |e| > c
(1)

where e is the error term and the parameter c determines
where to switch from L1 to L2. In order to set the c value
adaptively, we follow the same approach of Laina et al. [14],
so that c is set, in every gradient step, to 20% of the maximal
error of the current batch. When applied to the depth maps,
e = Dij − D∗

ij at each pixel (i, j), where D and D∗ are,
respectively, the predicted and the ground-truth depth maps.
Since one of the typical problems encountered in predicting
depths using convolutional networks is the loss of small de-
tails [14, 44], which is particularly noticeable when dealing
with higher resolution images, we introduce an additional
term by applying BerHu also to the gradient components
obtained by convolving the maps with Sobel filters of width
3 to approximate the horizontal derivatives∇xD and∇xD

∗

and the vertical ones ∇yD and ∇yD
∗. Consequently, the

full loss function L that guides our training is:

Lc1,c2(D,D
∗) =Bc1(D −D∗)+

Bc2(∇xD −∇xD
∗)+

Bc2(∇yD −∇yD
∗)

(2)

With a little abuse of notation, we intend the application
of the function to the map as the sum of results on each
individual pixel. The parameter c that determines the shape
of each functionBc is computed at each batch independently
for the depth term (c1) and the two gradient terms (i.e., c2
is independent from c1 and shared for the x and y gradient
terms). Moreover, in order to gracefully handle large areas
with missing samples common in real-world data (e.g., the
upper and lower parts of the hemisphere are not sampled by
the instrument, as in Matterport [19]), we take the common
approach [44] of ignoring errors on missing areas with a
per-pixel binary mask.

In all experiments, we obtain the best performance when
training with the loss in Eq. 2, even compared to other robust
solutions [44], experiencing a noticeable difference when
training and comparing with real-world datasets [27, 19],
which contain noticeable amounts of noise. The gradient-
based component improves image sharpening, as shown in
the comparison presented in Sec. 5.3 and Fig. 5.

5. Implementation and results
Our approach is implemented using PyTorch 1.5.1 and

has been tested on a large variety of indoor scenes. Source
code and models will be made available to the public.

In this paper, we report results obtained on four publicly
available datasets [27, 19, 43, 42] to facilitate comparison.
These benchmarks were also adopted by the recent state-of-
the-art works [14, 44, 33] comparable with our method. Mat-
terport3D [19] and Stanford2D-3D-S [27] act as real-world
examples. Similarly to Wang et al. [33], we used their official
splitting and a resolution of 512 × 1024. 360D [43] offers
instead a synthetic benchmark. It contains 35,977 panora-



Table 1. Quantitative performance on real and virtual world datasets. We show our performance evaluated on standard metrics and
compared to the recent state-of-the-art approaches. In all cases our approach outperforms the competition.

Dataset Method MRE MAE RMSE RMSE log δ1 δ2 δ3
FCRN [14] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731
OmniDepth [44] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578

Stanford2D3D BiFuse [33] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860
Our 0.0744 0.1048 0.1214 0.0207 0.9031 0.9723 0.9894
FCRN [14] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617

Matterport3D OmniDepth [44] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429
BiFuse [33] 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632
Our 0.1764 0.3296 0.6133 0.1045 0.8716 0.9483 0.9716
FCRN [14] 0.0699 0.1381 0.2833 0.0473 0.9532 0.9905 0.9966

360D OmniDepth [44] 0.0931 0.1706 0.3171 0.0725 0.9092 0.9702 0.9851
BiFuse [33] 0.0615 0.1143 0.2440 0.0428 0.9699 0.9927 0.9969
Our 0.0467 0.1134 0.1323 0.0212 0.9788 0.9952 0.9969

mas rendered by path-tracing scenes from two synthetic
datasets (SunCG and SceneNet) and two realistic datasets
(Stanford2D3D and Matterport3D). In this case, we adopted
the splitting provided by Zioulis et al. [44] and a resolu-
tion of 256 × 512, which is a common baseline for many
approaches [14, 44, 33]. At the time of this writing, the orig-
inal SunCG data is no longer available for downloading due
to legal reasons. Additionally, we present our performance
on the recent Structured3D synthetic dataset [42] to support
ablation and gravity-alignment robustness studies (Sec. 5.3).

