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ABSTRACT

The newest three-dimensional input devices, together with high speed graphics workstations, make it
possible to interactively specify virtual camera motions for animation in real time. In this paper, we
describe how naturalistic interaction and realistic-looking motion can be achieved by using a physically-
based model of the camera's behavior. Our approach is to create an abstract physical model of the camera,
using the laws of classical mechanics, which is used to simulate the virtual camera motion in real time in
response to force data from the various 3D input devices (e.g. the Spaceball, Polhemus and DataGlove).
The behavior of the model is determined by several physical parameters such as mass, moment of inertia,
and various friction coefficients which can all be varied interactively, and by constraints on the camera's
degrees of freedom which can be simulated by setting certain friction parameters to very high values. This
allows us to explore a continuous range of physically-based metaphors for controlling the camera motion.

We present the results of experiments with several of these metaphors and contrast them with existing ones.
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1. INTRODUCTION

Specifying virtual camera motion is an important problem in a number of different computer graphics
areas. Animation, scientific visualization, CAD and virtual environments all make considerable use of
virtual camera motion in a three-dimensional environment (Brooks et al (1986), Baum et al (1990),
Magnenat-Thalmann and Thalmann (1986), Shinagawa et al (1990) ). Computer animation in particular,
was quick to take advantage of the visual impact (and ease of programming) of complicated camera motions
through relatively static scenes. This was, and still is, the basis for much of the commercial computer
animations produced. In scientific visualization, CAD, and virtual environments applications, virtual

camera motion is often the most important form of three-dimensional interaction (Watson (1989)).

Now, with the existence of graphics workstations able to display complex scenes containing several

thousands of polygons at interactive speed, and with the advent of such new interactive devices as the



Spaceball, Polhemus 3Space, and DataGlove, it is possible to create applications based on a full 3D2
interaction metaphor in which the specification of the camera motion is given in real-time. For example, in
a virtual environment application the camera becomes the virtual "eyeball" with which the user inspects the
virtual reality; in architectural CAD applications, the user has the ability to walk through virtual buildings
and inspect them from any angle; in computer animation systems, the animator can specify the camera
motion for a scene interactively in real time; for scientific visualization, large multi-dimensional data sets

can be inspected by walking through 3D projections.

In such systems, camera control is a key technique which must be as natural and intuitive as possible so
that the user is no longer conscious of it and can concentrate on the application task. In fact, interactive
camera control might be thought of as a critical component in establishing a new 3D user-interface metaphor
which will do for the 3D workstation what the desktop metaphor did for the 2D workstation.

However, the relationship between device input and virtual camera motion is not as straightforward as
one might think. Usually, some sort of mathematical function or "filter" has to be placed between the raw
3D input device data and the virtual camera viewing parameters. This filter is usually associated with some
sort of real-world metaphor such as "flying vehicle" metaphor, or "eyeball-in-hand" metaphor (Ware and
Osborne 1990). Several recent papers have proposed and compared different metaphors for virtual camera
motion control in virtual environments using input devices with six degrees of freedom (Ware and Osborne
1990, Mackinlay et al 1990). These metaphors are usually based on a kinematic model of control, where

the virtual camera position, orientation, or velocity is set as a direct function of an input device coordinate.

One way to obtain more appealing motions in computer animation is to shift from a kinematic to a
dynamic model. Recent publications describe how very naturalistic motions for animation can been
obtained using physics-based models of rigid and flexible bodies (Terzopoulos and Platt (1989), Hahn
(1988)). Although these models are usually extremely CPU-intensive, it is possible to use certain simplified
models which can be calculated in real-time for 3D interaction. This can lead not only to improved
interaction techniques, but may also shed light on the intuitiveness of physically based models. One such
physical model that we propose is an interactive camera control metaphor based on physical modeling of the
virtual camera, using forward dynamics for motion specification. This model is motivated by several

hypotheses:

* the interaction is natural because humans are used to physical "Newtonian" behavior

* the movements have a natural look for the same reason

* itis a general parametric model so that a continuously variable set of behaviors can be obtained by
varying the parameters

* the parameters have physical meaning and are easy to understand

In this paper we present a physical description and mathematical derivation of the physical camera
model. We then give our subjective impressions of the interactive "look and feel" of the model with

different parameter settings using the Spaceball as an input device. We then give some examples of how



this model could be used to aid interactive camera motion in a specific domain. Finally, a description of the3

numerical technique and implementation on a Silicon Graphics Iris workstation is given.
2. THE PHYSICAL MODEL

Like all physically-based modelling in computer graphics, the physical camera model is motivated by the
assumption that human beings are best-equipped to deal with environments that resemble the natural world.
In our case, since we are using video display terminals for visual input, the "natural world" is, we propose,
the world of film and video imagery. The natural virtual camera model is therefore most appropriately a

real movie camera held by hand or mounted on some type of device for controlling camera motion.

