A Virtual Reality Cookbook

Jean-Francis Balaguer Enrico Gobbetti

Computer Graphics Laboratory
Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland

E-MAIL: {balaguerlgobbetti}@di.epfl.ch

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

2

A Virtual Reality Cookbook

Introduction
Temporal-spatial realism
Sensory feedback
The VB2 system

A Virtual Reality Cookbook

Virtual Reality

Goa

Convince the participants that they are in another place

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Virtual Reality

Technique

- Participants' sensory inputs are replaced with synthetic information
- Participants are put in the loop of a real-time simulation

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

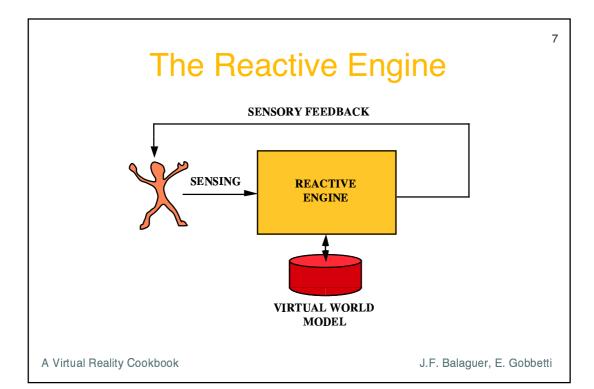
Virtual Reality

Motivation

- Participants' tasks are shifted from cognitive to perceptual activities
- The correlation between manipulation and effect on manipulated information is increased

Participants can concentrate on application tasks

A Virtual Reality Cookbook


J.F. Balaguer, E. Gobbetti

Virtual Reality

Needs

- Input devices
 - Sense participants motion
- Output devices
 - Replace participants' sensory input
- Reactive applications
 - Immediate response to participants' action
 - Simulation of the virtual world

A Virtual Reality Cookbook

Reactive Applications

Reactive applications are not a new idea:

- Ivan Sutherland, 1965
- Alan Kay, 1969

Modern interactive systems are based on these concepts


• The DeskTop is a virtual environment!

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

The DeskTop Virtual Environment

9

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

The Desktop Virtual Environment

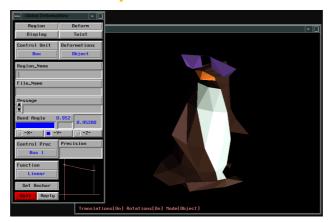
Input device (mouse)

• 2D motion sensing

Output device (screen)

• 2D image, visual feedback

Direct manipulation

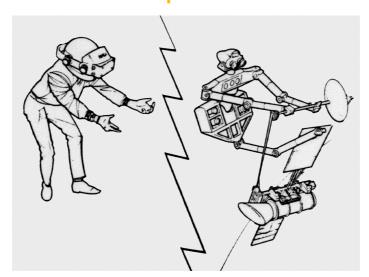

- Continuous two-way man-machine communication
- Physical metaphors, visibility of operations

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

12

DeskTop: A 2D world!



The manipulation of 3D information requires a 3D interface!

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Teleoperation

A Virtual Reality Cookbook

Synthetic Environment

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

14

Synthetic Environment

A Virtual Reality Cookbook

3D Virtual Environments

Same basic reactive model as for 2D applications, but:

- Need for temporal-spatial realism
- · Need for new input devices
 - 3D motion sensing
- Need for new output devices
 - Depth cues to help 3D perception
- Need for new interaction metaphors
 - Manipulation of 3D information

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

3D Virtual Environment

Virtual Space Generator

Virtual Space Generator

Virtual Space Generator

Head Pos.