5.1. Experimental setup and timing performance

We trained the network using the Adam optimizer [13]
with β1 = 0.9, β2 = 0.999, on four NVIDIA RTX 2080Ti
GPUs (11GB VRAM) with a batch size of 8 and a learning
rate of 0.0001 for real-world data and 0.0003 for synthetic
data. We adopt the specific panoramic data augmentation
proposed by Sun et al. [30]. With the given setup, starting
from default weight initialization, the best valid epoch was
around 60 for real-world data and 90 for synthetic data. The
average training speed is about 55ms/img for a 256× 512
input image and 117ms/img for a 512×1024 image. Single-
GPU inference time is 74ms (13 fps) for a 1024×512 image
and 44ms (23 fps) for a 512 × 256 input image, showing
that our method can be integrated in interactive settings. It
is important to note, in terms of computational complex-
ity, that the best competing method, BiFuse [33], has 253M
parameters and multi-branching, while our much simpler ar-
chitecture has only 75M parameters, also leading to reduced
inference time (e.g., 74ms vs. 616ms for a 1024 × 512
image). Additional details are provided in Sec. 5.3.

5.2. Quantitative and qualitative evaluation

We evaluated our method with the same error metrics
used in prior depth estimation works [14, 44, 33]: mean
absolute error (MAE), mean relative error (MRE), root mean
square error of linear measures (RMSE), root mean square
error of log measures (RMSE log scale invariant), and three
relative accuracy measures δ1, δ2 and δ3, defined, for an

accuracy δn, as the fraction of pixels where the relative error
is within a threshold of 1.25n. Tab. 1 illustrates our quantita-
tive results, in comparison with the most recent state-of-the-
art works for which source code or numerical performance
on the same data is available and using consistent training
and testing setups. We compare with OmniDepth [44] (i.e.,
RectNet), BiFuse [33], as well as FCRN [14], which is the
baseline of many current approaches (e.g., BiFuse [33]). Our
method outperforms the others in terms of accuracy for all
metrics, more markedly in cases of real data (Matterport3D
and Stanford2D-3D-S in Tab. 1). In the case of synthetic
data (360D in Tab. 1), our method also improves over other
approaches, although here differences are closest, due to the
fact that virtual renderings guarantee uniform 2D sampling
and very few discontinuities [44] (except, for example, for
occlusions), to the benefit of methods based on symmetrical
2D reduction and expansion.

Figures 2, 3, and 4 illustrate qualitative results on
real and synthetic data. Figure 2 shows our prediction
(Fig. 2(c)) on real-world RGB images (Fig. 2(a)) taken from
Matterport3D[19], compared to ground truth (Fig. 2(d)) and
BiFuse [33], for which the pre-trained model on Matter-
port3D was available. As we can see, our method finds a
more accurate depth even in areas with smaller and repet-
itive structural details (first row of Fig. 2), in the case of
large environments (second row of Fig. 2), and also for non-
Manhattan-World but regular environments, as in the case
of arched vaults (third row of Fig. 2). Figure 3 shows qual-
itative results on 360D synthetic data [43], compared with
the dataset creators’ method [44]. The highlighted details il-
lustrate qualitative differences. In particular, our method can
infer a detailed reconstruction for typical man-made objects
(Fig. 3, first row), even if they are far away (Fig. 3, second
and third rows),

5.3. Ablation and Gravity Alignment Study

We present in this section the model ablation and compu-
tational costs (Tab. 2), and specific experiments showing the
effectiveness of using the gravity-alignment prior (Tab. 3).



(a) RGB (b) BiFuse [33] (c) Our (d) Ground truth

Figure 2. Qualitative comparison on real-world datasets. Depth maps are inferred from real-world captured RGB data (Matter-
port3D [19]). The first column is the input RGB image (Fig. 2(a)), the second one is the depth estimated by BiFuse [33] (Fig. 2(b)), the third
one is the depth estimated by our method (Fig. 2(c)), and the fourth one is the ground-truth depth acquired by the instrument (Fig. 2(d)).
Black pixels are missing samples in the ground-truth depth. All methods have been compared using the same original datasets and setting,
without any further pre-process or alignment step.

(a) RGB (b) OmniDepth (c) Our (d) Ground truth

Figure 3. Qualitative comparison on synthetic datasets. Depth maps are inferred from synthetic data (360D [43]). We show in the first
column the rendered RGB image (Fig. 2(a)), the estimated depth by OmniDepth [44] (Fig. 3(b)), by our method (Fig. 3(c)) and the rendered
ground-truth depth (Fig. 2(d)). Black pixels are invalid pixels not rendered by the raytracer.

Ablation study and complexity. Our ablation experiments
are presented in Tab. 2. To test the key components of the
approach, we use results obtained with Structured3D [42],
a synthetic dataset containing over 21,000 rendered rooms,
that include, among other features, uniformly sampled color
and very accurate depth panoramas. This very recent dataset
has not yet been adopted by comparable works (Sec. 5.2), but
provides an additional valuable benchmark for our method.
The design variations discussed in the ablation study are

those that consistently match decoder and encoder solution
within our specific architecture and that better characterize
our approach. Since our network has a simple single-branch
structure, the computational cost of the model is directly
related to the number of parameters of the model and its
components. We thus illustrate the computational complex-
ity of our method by presenting our network partitioned into
macro blocks with their respective parameters: the ResNet-
50 features encoder block, the Slicing block (featuring slicing



(a) RGB (b) Prediction (c) Ground truth (d) RGB (e) Prediction (f) Ground truth

Figure 4. Qualitative performance. We present additional qualitative performance on Stanford2D3D [27] and Structured3D [42].

