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Abstract. We present an application of our time-critical multiresolution
rendering algorithm to the visual and possibly collaborative exploration
of large digital mock-ups. Our technique relies upon a scene description
in which objects are represented as multiresolution meshes. We perform a
constrained optimization at each frame to choose the resolution of each
potentially visible object that generates the best quality image while
meeting timing constraints. We present numerical and pictorial results of
the experiments performed that support our claim that we can maintain
a fixed frame-rate even when rendering very large datasets on low-end
graphics PCs.

1 Introduction

When undertaking a large and long-time lasting engineering or architectural
project, it is vital to verify quite often what could be the consequences of the de-
cisions taken during the design phase. Nowadays this is usually done by crafting
physical mock-ups, typically made of wood or plaster, that help the designers to
visualize the final result. Moreover, mock-ups are routinely used for applications
such as testing equipment integration, accessibility and space requirements in
domains ranging from aerospace and automotive manufacturing to architecture.

The aim of virtual prototyping research is to depart from this costly practice
and allow architects, engineers and designers to work on digital mock-ups which
simulate visual appearance and behavior of objects on a computer [18]. The
expected benefits of virtual prototyping technology include:

– a substantial reduction of development time and of manufacturing costs,
thanks to a reduced need for expensive physical mock-ups;

– the ability to continuously maintain digital mock-ups in sync with the design,
and therefore the possibility to use them for documentation purposes and as
a basis to help the dialogue between engineers from different fields who can
talk, possibly with different words, about the same thing;

– the possibility of using mock-ups during collaborative design sessions among
geographically distant partners, a very difficult option when using physical
prototypes.



As for all virtual reality applications, virtual prototyping system have very
stringent performance requirements: low visual feedback bandwidth can destroy
the illusion of animation, while high latency can induce simulation sickness and
loss of feeling of control. As virtual prototyping tools have to deal with very
large dynamic graphics scenes with a complex geometric description, rendering
speed is often the major bottleneck.

In addition, models are typically the output of a CAD elaboration, and thus
are described in terms of curves and surfaces or as CSG models. Since cur-
rent graphics boards provide adequate real-time performance only when draw-
ing polygon meshes, a tessellation phase is always needed. Typical virtual pro-
totypes, once converted to an adequate accuracy often exceed the millions of
polygons and hundreds of objects, which poses important challenges to applica-
tion developers both in terms of memory and speed.

As the complexity of a scene visible from a specific view-point is potentially
unbound, meeting the performance requirements dictated by the human percep-
tual system requires the ability to trade rendering quality with speed. Ideally,
this time/quality conflict should be handled with adaptive techniques, to cope
with a wide range of viewing conditions while avoiding worst-case assumptions.
The presence of moving parts, and the need for interaction of virtual prototyping
tools, limits the amount of precomputation possible, leading to run-time solu-
tion. The traditional approach to render these scenes in a time-critical setting is
to pre-compute a small number of independent level-of-detail (LOD) represen-
tations of each object composing the scene, and to switch at run-time between
the LODs. This technique has multiple drawbacks, both in terms of memory
requirements and quality of results. We recently demonstrated that these prob-
lems are overcome when using appropriate multiresolution data structures which
enable to express predictive LOD selection in the framework of continuous con-
vex constrained optimization [9, 8]. In this paper, we present an application of
these techniques to the rendering of digital mockups. This research has par-
tially been developed in the frame of a European Esprit project focusing on the
development of new systems for computer supported collaborative work. We ex-
perimented with the system using the digital model of a very large machine that
is under construction at CERN in Geneva that, once built, will be the largest
machine for High Energy Physics in the world [3].

The rest of the paper is organized as follows. In section 2 we introduce the
problem of rendering complex geometric scenes within a time budget, in section
3 we briefly describe our proposed solution and in section 4 we analyze the results
obtained.

2 Time-critical rendering

Explorations in virtual environments require an high degree of interactivity, low-
latency, and real-time processing capabilities while ensuring an high and steady
frame-rate. The visual complexity of these environments has high variability
and is potentially unbounded. Given that the rendering capabilities of whatever



computer are instead limited, the only possible solution pass trough the us-
age of algorithms and systems for time-critical rendering, that are able to keep
a constant frame-rate trading rendering quality with speed. The time-critical
rendering problem is an optimization problem consisting in rendering the best
quality image within timing constraint.

A time-critical rendering system is inherently a complex system that should
combine algorithms such optimization algorithms, like ours, with occlusion cull-
ing [21], image based rendering [2] and other rendering acceleration methods [1].
Since the description of such a general framework is beyond the scope of this
paper we give only a brief description of the background of our work.