Eye Pos.
Head/Eye/Hand
Hand Pos.
Tactile
Feedback

Tactile
Feedback

Tactile
Feedback

Tactile
Feedback

Helmet-Mounted Unit

Binaural Headset

Microphone

CRT
Helmet
Head Pos.
Eye Pos.
Head/Eye/Hand
Tracking Electronics

Hand
Tracking Electronics

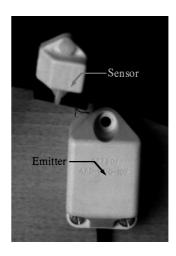
Hand
Tracking Stimulus
Feedback

Head-Mounted Unit

- Head tracking for viewpoint specification
- Hand tracking for manipulation

A Virtual Reality Cookbook

Tracking


Polhemus IsoTrak

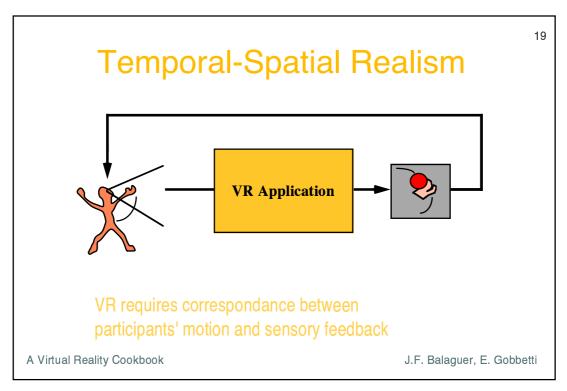
- Absolute position and orientation tracking
- Magnetic tracker
- Update rate
 - 60 Hz with one sensor
- Accuracy
 - decreases with sensor-emitter distance
 - at 75 cm from source

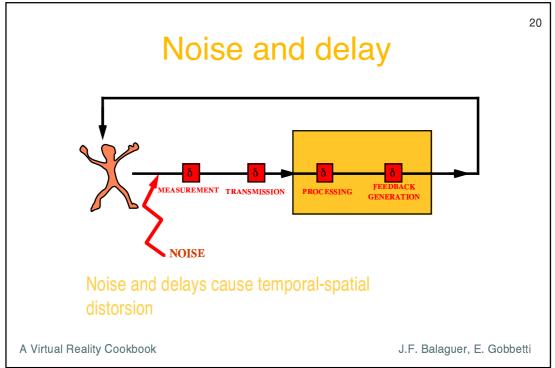
0.63 cm in translation

0.85° in orientation

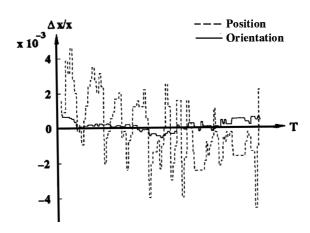
A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti


Hand Measurement


DataGlove

- · Polhemus tracker
- Finger flexion sensors
 - 5° resolution
- Update rate
 - Finger data: 60 Hz
 - Finger and transform data: 30 Hz


A Virtual Reality Cookbook

22

Polhemus Isotrak Noise

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Polhemus Isotrak Delays

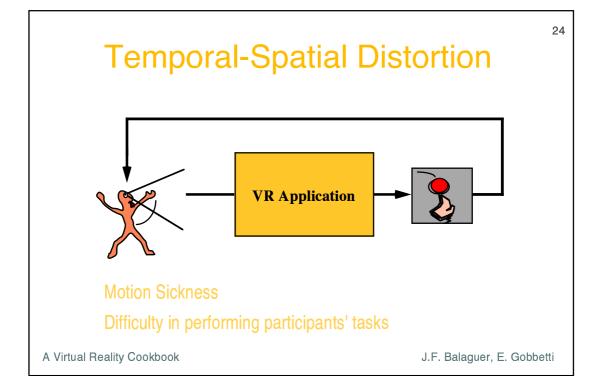
• Measurement: 80-150 ms

• Transmission (IPC): 10-50 ms

 Processing and feedback generation delays are dependent on the application

A Virtual Reality Cookbook

Temporal-Spatial Distortion


Noise in sensor data

Jittering of images

Accumulation of delays

Lag between participants' motion and sensory feedback

A Virtual Reality Cookbook

Temporal-Spatial Realism

Noise reduction techniques

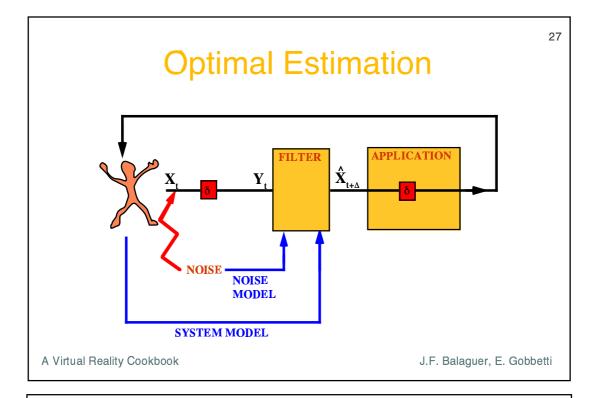
- Use better trackers
- Smoothing

Delay reduction techniques

- Speed-up applications
 - Faster trackers
 - Faster machines
 - Parallel processing (pipe-line)
- Prediction

