
The Visual Computer manuscript No.
(will be inserted by the editor)

View-dependent Exploration of Massive Volumetric Models on Large
Scale Light Field Displays

José Antonio Iglesias Guitián · Enrico Gobbetti · Fabio Marton

Received: February 2, 2010 / Accepted: March 19, 2010

Abstract We report on a light-field display based virtual

environment enabling multiple naked-eye users to perceive

detailed multi-gigavoxel volumetric models as floating in

space, responsive to their actions, and delivering different

information in different areas of the workspace. Our con-

tributions include a set of specialized interactive illustrative

techniques able to provide different contextual information

in different areas of the display, as well as an out-of-core

CUDA based raycasting engine with a number of improve-

ments over current GPU volume raycasters. The possibilities

of the system are demonstrated by the multi-user interactive

exploration of 64GVoxels datasets on a 35MPixel light field

display driven by a cluster of PCs.

1 Introduction

Volumetric datasets are growing at incredible rates in terms

of number and size, resulting in two challenges: maintaining

performance and extracting meaningful information. These

two challenges are closely related, since user interaction,

which imposes real-time constraints, is a key to volumet-

ric understanding. In the last few years, GPU accelerated

methods have emerged as a viable solution for achieving

real-time performance on moderately sized datasets. Recent

results on out-of-core techniques [8,6] have shown how to

extend these results to datasets of potentially unlimited size.

The images produced by such techniques are impressive,

but often contain many overlapping structures, leading to

cluttered depiction of shape information. As a result, vol-

ume rendering images are often hard to interpret. Enhancing

depth and shape perception in volumetric rendering is thus

Visual Computing Group, CRS4, Pula, Italy –

http://www.crs4.it/vic/

a very active research area, which is tackled under many an-

gles. In this paper, we report on an illustrative multiresolu-

tion volume rendering system capable to interactively drive

large multi-projector light field displays offering continu-

ous horizontal parallax in a room-size workspace. Our con-

tributions include: a virtual environment enabling multiple

naked-eye users to perceive detailed multi-gigavoxel mod-

els as floating in space and responsive to their actions; a

set of interactive illustrative techniques able to provide dif-

ferent contextual information in different areas of the dis-

play; an adaptive out-of-core CUDA rendering engine with

a number of improvements over current GPU volume ren-

derers and integrated within a cluster-parallel system. The

approach delivers 3D visualizations of unprecedented qual-

ity, which enhance volumetric understanding, especially in

the presence of depth-oblivious rendering techniques.

Fig. 1 Multi-user interactive exploration of a 64Gvoxel dataset

on a 35Mpixel light field display. Users freely mix and match 3D

tools creating view-dependent illustrative visualizations. Objects ap-

pear floating in the display workspace, providing correct parallax cues

while delivering direction-dependent information.

2 Related work

Our system extends and combines state-of-the-art results in

a number of technological areas. In the following, we only

discuss the approaches most closely related to ours.

Rendering for multi-projector light field display. The dis-

play hardware employed in this work is based on commer-

2 José Antonio Iglesias Guitián et al.

cially available technology developed by Holografika1. Our

image generation methods take into account the display char-

acteristics in terms of both geometry and resolution of the

reproduced light fields. In particular, we extend a multiple-

center-of-projection technique [12,2] with a depth compres-

sion factor. We use the common sort-first parallel render-

ing approach, but rely on an adaptive out-of-core GPU ren-

derer rather than fully replicating data across render nodes.

The assignment between rendering processes and images is

static, even though load balancing strategies based on image

partitioning could be implemented on top of our framework

(e.g., [16]).

GPU accelerated out-of-core volume rendering. GPU vol-

ume rendering is a well established approach (see, e.g., a re-

cent survey survey [18]). Most modern techniques perform

full ray traversal on the GPU. In this context, large vol-

ume data is handled by compressing it using adaptive tex-

turing schemes to fit entire datasets into GPU memory [22],

or by using flat [14] or hierarchical [8,6] multiresolution

structures in conjunction with adaptive loaders. Our method

builds on the ability to rapidly traverse an octree structure,

and is based on the stackless ray traversal method for kd-

trees [9,17], recently adapted to GPU volume rendering [8].