Table 2. Ablation study. The ablation study, performed on the Structured3D dataset[42], demonstrates how our proposed designs improve
the accuracy of prediction. Results show only comparable-stable cases that actually increase it. We show in the last row the full architecture
setup. PReLU activation provides identical benefits for each configuration in terms of convergence.

ResNet-50 Slicing LSTM Asym Grad Params MRE MAE RMSE RMSE
log δ1 δ2 δ3

23.5M 24.8M (last 1) - 6.3M No 54.6M 0.4712 0.5520 0.1596 0.0341 0.6845 0.8684 0.8824
23.5M 33M (last 4) - 6.3M No 62.8M 0.2990 0.5014 0.0775 0.0154 0.7045 0.8784 0.9124
23.5M 24.8M (last 1) 12.5M 6.3M No 67.1M 0.2988 0.4814 0.0750 0.0149 0.7702 0.8892 0.9222
23.5M 33M (last 4) 12.5M 6.3M No 75.3M 0.0147 0.1223 0.0558 0.0102 0.8854 0.9376 0.9492
23.5M 33M (last 4) 12.5M 6.3M Yes 75.3M 0.0147 0.1180 0.0549 0.0109 0.9085 0.9451 0.9502

and asymmetric dimensional reduction), the LSTM block and
the Asym asymmetric upsample block. We also show the
overall number of parameters for each setup (i.e., Params).
For each block, the number of parameters needed is inde-
pendent of the input image resolution, except for the LSTM
block and the last upsampling, where the value indicated
(i.e., 12.5M) is relative to the 256× 512 resolution, which
would be 16.8M for 512× 1024. The results in Tab. 2 show
the improvements obtained when using the last 4 ResNet
layers, compared to using only the last one, in the Slicing
block. Results at row 3 and 4, instead, show the benefits
of adopting LSTM bottleneck-features refinement, which
are appreciable already using only one ResNet output level,
and become very consistent on the full pipeline. In addi-
tion, we present a comparison on whether or not to use the
gradient component in the loss function, which mainly af-
fects the sharpening of recovered depth details. Figure 5
shows a qualitative comparison between our model trained
without or with the gradient loss. Many details typical of in-
door environments (i.e., wall corners, objects with repetitive
patterns), are lost without the contribution of the gradient
component, even if from the point of view of the average
numerical error the difference seems small. Since using
the gradient, as for the PReLU activation (Sec. 3), provides
identical benefits with every configuration, we expose the
gradient contribution only for the last configuration. In par-
ticular, PReLU does not directly affect the best performance
obtainable on single datasets but, instead, the ability to effi-
ciently converge on both real and synthetic datasets. As an
example, similar performances can be obtained using ELU
without batch normalization on the synthetic OmniDepth
dataset [43], but the same model would need batch normal-
ization to work with Matterport3D [19], as also discussed

in previous works [44, 33]. As shown in Tab. 2, each block
adds a low and reasonable cost to the model, having as a
counterpart a substantial increase in performance. In terms
of computational cost, a standard decoder for equirectan-
gular image based on FCRN [14], like the one adopted by
BiFuse [33], needs about 38M of parameters, while the sum
of our LSTM module (12.5M) and our actual decoder (6.3M)
reaches 18.8M of parameters in total.

Table 3. Gravity alignment study. We test the robustness of
our method to horizontal ground plane misalignment on Struc-
tured3D [42] and Matterport3D [19].

MRE MAE RMSE RMSE
log δ1

Structured3D 0◦ 0.0147 0.1180 0.0549 0.1012 0.9085
Our ±2◦ 0.0217 0.1393 0.0658 0.1368 0.8776

±5◦ 0.0263 0.1601 0.0714 0.1430 0.8527
Matterport3D 0◦ 0.1764 0.3296 0.6133 0.1045 0.8716

Our ±2◦ 0.2645 0.4205 0.7026 0.1334 0.7256
±5◦ 0.3032 0.4806 0.7720 0.1482 0.6879

Matterport3D 0◦ 0.2048 0.3470 0.6259 0.1134 0.8452
BiFuse ±2◦ 0.3888 0.5378 0.9805 0.1852 0.6144
[33] ±5◦ 0.4905 0.6899 1.0225 0.2250 0.5440