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti


Temporal-Spatial Realism

Noise and delay reduction

- Simple low-pass filters increase delays
- Simple predictors increase noise

Noise and distortion have to be handled together

A Virtual Reality Cookbook

Kalman Filter

Optimal linear estimates of the state of dynamic models

- Maximum likelihood estimates for Gaussian noises
- Weigthed least square estimate for non-Gaussian noises.

Can be used to predict future values of the state vector

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

System model

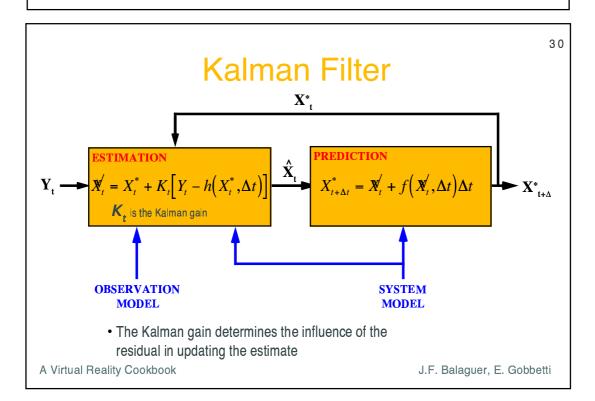
System model

$$X_{t+\Delta t} = f(X_t, \Delta t) + \xi(t)$$

 $m{f}$ models the dynamic evolution of the state vector $m{X}$

 ξ is a white noise process

Observation model


$$Y_t = h(X_t, \Delta t) + \eta(t)$$

h models the measurement process

 η is a white noise process

Y consists of the sensor readings

A Virtual Reality Cookbook

Kalman Filter

Filter design steps

- Choose state variables
- Define the random process models
 - System process
 - Observation process
- Find optimal values of the model parameters
 - Measure device noise
 - Minimize filter's error on training data

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Kalman Filter: Problems

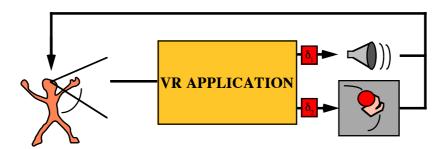
Humans are not simple dynamic processes

Their behavior is variable and depends on the tasks

Modeling human behavior with a state equation is difficult

A Virtual Reality Cookbook

Modeling Complex Behavior

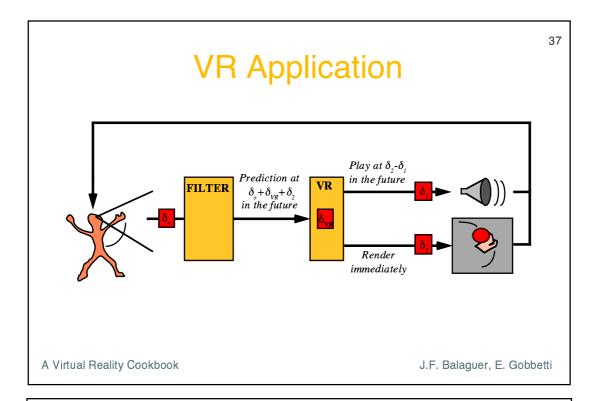

Participant's behavior is modeled by a state machine

- Each state represent a particular well-defined behavior
 - looking-around, observing, manipulating, etc.
- Each state has its own filter
- The correct filter is chosen based on the prediction error

A Virtual Reality Cookbook

VR requires feedback synchronization

A Virtual Reality Cookbook


J.F. Balaguer, E. Gobbetti

Feedback Synchronicity

To obtain feedback synchronicity

- Compute longer output generation delay
- Use longest delay for input prediction
- Compensate difference in output delays by using lead times