In this paper, the method is extended to support preintegra-

tion, a more flexible marching and compositing engine, and

adaptive view-dependent blending among multiple levels of

details. In addition, our CUDA algorithm better takes ad-

vantage of visibility information gathered during traversal

to avoid loading occluded data. The scheme of Gobbetti et

al. [8] is based on occlusion queries, scheduled so as to re-

duce end-to-end latency. Crassin et al. [6] exploit multiple

render targets to store a subset of the traversed nodes for

each pixel. Spatio-temporal coherence has to be exploited to

try not to miss visible nodes. Instead, we take advantage of

the scatter memory write capability of CUDA threads to the

visibility of all rendered octree blocks.

Reducing image generation costs. We improve rendering

performance by reducing the amount of pixels fully recom-

puted at each frame. The methods employed are similar in

spirit to classic methods such as adaptive frameless render-

ing [7]. In our case, however, we do not rely on random

or error driven sparse pixel sampling, but we group pixel

batches in sub-frames aligned on a quincunx lattice, in order

to avoid destroying neighboring ray coherence. Our method

also bears a number of similarities with interleaved sam-

pling [20,23,10], which reconstructs a smooth approxima-

tion of some shading component from an estimate based on

a subset of the pixels.

Illustrative visualization. Our flexible renderer employs both

photorealistic and illustrative techniques. The accumulation

1 www.holografika.com

scheme is similar to MIDA [4], even though we accumu-

late importance rather than intensity. The usage of an im-

portance transfer function has also been advocated by Vi-

ola et al. [21]. In order to deal with high frequency transfer

functions, we employ preintegration for all attributes, rather

than only for colors as is usually done. Similarly to [13], we

use extinction-weighted colors and reconstruct opacity on

the GPU, but we employ a numerically stable approach with

small memory requirements. Our tools bear a number of

similarities with previous context-preserving techniques [3,

15], but extend them with view-dependent effects tuned for

3D displays.

3 Virtual environment overview

Our integrated system enables multiple naked-eye users to

perceive detailed multi-gigavoxel models as floating in space,

responsive to their actions, and providing different informa-

tion in different areas of the workspace. The system con-

cept is illustrated in Fig. 2. Presented images combine ray-

traced volumetric data with rasterized surface-based infor-

mation, such as labels or user interface tools. Visualization

is both view-dependent and view-specific. In this system,

which naturally supports multi-user discussion, much of user

interaction is replaced by simple, natural head motions, re-

ducing interface complexity and user burden. We improve

over recent work in this area [2,1] by proposing a set of

specialized illustrative techniques based on a flexible com-

positing engine and designed to exploit the view-dependent

characteristics of the display to provide different contextual

information in different viewing areas.

The light field display used in this work is based on pro-

jection technology and combines a holographic screen with

a specially arranged projector array driven by a PC cluster.

By appropriately modeling the display geometry, the light

beams leaving the various pixels can be made to propagate

in specific directions, as if they were emitted from phys-

ical objects at fixed spatial locations. As is the case with

other multi-screen displays, we use a distributed image gen-

eration system implemented on a cluster, with a front-end

PC coordinating many rendering back-end PCs. The front-

end PC is connected to 3D input devices and manages the

user-interface, which supports, in addition to the standard

viewing operations, specialized view-dependent volume ex-

ploration tools (see Fig. 1 and Sec. 4). The system uses a

sort-first parallel rendering approach, in which each back-

end PC is responsible only for the images associated to the

connected projectors. Even though in principle it is possi-

ble to use, for maximum performance, one PC per projector,

benefit/cost analysis leads to a configuration in which mul-

tiple projectors are controlled by a single PC using multiple

View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays 3

Fig. 2 Virtual environment concept.

Presented images combine ray-traced

volumetric data with rasterized surface-

based information, such as labels or user

interface tools. Visualization is both

view-dependent, since it provides full

parallax, and view-specific, since it de-

livers different information in different

areas of the workspace.

graphics boards. Each back-end process controls a frame-

buffer portion, and is capable to overlay a standard OpenGL

rendered image, e.g., for 3D GUI objects, on top of a vol-

ume rendered image. Partitioning images rather than data

simplifies the use of an unrestricted rendering kernel. This

approach is feasible even when rendering massive models,

since our out-of-core single pass volume raycaster with visi-

bility feedback provides output-sensitive performance through

occlusion culling and levels-of-detail. Thus, by controlling

image size we also control data complexity. Scalability is en-

sured by a CUDA multiresolution rendering engine which

builds on and improves over state-of-the-art massive volu-

metric renderers [8,6] (see Sec. 5).