2.1 Levels-of-details

The most straightforward way to store and retrieve multiple resolutions of a
single geometric mesh is the generation of a fixed number of independent reso-
lutions from the original mesh. Each of these simplified meshes retains as much
as possible the topological and geometric characteristics while reducing number
of vertices and triangles and thus the level of detail of the representation.

Many applications dealing with time-critical graphics (e.g. OpenInventor [14]
and VRML [19]) include the possibility to store 3D models in levels-of-details
(LODs). The main advantages of LODs are the simplicity of implementation and
the fact that, as LODs are pre-calculated, the polygons can be organized in the
most efficient way (triangle strips, display list), exploiting raw graphics process-
ing speed with retained-mode graphics. The main drawbacks of this technique
are related to its memory overhead,which severely limits in practice the number
of LODs per object. As an example, representing an object at just the four LODs
100% (original mesh), 75%, 50%, 25% would cause an overhead of 150% over
the single resolution version, which is an important drwaback for large virtual
prototypes. The small number of LODs might introduce visual artifacts due to
the sudden changes of resolution between differing representations [10] and, more
importantly, limits the degrees of freedom of the LOD selection algorithm.

A different approach relies upon a scene description in which objects are rep-
resented as multiresolution triangle meshes, that is compact data structures able
to efficiently provide on demand a triangle mesh approximation of an object with
the requested number of faces [15]. In other words the number of precomputed
levels of details of the original mesh is equivalent to the number of triangles
describing it. This is the representation we choose for storing the models in our
system.

2.2 Dynamic simplification

An alternative to per-object LOD selection is to dynamically re-tessellate visible
objects continuously as the viewing position shifts. As dynamic re-tessellation
adds a run-time overhead, this approach is suitable when dealing with very large
objects or static environments, when the time gained because of the better sim-
plification is larger than the additional time spent in the selection algorithm.



For this reason, this technique has been applied when the entire scene, or most
of it, can be seen as a single multiresolution object from which to extract vari-
able resolution representations. To support interactive animated environments
composed of many objects, this paper focuses on per-object view-independent
resolution rendering.

2.3 Resolution selection

The core of the optimization problem is choosing, for each object in the scene, at
each frame, the most adequate resolution. The algorithm adopted must be able
to choose the representation that gives the best visual clues to the user while
keeping the overall rendering time under the budget given.

Run-time LOD selection is typically done using static heuristics or feedback
algorithms. Static heuristics (e.g. distance-based [19], coverage-based [14], or
perceptually motivated [16]LOD mappings) are not adaptive and are therefore
inherently unable to produce uniform frame rates, while feedback algorithms,
which adaptively vary LOD mappings based on past rendering times (e.g. [17])
suffer of unavoidable overshoot and oscillation problems when the complexity of
the environment varies rapidly: entering in or exiting from a room in a walk-
through application is a typical example.

As demonstrated by Funkhouser and Séquin [6], to guarantee bounded frame
times, predictive algorithms that optimize LOD selection based on estimates of
rendering time and image degradation must be used. Having a guarantee on
the total maximum lag of the application is a necessary precondition for using
prediction techniques for lag reduction [20]. Unfortunately, the combinatorial
optimization problem associated to LOD selection is equivalent to a version of
the Multiple Choice Knapsack Problem [6, 13], which is NP-complete, and thus
approximation algorithms have to be used. Current state-of-the-art techniques
(Funkhouser and Séquin’s greedy algorithm [6] and Mason and Blake’s [13] in-
cremental technique) produce a result which is only guaranteed to be half as
good as the optimal solution and have a running time depending both on the
number of objects and on the number of LODs per object.

Since we use multiresolution triangle meshes, we can approximately describe
the representation as continuous instead of discrete and thus elaborate continu-
ous a convex constrained optimization strategy [9, 8].

3 Our approach

As we said, our approach relies upon a scene description in which objects are
represented as multiresolution triangle meshes. At each frame, we aim to find
within a fixed short time the triangle mesh representation for each potentially
visible object that produces the “best quality” image within the target frame
time. This is done in an optimization phase which takes as input the set of
potentially visible objects determined by a culling algorithm (e.g. bounding box
or occlusion culling) and selects as output the list of triangle meshes to be
rendered.



3.1 Optimization

To perform the optimization task we define the two functions cost(W, S(r))
and degradation(W, S(r)). The cost(W, S(r)) heuristic provides an estimation
of the time necessary to render in a viewing configuration W (camera, lights), a
scene composed of the multiresolution objects present in S at resolutions r. The
degradation(W, S(r)) heuristic provide an estimation of the perceptual distance
between the image produced by rendering in a viewing configuration W a scene
composed of the multiresolution objects present in S at resolutions r and the
image obtained in the same configuration with all objects at full resolution.