A Virtual Reality Cookbook

Sensory Feedback

VR systems must provide information on the virtual world through sensory feedback

- Visual feedback
- Sonic feedback
- Force feedback
- Tactile feedback

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Visual Feedback

Feedback must match human vision capabilities

• Should provide cues for depth perception

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Depth Perception

Shading and Shadows

• Help reconstruction of shapes

Parallax/Relative Motion

Perceived image changes when the viewer changes position

Binocular disparity

 Images perceived by left and right eyes for a given point differ in their horizontal position

A Virtual Reality Cookbook

Depth Perception

Perspective

• Far objects appear smaller than close objects

Occlusion

• Far objects are hidden by closer objects on the line of sight

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Depth Perception

Convergence

 Coordinated rotation of eyes when focusing on an object in space

Accommodation

 Muscular tension needed to adjust the focal length of the crystalline lens to focus on an object in space

A Virtual Reality Cookbook

Standard Interactive Displays

Limited Depth Cues

- Perspective
- Hidden surface removal
- · Basic shading

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Stereo Graphics Displays

Binocular disparity

Compute the left and right images from different positions

Head tracking

• Allows the simulation of relative motion

Fixed accommodation

Decoupled accommodation and convergence

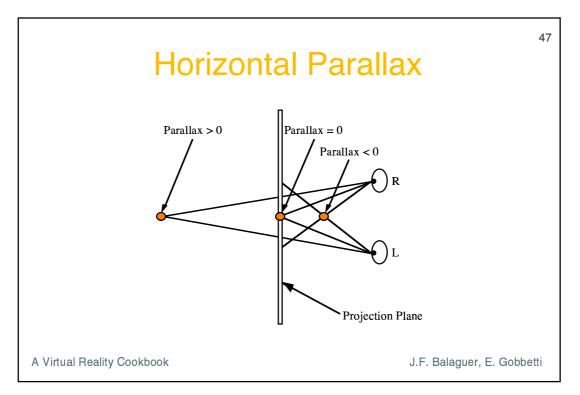
A Virtual Reality Cookbook

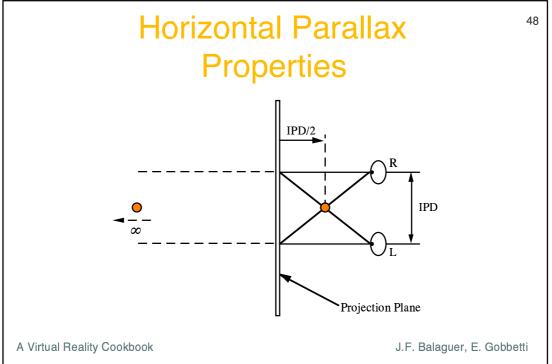
Computing Stereo Pairs: Generalities

45

Horizontal parallax

Vertical parallax


Rotations and Perspective


Translations and perspective

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

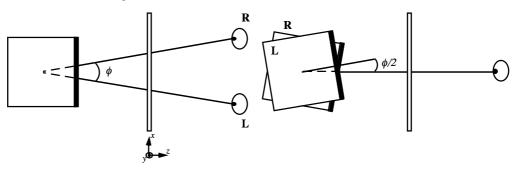
Homologous points of P PR Horizontal Parallax Projection Plane A Virtual Reality Cookbook J.F. Balaguer, E. Gobbetti

Vertical Parallax

Definition

• Difference between the vertical coordinates of homologous points

Causes difficulties for image fusion

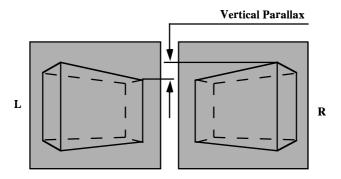

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Rotations and Perspective

Motivation

Rotate scene around Y axis to simulate eye convergence

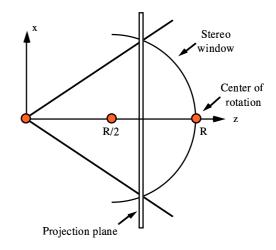


A Virtual Reality Cookbook

Rotations and Perspective

Problem

• Introduces non constant vertical parallax

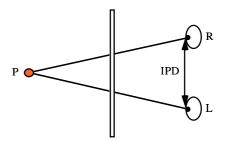

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Rotations and Perspective

Problem

 Non planar stereo window introduces distortion



A Virtual Reality Cookbook

Translations and Perspective

Use two centers of projection Properties

- No vertical parallax
- Stereo window is planar and coincides with projection plane