Although there exist a variety of machines and vehicles used by the film industry for controlling camera
movement, and it would obviously be possible to physically model all of these, the large number of camera
movements in the "real" film/video world are created by one or more cameramen moving a mounted camera
by hand. Therefore, we have chosen to model an idealized real-world camera which is manipulated by a
human being who exerts forces and torques on it. In this case, the behavior of the camera--the virtual
camera metaphor--is determined by the mechanical properties of the camera. These properties can then be

considered the parameters of our parametric virtual camera model.
2.1 The Parametric Camera Model

Although real cameras and mounts are complicated mechanical devices, their motions are determined for
the most part by a few simple gross physical properties. Therefore, we have constructed an idealized
physical model consisting of a single rigid body attached to a massless camera mount. The camera mount
consists of three gimbals and three rails, one in each of the x, y, and z local coordinates, resulting in three
Cartesian and three rotational degrees of freedom. Each of the gimbals and rails exerts friction and elastic

forces on the camera.

The important mechanical properties of this model which affect its motion are its mass, its moments of
inertia, and the coefficients of friction and elastic forces imposed by the camera mount. The mass
parameter specifies the amount by which the various forces will change the camera's linear velocity over
time. The moment of inertia parameters affect, in an analogous way, the camera's response to the various
torques. Usually a real camera's degrees of freedom are constrained in some geometrical way. For
example, it may be placed on a dolly or a railway or tripod, constraining its linear motion to two, one and
zero dimensions respectively. Likewise, the angular degrees of freedom may be restricted in one, two, or
three axes by locking the gimbal bearings on the camera mount. Friction forces tend to reduce the linear
and angular velocity of the camera over time and to oppose the applied forces and torques. There are
several types of phenomenological friction forces used by physicists to model the dissipation of kinetic
energy. We have found two, viscous friction and static friction, to be useful in our model. Viscous
friction is proportional and opposite to the direction of motion, bringing the camera eventually to rest.

Static friction is a constant force opposing the applied force, active only when the camera is at rest or below



a threshold velocity. Although real camera mounts usually try to minimize vibrations, we have found it4
useful to add an elastic parameter, in the form of a Hookian spring, to each degree of freedom. This
elasticity is only important when the camera is at rest (i.e. static friction is active) and results in a more

naturalistic transition from the static state to the dynamic state and back.
2.2 Motion Under External Driving Forces and Torques

Fortunately, the simplified camera model is quite easy to analyze physically and, from the point of view
of classical mechanics, is a well understood problem (Feynman et al (1963)). The general motion of a rigid
body such as a camera can be decomposed into a linear motion of its center of mass under the control of an
external net force and a rotational motion about the center of mass under the control of an external net

torque.

Fig 1: The virtual camera driven by a force and a torque



2.2.1 Linear Motion
The linear motion under a total net force F can be computed by solving the differential equation

x=F
m

ey
where m is the mass of the camera and X the position vector of its center of mass.

To compute the total net force F we have to take into account the driving force Fq and the forces that are

generated by all the various frictions Ff.
When the camera is moving at a speed below a given threshold velocity vg and the driving force is

smaller than a specified limit Fg, we consider that the camera is in a static situation and that the frictions are

caused by the springs that are present in the camera mount. Therefore we have
Fe= kVSX +kss(X 'Xo) )

where X is the position where the camera first entered the static situation, kyg is the damping factor of

the springs and kg the spring constant.

When we are at speeds higher than vg or the driving force is bigger than Fg, we consider the dynamic

situation, where the frictions are mainly viscous. In that case we have

Fe= kX 3)

where kyq is the viscous friction coefficient.

It is useful to control the behavior of the camera separately for each of its principal axes. For this
reason, the equations will be solved by projecting them onto the body-fixed reference frame, and a different
value of the friction parameters will be specified for each one of the local axes.