Using this formalism, our approach to predictive adaptive rendering is stated
as follows:

Minimize: degradation(W, S(r))

Subject to: cost(W, S(r)) ≤ t(desired)

r � rmin

r � 1

(1)

where � and � denote componentwise inequality, rmin is the vector con-
taining lower bounds for the resolution of each object, and t(desired) is the target
display time.

The difficulty of solving problem 1 depends largely on the nature of the
degradation and cost heuristics. We have demonstrated that simple forms of
these heuristics can be found, leading to efficient solution methods applicable in
a time-critical setting [8]. We make the simplifying assumption that object qual-
ity depends exponentially on the resolution by a law of the form winterestr

−α

for some algorithm parameter α > −1, and that frame time depends linearly on
the resolution r for r > rmin, where rmin is determined by finding the minimal
resolution at which the graphics pipe-line bottleneck is not rasterization. It is
possible to show that in this case problem 1 can be solved very efficiently using
an active-set method [5, 7], the non-linear equivalent of the well-known simplex
linear optimization method. The performance of the method depends on how
efficient it is to generate an initial feasible solution, to solve equality constrained
problems during the iterative refinement phase, and to compute Lagrange mul-
tipliers for checking convergence. All these sub-problems can be solved in linear
time in the case of resolution optimization. For details, refer to the original
publication [8].

3.2 Multiresolution Data Structure

Our optimization algorithm is independent from the particular data structure
used to represent multi-resolution meshes. The only requirements are the ability
to represent a mesh with an arbitrary number of triangles and to traverse the
structure at arbitrary resolutions faster than the graphics pipe-line.



Nevertheless along with implementing the optimization and rendering algo-
rithm we developed a companion data structure (TOM, Totally Ordered Mesh)
satisfacting these requirements [9]. As we are dealing with large datasets, we
have focused on devising a representation with a small memory footprint. The
construction of TOM is based on a single, simple operation: the vertex pair con-
traction operation, denoted (v1, v2)→ ṽ, that replaces two vertices (v1, v2) with
a single target point ṽ to which all the incident edges are linked, and removes
any triangles that have degenerated into lines or points.

As in [12], we implement mesh simplification schemes based on iterative ver-
tex substitution in a generic framework of greedy algorithms for heuristic op-
timization. The generic greedy algorithm is parameterized by a binary oracle,
deciding which vertex substitutions are legal, and a fairness predicate, which
assigns priorities to all vertex substitutions in the legal candidate sets. By it-
eratively applying this operation a triangle mesh can be reduced by removing
one vertex and possibly some degenerated faces at a time. As in [4, 12] we have
noticed in our various experiments that the most important factor to preserve
quality during mesh simplification is the order in which operations are done,
and that a good mesh reduction scheme can be achieved without inserting new
vertices.
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Fig. 1. TOM data structure. Multiresolution meshes are stored using a vertex list
and a triangle list sorted according to contraction resolution.

On the multiresolution mesh we can define a total order on both the list
of vertices and the list of triangles. Sorting according to this order after the
simplification generates a compact and efficient data structure (see figure 1).
By ordering the vertex list, we obtain a packed representation where the active
vertices at vertex resolution rv = n

Nv
are exactly the first n ones in the vertex

array of size Nv (fig. 1). Moreover, by ordering the triangle list, we have a way
to iterate through the triangles that define the mesh at an arbitrary resolution
in a time depending only on the number of active triangles and the lengths of
the vertex substitution chains. The memory overhead introduced is limited to



the space required to store the vertex substitution history and is approximately
8%.

4 Results and discussion

The time-critical multiresolution scene rendering algorithm briefly described in
this paper has been implemented and tested on Silicon Graphics IRIX and Win-
dows NT machines. The TOM data structure is integrated in the CAVALCADE
collaborative virtual prototyping system [18].

In this section we report and analyze some results of a sample session of visual
exploration of a large dataset composed of more than 300 separate parts and
more than 1 million triangles overall. The results presented here were obtained
on a Silicon Graphics 320 PC running Windows NT 4.0 and configured with a
single 500 MHz Pentium III processor with 512 Kb L2 cache, 512 Mb RAM, and
a Cobalt graphics chipset.

The dataset represents the ATLAS Experiment Pit of the LHC (Large Hadron
Collider), a machine under construction at CERN in Geneva. It was obtained
first transforming the original Euclid CSG CAD model in VRML using an ac-
curate tessellation, then processing it to generate the TOM representation. The
LHC is a large scale project, where the design phase is probably the most deli-
cate one: this is the moment when some critical choices are taken which might
dramatically affect the final results, timing and costs. The possibility to interac-
tively manipulate the digital model is essential to a good understanding of the
interrelationships between the parts. It is nowadays impossible to rely only on
the visual capabilities of the present CAD tools, and a system like ours can thus
be a very useful supplement for the design phase.