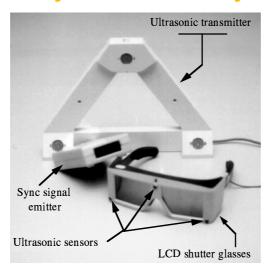
A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

54

Hardware configuration

Fixed displays


CrystalEyes

Head mounted displays

• EyePhones

A Virtual Reality Cookbook

Cristal Eyes/Cristal Eyes VR

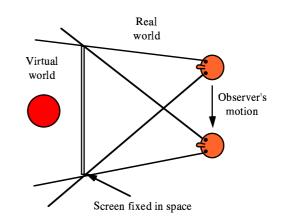
A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Fixed Displays - Head Tracking

The screen is a window on the virtual world

- · Window is fixed in space
- Software must precisely model hardware configuration
- Software must take into account user's IPD



A Virtual Reality Cookbook

Fixed Displays - Head Tracking

Tracking

- Software must take into account observer's motion
- Viewing volumes must be recomputed continuously

A Virtual Reality Cookbook

A Virtual Reality Cookbook

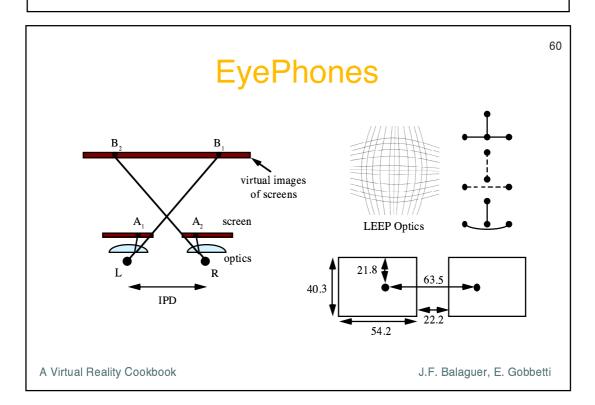
J.F. Balaguer, E. Gobbetti

J.F. Balaguer, E. Gobbetti

Fixed Displays - No Head Tracking Apparent point positions Observed point Parallax changes with head motion Distortion caused by head motion and fixed horizontal parallax

Head Mounted Display

EyePhones


- Non see-through HMD
- Polhemus magnetic tracker
- LCD screens
 - 210x140 color pixels
- LEEP optics
 - Horizontal field of view (FOV)

Single eye: 75°, Overlapped: 60°, Binocular 90°

- Vertical field of view: 58.4°

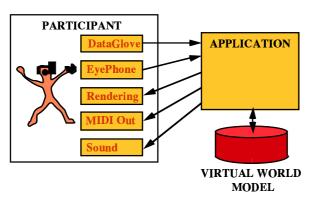
A Virtual Reality Cookbook

VB₂

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

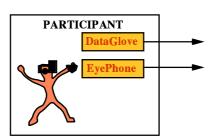
The VB2 System


Goals

- Provide a basis for constructing VR applications
- Allow experimentation of 3D interaction techniques

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

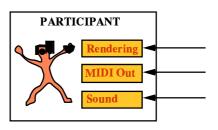


Group of continuously running processes producing and consuming IPC messages

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Input Processes

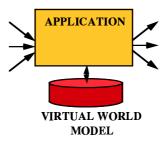

- Encapsulation of input devices
 - DataGlove, SpaceBall, Head Tracker
- Filtering of device data
- Generation of event messages at specified rates

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

64

Output Processes

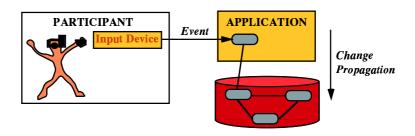


- Encapsulation of output devices
 - Rendering on graphics workstations, MIDI output, playback of prerecorded sound
- Output is triggered by messages from the application process