2.2.2 Angular Motion

The rotational dynamics is expressed in a body-fixed reference system by the equation

Ié + 6 X (IG) =Ty 4)
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where 0 is the orientation of the camera expressed using Euler angles, I is the moment of inertia tensor
of the body and is constant in the body-fixed reference frame, and Tq is the total net torque applied to the

camera.

The modeling of the friction is analogous to the translational case. We can define wg to represent the
threshold angular velocity and Tg to represent the threshold torque. In a static situation the friction torque
Tris given by

Tf = kvs-rote + kss-ro(e -6 0) 5)

where 0O¢ is the orientation where the camera first entered the static situation, kyg.rot is the damping

factor of the springs and kgg 1ot the spring constant.

In the dynamic case we have
T¢=kygrod (©6)
where kyd_rot i the viscous friction coefficient.

As for the translational case, it is useful to control the behavior of the camera separately for each of its
principal axes, and a different value of the friction parameters will be specified for each one of the local

axes.
3. THE PARAMETERS

The behavior of the virtual camera in response to user actions is completely specified by the parameters
of the physical model of the camera. A different value of the friction parameters can be specified for every
dimension in the reference frame attached to the camera. By this means we provide an easy and intuitive
way for controlling the behavior of the model separately for each of the six degrees of freedom of the

camera and several interesting camera motions or "camera metaphors" can be specified.
3.1 Mass and Inertia Tensor

The camera mass parameter determines the degree of acceleration control by the user. If all other
parameters are set to zero, the camera maintains a steady velocity and changes its velocity only in response
to user input, resulting in a pure acceleration control metaphor. Higher mass results in a smoother, more
continuous motions and a higher degree of acceleration control, although it also makes it more difficult to
bring the camera to rest at a given location. A high mass parameter is useful in situations where a smooth
camera motion is desired, or where continuous motion is wanted with minimal input from the user, for

example, tasks such as surveying a large scene or moving along a straight path.
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In an analogous way, the inertia tensor determines the degree of torque control by the user over the
camera orientation. A large inertia tensor results in smooth panning and tilting motions. This is often
desirable because jerky camera rotation can be disorienting. Without a correspondingly high rotational
friction parameter, however, it can be difficult to stop the camera from rotating. This is usually much more
disorienting than the analogous translational situation. High inertia tensors are useful for the same sorts of
tasks that high mass parameters are useful for: slow steady examination of a large scene. For more precise

control up close to objects, a lower inertia tensor is preferable.

3.2 Viscous Friction Coefficient

The viscous friction parameter specifies the degree of velocity control. If the other parameters are set to
zero, the camera metaphor becomes a pure velocity control one. Velocity control is useful for tasks where
quick stopping and changes of direction are necessary, such as avoiding obstacles or inspecting objects up
close. A typical application where a high viscous friction coefficient would be useful is a three-dimensional
modeler. One problem with high viscous friction camera metaphors is that the camera motions are not
usually very smooth and the user must give continuous input while the camera is moving. For many
interactive tasks, this is not a problem. For other tasks, for example an architecture walk-through
application, a suitable combination of velocity and acceleration metaphors can be formed by adjusting

various amounts of the mass and viscous friction parameters.

The rotational analog to the viscous friction coefficient is the rotational viscous friction coefficient,
which determines the amount of angular velocity control. Angular velocity control is particularly useful
because of the need to stop camera rotation quickly. The balance between the moment of inertia and the
rotational viscous friction coefficient determines the smoothness of camera panning motions, and many

real-world camera mounts have adjustable angular viscous friction controls.

3.3 Threshold Force and Velocity

A small static friction parameter establishes a threshold force below which the camera will stay
stationary. A small threshold velocity provides a breaking force that brings the camera to rest more rapidly
than the viscous friction forces. This can be useful for tasks in which the user wants to alternate between
motion along different degrees of freedom. For example, moving the camera along only one axis at a time
is easy as long as the threshold force is not exceeded in the other axes. Likewise, a task that involves
hopping to a fixed location, looking around in different directions without moving, then hopping to the next

location, is much easier with a small amount of static friction.