Gravity evaluation of benchmark datasets. Our method
assumes that the camera tripod is placed on a horizontal
plane [3], which is common practice for capturing an in-
door scene. We verified such feature on the four common
publicly available datasets adopted above. All synthetic
datasets [43, 42] are perfectly aligned by design. For real-
world datasets [27, 19], we exploited the alignment pipeline
of Zou et al. [46] to evaluate the misalignment with the
ground plane. We found that the average misalignment
with respect to the gravity vector of the Stanford2D3D [27]
dataset is about 0.36 degrees, while the average misalign-
ment of the Matterport3D [19] dataset is about 0.61 degrees



(full statistics in the supplementary material).
Robustness to gravity misalignment. Even if our method
assumes to work with gravity-aligned scenes, we do not
require perfect alignment, as demonstrated by our consis-
tent results with the mentioned real-world datasets (Tab. 1).
Moreover, we verified that the model, trained on the origi-
nal aligned data, is robust to alignment errors, even larger
than those appearing in practice. To test the behavior of
our method in the presence of wider inclination errors, we
exploit the Structured3D synthetic [42] dataset (such that the
baseline is surely aligned to the ground plane) and Matter-
port3D [19] as real-world dataset. Starting from their initial
baseline, we generate two new testing sets by randomly ro-
tating the up vector of the camera, simulating a much wider
misalignment to gravity — i.e., ±2◦ and ±5◦ maximum in-
clination error, as reported in Tab. 3. ±2◦ can be considered
as a reliable error bound for a manual alignment without
any correction, while ±5◦ is a deliberately wide range (ad-
ditional tests are presented in the supplementary material).
Results in Tab. 3 show that our method produces reliable
predictions even with significant camera misalignment. Per-
formance on the Structured3D dataset reaches good accuracy
in all cases and low error values still competitive with state-
of-art results. E.g., δ1 is above 0.9 for the aligned case and
degrades by only 0.03 for the moderate misalignment error
of ±2◦ and 0.06 for the large misalignment error of ±5◦.
The degradation obtained for Matterport3D are larger, but,
by comparing the results with those in Tab. 1, we note that
the results of our method on a dataset with ±2◦ error are
still aligned with some of the state-of-the-art results obtained
by other methods on perfectly aligned datasets. Moreover,
we also present here the results obtained with BiFuse [33],
for which the pre-trained model was available with the same
training set, showing a much larger degradation in perfor-
mance for non-gravity aligned data. This comparison shows
how gravity alignment is also a fundamental assumption for
other methods. It should be noted that these large errors can
be avoided in practice by imposing capture constraints or
performing a gravity-alignment pre-processing.

(a) Ground truth (b) No grad. (c) With grad.

Figure 5. Loss function qualitative comparison. Example of
qualitative effects depending on gradient loss (Sec. 4).

5.4. Special cases and limits

In our experiments, we have verified that our model re-
turns consistent results with all the man-made environments

present in the tested datasets [27, 19, 43, 42], including
scenes that can be defined as almost-outdoor (first row of
Fig. 6). However, the quantitative and detailed performances
depend on the ground truth data adopted, which in the case
of depth often have masked parts due to lack of data from
the sensor or unresolved ambiguities, such as reflections and
fatal occlusions. In the second row of Fig. 6, we show one
of these examples, that is one of the worst cases in our testes.
Here the ground truth depth has numerous discontinuities
and missing samples due to reflections, which are not easily
predictable by our model. A large part of the structure is
hidden by the insulating material.

(a) Input (b) Ground truth (c) Output

Figure 6. Special cases. First row: results on almost-outdoor
environment. Second row: one of the worst cases in our tests.

6. Conclusions
We have introduced a novel deep neural network capable

to rapidly estimate a depth map from a single monocular in-
door panorama. Our design exploits gravity-aligned features,
characterizing man-made interior environments through a
compact representation of the scene into vertical spherical
slices. We exploit long- and short-term relationships among
slices to recover the equirectangular depth map, and maintain
high-resolution information in the extracted features within
a deep network. Our experimental results demonstrate that
our method outperforms current state-of-the-art solutions in
prediction accuracy, particularly in the case of real-world
data with noise and missing data.

While the current method targets monocular reconstruc-
tion, we plan to extend it to multi-view in the context of
structured 3D reconstruction of indoor environments. We
are also looking at integrating it with interactive solutions,
where we plan to use real-time depth estimation for volume
and surface computation in AR settings. Moreover, while
the approach was designed for indoor scenes, gravity
alignment of features occurs also in other settings, especially
man-made ones. We thus envision an extension of our
approach to outdoor environments, in particular urban
scenes.
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