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Application Process



- · Simulation of the evolution of the synthetic world
 - Immediate response to events from input processes
 - Must ensure world's model coherence
- Providing of interaction metaphors
- · Generation of appropriate sensory feedback

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Interactive Behavior

- The virtual world model is updated in response to events coming from input processes
- A change propagation mechanism is responsible of obtaining a coherent evolution

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

68

Change Propagation

Expressiveness

- should allow the specification of general dependencies between objects
 - multi-way relationships
- should permit triggering of output operations

Efficiency

should ensure the responsiveness of the interface

A Virtual Reality Cookbook

Change Propagation

Constraint Imperative Programming

- Constraints are used to maintain relationships between objects
 - Declarative
- All computation is performed by constraints
 - Assignment is also a constraint
- The evolution of the model is obtained by adding or removing constraints
 - Imperative

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Dynamic Model

Components

- Active Variables
 - store the state of the system
- Hierarchical Constraints
 - declaratively represent multi-way relationships between active variables (introduced in ThingLab II, 1987)
- Daemons
 - react to variable changes for imperatively sequencing between system states

A Virtual Reality Cookbook

Active Variable

Primitive element storing the system state

- · Maintains its value
- · Maintains a lists of dependents
- · Keeps track of its state changes
- · Can maintain the history of its past values

Only constraints can modify a variable's value

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

72

Hierarchical Constraint

Specifies a multi-way relation between active variables

- · Declarative part
 - the set of constrained variables
- Imperative part
 - the set of methods that could be used to enforce the constraint
- Priority
 - defines the order in which constraints need to be satisfied in case of conflict

A Virtual Reality Cookbook

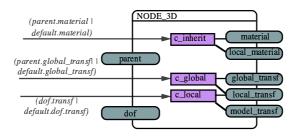
Daemon

Allows the execution of imperative code when a variable changes value

- · Declarative part
 - the set of variables that trigger the daemon's execution
- Imperative part
 - the code that has to be executed when a variable change

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti


Variable Path

Symbolic expression of an active variable's location as a function of other variables

- Example
 - Upper_global_transf:= (parent.global_transf or else Identity_transf)
- Allows the definition of indirect constraints and daemons

A Virtual Reality Cookbook

Dynamic Model

• State: active variables

• Behavior: constraints

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

76

State Manager

Tasks

- Keep the constraint network up-to-date
- Trigger daemon execution
- · Maintain indirect paths and variables' history

A Virtual Reality Cookbook

State Manager

Primitive Operations

- Activation and deactivation of constraints
 - Updating of the constraint graph
- Activation and deactivation of daemons
 - Registering of dependencies

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

State Manager

Constraint Satisfaction

- SkyBlue algorithm (Sannella, 1993)
 - Local propagation

heuristic search of the best constraint graph

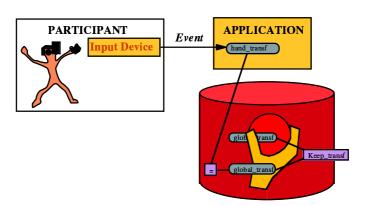
- Method selection purely based on constraint priorities
- Limited to acyclical constraint graphs
- Separate planning and evaluation phases
- · Lazy evaluation

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

78

Model Evolution


Interaction

- Mapping between sensor measurements and actions in the virtual world
- · Defined using constraints and daemons

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Direct Model Manipulation

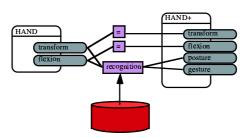
• Interaction constraints relate sensors' active variables to variables in the model

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

30

Adaptive Pattern Recognition


Enhances data coming from sensors with classification information

- The mapping is learned from examples
- Increases device expressiveness
- The mapping can be adapted to preferences of the user

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Augmented Device Interface

· The adaptive pattern recognizer is a constraint

A Virtual Reality Cookbook

Recognition Techniques

Recognition steps

- Preprocessing
 - Filtering, accumulation
- · Extraction of a feature vector
 - Features reduce variability within a class and enhance separation between classes
- Classification
 - Comparison with examples: parametric and non-parametric statistical classification, neural networks