By setting the static friction parameter extremely high, its possible to, in effect, lock a particular degree
of freedom, resulting in a constrained motion. For example, by locking one of the rotational degrees of
freedom, the camera is forced to always maintain the same "up" direction, and by locking one of the

translational degrees of freedom, the camera is forced to move in a plane. This could be useful in an



architectural walk-through application to simulate a walking person's point of view. Locking the Vertical8

and horizontal translational degrees of freedom results in a flying-vehicle camera metaphor.
3.4 Static Behavior: Damping Factor and Spring Constant

The spring constant and damping factor parameters control the vibrational behavior of the camera mount
when it is in the static state. A small amount of damped vibration smooths out the jerkiness in the transition
between dynamic and static states. It also provides a small degree of position control feedback while the
camera is in the static state. In this way, a small applied force will move the camera slightly, but it will pop
back to its rest position. A larger force, above the static friction threshold, will set the camera in motion.
This allows the user to get an idea of what direction an applied force will act in before actually moving the
camera's position. If the static friction parameter is set extremely high, then the camera becomes locked in
the static state and a position control camera metaphor results. Finally, if the damping factor is set low, a

genuinely bouncy camera motion can be created. This can be used to simulate a hand-held camera motion.
4. CONTINUOUS VARIATION BETWEEN DIFFERENT BEHAVIORS

It is generally accepted that no one particular type of camera motion or camera control is appropriate for
all tasks (Ware and Osborne 1990). For example, in a scene editor application, the user might require
acceleration control for moving rapidly and smoothly as he surveys the overall organization of the scene,
while the task of inspecting and moving an individual object in detail, where the camera viewpoint is close

to the object, might require more precise velocity control.

Unfortunately, genuinely useful tasks often require a combination of metaphors or a sequence of
alternating metaphors. A common way to deal with this is to allow the user to continually change camera
control metaphors by swapping through the different interaction modes. Modes can be changed by selecting
menus, striking keys or mouse buttons. There are two problems with this technique. First it is obviously
inconvenient and unnatural to continually change modes. The user has to stop performing his task to swap
computer and mental modes. After a while, this can be distracting and will often inhibit the user from
changing metaphors until the current one becomes really impracticable. Secondly, it is not necessarily true
that there are only a finite number of discrete useful metaphors. There are, in fact, a lot of inbetween

situations where no pure metaphor suits the task best (Mackinlay et al 1990).

The parameterized physical camera model provides a solution to this problem by giving us a way to
control the camera behavior through its parameter values. For a given task, the user can experiment with
the camera metaphor and tune the parameters interactively, through valuators, until a subjectively "best" set
of parameters is found. These parameters can then be saved and restored, either automatically or by the
user, whenever that particular task is encountered. Alternately, the user can interactively control certain
camera parameters while he is performing his task. For example, a mouse button or foot pedal can be set to

momentarily increase the amount of viscous friction, acting as a kind of break.



Ideally, however, the user should only be required to use a minimum of input and should not have to be9
overly aware of the camera metaphor at all. This can be achieved by having the application adjust the
camera control parameters algorithmically as a function of position or some aspect of the task at hand. This

is potentially the most powerful use of the parametric camera model.

For example, we have experimented with creating a scalar viscosity field within a scene such that the
camera viscous friction parameter increases in the vicinity of objects. This results in a camera metaphor that
continuously varies from mainly acceleration control when the camera is far away from objects, to mainly
velocity control when the camera is close to an object. In this way, the camera's behavior varies as a

function of its distance from to objects.

Fig 2: Exploring a scene
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Fig. 3: Inspecting an object

5. IMPLEMENTATION

Our dynamic camera control system is implemented on a Silicon Graphics Iris workstation in C using an
object-oriented style of programming, on top of the Fifth Dimension 3D interaction toolkit (Turner et al
1990). In addition to the typical sorts of 3D classes, such as lights, hierarchical models and cameras, the
toolkit abstracts every input device as an instance of an input device class. These input device objects

communicate their data through a uniform event message protocol.
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The interface between the Input Device objects and the Camera object is implemented by a Camera
Controller object. This object receives events from input devices, interprets the data according to a
particular camera metaphor, and updates the camera object's position and orientation accordingly. Since
our Camera controller involves a dynamic simulation, it also receives tick events from a Clock object at

regular time-step intervals.

One of the advantages of this kind of software architecture is that various other devices, such as the
Polhemus 3D, can be interchanged with the Spaceball as input to the Camera Controller. The use of this
kind of devices is essential for providing an intuitive way of controlling the dynamic camera. Obviously,
pressure-sensitive input devices are usually more appropriate because they provide a passive form of
"force-feedback". In our case, the device that gave the best results is the Spaceball. Also, different types of
Camera controllers with different behaviors can be swapped in and out, and the same controllers can be

used to control Light objects or hierarchical models.