Fig. 2. A view of the whole ATLAS Experiment Pit. Comparison between full
(left, 1,072,858 triangles) and adaptive resolution (right, 41,487 triangles).

4.1 Memory needs

The entire multiresolution dataset occupies 26.2 Mb using a TOM representation
for each of the objects, considering 32 bits to store both integer and floating



Fig. 3. Inside the ATLAS Experiment Pit. Comparison between full (left,
1,035,533 triangles) and adaptive resolution (right, 43,989 triangles).

point data and storing only normals as vertex attributes. The same dataset in
VRML face-vertex form (single resolution) occupies 24.2 Mb, that is only 8% less
than the multiresolution version. By constrast, when using a VRML scene graph
with six levels of details per object (100%, 50%, 25%, 12%, 6%, 3%), storage
requirements grow to 47.6 Mb, introducing an overhead of 96%. Memory needs
for the PM representation range from 28.3 Mb to 64.7 Mb, i.e 17% to 67% more
than the single resolution version, depending on the resolution at which objects
have to be rendered [11]. The compactness of TOM is very important for large
virtual prototypes.

4.2 Walkthru

We have simulated in a short recorded session of less than one minute several
typical possible ways of interacting with the huge model: first the observer has
an overview of the whole model from different viewpoints; after this complete
loop around the machine the observer decide to have a closer look at a particular
section attracting her interest; she then moves to look at another piece of the
machine and rapidly turns back to inspect a particular component along the
previous path.

The picture on the right of figure 2 represents the scene as seen by the
observer when looking at the whole model. The picture on the left (taken at
full resolution) allow to appreciate the slight degradation when passing from the
original to the multiresolution model. It is interesting to point out that, while
with our system we are able to keep a steady 10 frames per second rate, rendering
the full model on the same machine requires an average of 1 frame per second.
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Fig. 4. Triangles visible and rendered for each frame. For each observer
viewpoint along the visual exploration path the number of triangles in the view
frustum (visible) and the number of triangles actually rendered are reported.
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Fig. 5. Time report for each frame. For each rendered frame four are re-
ported parameters.



In figure 3 there is a representation of the scene seen by the observer when
entering into the dataset. Here we can see that the visual degradation of some
of the structures represented is higher, but for the sake of the investigation the
quality is more than acceptable.

In figure 4 we plotted, for each frame, the number of triangles potentially
visible by the observer and the number of triangles rendered. The system does
not perform any back face or occlusion control, so the actual number of visible
triangles can be even much less than the number reported. It is interesting to
notice that, as one can expect, the number of rendered triangles is quite steady,
despite the complexity of the model in the view frustum. This is an evident
performance index for both the optimization strategy and the multiresolution
data structure. The triangle budget is not constant, due to variations caused by
fill-rate, which are particularly important for low-end machines.

In figure 5 we plotted indicators that show how the system performs under
different situations. The desired time for each frame is fixed to 100 ms (giving
a 10 f/s rate), the predicted time is deducted from the estimation provided by
the cost heuristic, the optimization time and the actual total rendering time
are measured. As we can see, there is a good agreement between predicted and
actual time, which are both maintained close to the target. The oscillation in
rendering time depend mostly on the time taken by the optimization routine,
which often finishes before the user-imposed limit of 10ms. When this happens,
the frame quality is optimal according to the heuristics. In all other cases, iter-
ative refinement is terminated earlier, and a sub-optimal solution is used. The
system is anyway robust enough to absorb these changes without any evident
visual oscillation.

5 Conclusions and future work

We presented here a study of an application of a multiresolution based time-
critical system to the visual exploration of a large engineering model that is
impossible to examine at interactive speed even on high-end graphics worksta-
tions. The results we reported allow us to say that our system can be useful
when designing such large machines to perform visual analysis at early stage of
the design phase. The system enables the handling of scenes totaling millions of
polygons and hundreds of independent objects on a standard graphics PC. The
technique does not rely on visibility preprocessing and can be readily employed
on animated scenes and interactive VR applications.

We plan to perform similar experiments with architectural datasets, where
our system can be used to walk through the digital mock-up even during the early
stages of conceptual design. We are working on extending the data structure to
support high-speed variable resolution traversals. In this case, the optimization
algorithm will assign a polygon budget to each of the visible objects based on
timing constraints, but each object will autonously decide how to distribute this
budget at each frame. This approach will improve the visual quality of scenes
composed of large objects with linked pieces.
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