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Hand Gestures

Hand posture and gesture recognition

- Important mean of non-verbal communication
- Allows the simultaneous specification of categorical and quantitative information

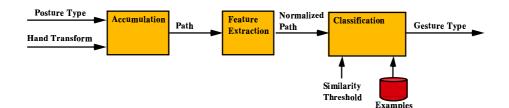
A Virtual Reality Cookbook

Finger Flexion

Classification

Posture Type

Similarity
Threshold


Speed
Threshold

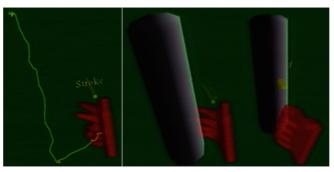
• A posture is a stable hand configuration

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Hand Gesture Classification

 A gesture is a path of the hand done while maintaining the fingers in the same posture


A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

06

85

Hand Gesture Examples

Creating a cylinder by gestural input

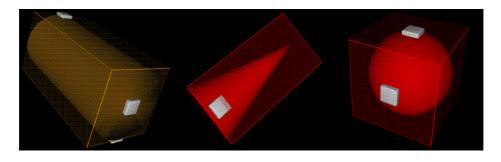
Grabbing the cylinder through posture recognition

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

88

Motivation


- Gestural input and direct manipulation
 - Partial solutions to the interaction problem
 - Participant must know what can be manipulated and how to manipulate it

Virtual Tools

- · Mediator objects
 - Help understand a model's behavior and interaction metaphors
 - Present a selective view of model's information
 - Offer the interaction metaphor to control it

A Virtual Reality Cookbook

Virtual Tools

First class objects

Encapsulation of visual appearance and behavior

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

90

Visual Appearance

Goals

- Provide information about the tool's behavior
- Offer visual semantic feedback during manipulation

Representation

· Articulated structure

A Virtual Reality Cookbook

Behavior

Goals

- Maintain consistency between visual appearance and manipulated information
- Allow information editing through a physical metaphor

Representation

• Internal constraint network

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

Virtual tools

Multiple tools

- Manipulation of different parts of model's information
- Manipulation of same parts of model's information with different interaction metaphors

A Virtual Reality Cookbook

Virtual Tool Protocol

- Binding
 - Bound active variable

References the manipulated model

- Binding constraints

Multi-way relations

Use indirect path to reference model's variables

- Second order control
 - ensure simultaneous activation/deactivation of binding constraints

Information display

TOOL

bound.v₁

v₁

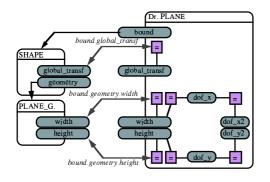
v₂

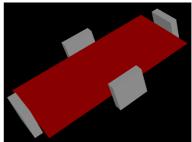
bound.v₂

Information control

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti


Manipulation


Physical metaphor Elementary manipulations

- Gestural input
 - initiate and terminate manipulation
 selection/deselection of tool's parts
 activation/deactivation of a motion control constraint
- Information transformation
 - Device sensor values propagate through the tool's constraint network
 - Participant's motion results in model's information changes

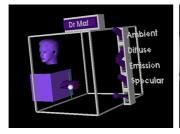
A Virtual Reality Cookbook

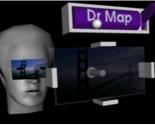
Example of Tool: Dr. Plane

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

96


Composite Tools


Tool's composition

- Definition of more complex tools
 - reuse of abstraction
- Enforce interface consistency
 - rapid perception of possible actions

A Virtual Reality Cookbook

Examples of Composite Tools

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti

V_B2

Implementation and results

- Object-Oriented, written in Eiffel, composed of more than 500 classes
- Runs on Silicon Graphics workstations
- Complex applications with thousands of variables and constraints can run at interactive speeds

A Virtual Reality Cookbook

Back To The Future

"The ultimate display would, of course, be a room within which a computer can control the existence of matter. (...) With appropriate programming such a display could literally be the Wonderland into which Alice walked".

• Ivan Sutherland, The Ultimate Display, 1965.

A Virtual Reality Cookbook