Clock
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Raw Input

Virtual
SpaceBall N\ Force
Device Torque

. from device

SpaceBall Physical | v sformation
Model
Controller
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Raw Input  [Virtual Torque
—| Polhemus
from device | peyice
Polhemus
Digitizer

Fig. 4: Event communication diagram for camera controller

6. CONCLUSIONS AND FUTURE WORK

We believe that the physically-based camera control model provides a powerful, general-purpose
metaphor for controlling virtual cameras in interactive 3D environments. Because it is based on a real
camera model, it is natural for the user to control. Its parameters are physically-based and, therefore, easy
to understand and intuitive for the user to manipulate. Its generality and control parameters make it

configurable to emulate a continuum of camera behaviors ranging from pure position control to pure



acceleration control. As it is fully described by its physical parameters, it is possible to construct more
sophisticated virtual camera control metaphors by varying the parameters as a function of space, time,
application data or other user input. Also, when used with force-calibrated input devices, the camera
metaphor can be reproduced exactly on different hardware and software platforms, providing a predictable

standard interactive "feel".

We are currently working on extending our model to specify camera paths for computer animation.
Currently, the interactive camera metaphor permits the generation of position, orientation and acceleration
information simultaneously along a path. For animation purposes, it is possible to record this camera
motion and then edit it interactively by replaying and selectively re-recording parts of the input data. For
example, on the first pass we might be happy with the recorded position path, but not with the camera

orientation. Therefore, on the second pass we can re-record only the orientation information.

We are also continuing to explore different kinds of algorithmic control of the camera parameters by
creating various types of parameter fields within the scene space, and we are planning to use the dynamic
model approach for other kinds of interactive tasks such as modeling, assembling, and specifying the
animation of different kinds of objects.
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APPENDICES

A. MOMENT OF INERTIA TENSOR

The rotational equivalent of the mass is the moment of inertia tensor I. It can be represented by a three-

dimensional symmetric matrix whose elements are given by (Feynman, 1963):
f ( 2 2)

+2z)dm
f x*+y’)
I=- f xy dm

yZ=IZy=—f yz dm
I, =1 =—f xz dm

M

(A1)

The diagonal elements of this matrix represent the moment of inertia of the body, and the non-diagonal
elements represent the products of inertia of the axes. When the reference frame where the moment of
inertia is specified corresponds with the principal inertia frame, all the products of inertia are null, and I
becomes a diagonal matrix. In such conditions the equation of rotational motion (number (4) in the text )

simplifies to the well known Euler equations (Feynman, 1963):

1,0+ (L,- yy)ee =T,
I+ (s-1,00,9,=

1,0, +(Lyy Ixx)ey X_TZ (A2)

We approximate the camera model with a rectangular box of homogeneous distribution with dimensions

dy, dy, and d, to obtain the values of the moments of inertia:

m(, 2 2
IXX—12 d, +dz)
m(, 2 2
Iyy—12 d, +dz)
m(, 2 2
IZZ—12 d, +dy)

(A3)
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B. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

To simulate the behavior of our virtual camera, the equations describing its motion in response to the
external driving forces and torques have to be integrated through time. If we project these equations on the
local axis, we obtain six ordinary scalar differential equations of the second order, under the assumption
that equations A2 can be linearized by considering their second term piecewise constant. These equations

are of the form:

ax + bx + cx + d = f(t) (B1)

Although an analytical solution exists for many of the forms of this equation, the driving function in this
case is not analytic but rather strictly data-driven, being the instantaneous user force or torque input over

time. Therefore we must use a numerical method to find the solution.

To solve the equation, time is subdivided into equal time steps At. We use the second order accurate

approximations

L1 )
Xy = —{Xppar- 2X¢+ Xt-At)
At

Xt= JpUCtAL” Xt-At) (B2)
that we substitute into equation (1) to find the explicit integrator:
2 2 2 At
At f - At d- x1-2a + CAt ) -xt_m(a - 2b)
X =
t+At At
a+5b
2 (B3)

This explicit procedure evolves the dynamic solution from given initial conditions xq and x_.1. The
current and the previous value of x are used to solve for the value at a small time At later. No oversampling
is necessary, because the precision required is not high (the user interacts with the solver), and At
represents the time increment between displayed frames. Our current implementation allows us to have an
interactive display rate (more than 10 Hz) on a Silicon Graphics Iris 4D/80 with fully shaded scenes
containing up to two-thousands of polygons. The time spent for the dynamic computations is negligible

with respect to the redraw time.
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