4 Illustrative rendering for the light field display

The view-dependent characteristics of the display can be ex-

ploited to develop specialized interactive illustrative tech-

niques designed to improve spatial understanding. With such

techniques, simple head motions can reveal new aspects of

the inspected data. In the following, we will first describe

the overall traversal and compositing framework, based on

a depth oblivious technique, and then illustrate examples of

techniques that can be implemented in our framework by

defining appropriate “color enhancers” associated to tools

manipulated with a 3D cursor. As we will see in Sec 5 and

Sec. 6, thanks to the performance and flexibility of our sys-

tem, these techniques can be also freely mixed and matched

within a single interactive application.

Fig. 3 Light field display projection. Left: we smoothly transition

from standard single view perspective rendering (with η = 0) to full

horizontal parallax (with η = 1). Right: the display has a depth-

dependent spatial resolution determined by Φ .

Projecting graphics to the display. Following [12,2], we

employ a multiple-center-of-projection technique for gen-

erating images with good stereo and motion parallax cues.

We have extended the approach by introducing a multi-view

factor which enables us to optionally compress depth ranges

to fit large scenes within the display workspace. Our tech-

nique is based on the approach of fixing the viewer’s height

and distance from the screen to those of a virtual observer in

order to cope with the horizontal parallax only design. We

assume that the screen is centered at the origin with the y

axis in the vertical direction, the x axis pointing to the right,

and the z axis pointing out of the screen. Given a virtual ob-

server at V, the ray origin passing through a point Q is then

determined by:

O = ((1−η)(Vx)+η(Ex +
Qx −Ex

Qz −Ez
(Vz −Ez)),Vy,Vz)) (1)

where E is the position of the currently considered projector,

and η is a interpolation factor, which allows us to smoothly

transition from standard single view perspective rendering

(with η = 0) to full horizontal parallax (with η = 1). In the

latter case, the solution is exact for all viewers at the same

height and distance from the screen as the virtual observer

and proves in practice to be a good approximation for all

other viewing positions in the display workspace. When 0≪

η < 1, the 3D effect persists and the visible depth range of

the presented images is compressed. This reduces the direct

mapping between real and virtual world, as the image is not

exact for any observer position, but allows us to map large

objects within the restricted display range while maintaining

a 3D effect for better spatial understanding (see accompany-

ing video). Knowing how to compute O for every 3D point

Q allows us to determine where Q should be drawn on a

given projector to produce a perspective correct image using

either a raycaster or a rasterizer. It is also important to note

that the display has a depth-dependent spatial resolution de-

termined by Φ , approximated by s(z) = s0 + 2‖z‖ tan(Φ
2
),

where s0 is the pixel size on the screen surface. We employ

s(z) to determine the level of detail at which volumes have

to be sampled and the amount of blending for MipMapping

by quadrilinear filtering (see Fig. 3 and Sec. 5).

Flexible ray traversal and compositing. Our volume ren-

derer employs scalar transfer functions to associate optical

properties to scalar values. The renderer works with extinc-

tion weighted colors, and we thus have a transfer function

4 José Antonio Iglesias Guitián et al.

τ(s)∈ [0,∞[for the extinction coefficient and a transfer func-

tion c(s) for the color, that has to be multiplied by τ(s) to

yield an actual color intensity k̃(s) = τ(s)c(s) for a given

scalar value s. In addition, we have a transfer function ι(s)∈

]0,1[for the importance of scalar value s, and ν(s) ∈]0,∞[
for the refraction index. In order to deal with high frequency

transfer functions, we use a preintegration based technique.

In our approach, each transfer function is stored in a 2×N

2D texture. The first row of the texture contains a look-up

table for a function f (s), while the second row stores a look-

up table for the function F(s) =
∫ s

0 f (s)ds, f being one of

the functions τ, k̃, ι ,ν . We actually maintain a 4-components

texture for k̃(s),τ(s), and two 1-component ones for ι(s) and

n(s).

Fig. 4 Continuous refraction. With refraction enabled (right), ray di-

rection is changed at each integration step according to Snell’s law, and

fine details in transparent objects become visible. The view-dependent

effect is evident when seen on the light field display.

The final color for each pixel is computed by performing

compositing operations while following a view ray r = O+

tv, where the origin O and direction v are computed using

Eq. 1. At each integration step i, we consider a segment of

length di along r, sample the scalar texture at the end of the

segment to retrieve a scalar si = s(ti), and compute each of

the attributes fi we require for compositing by:

fi =

{

F(si)−F(si−1)
si−si−1

if ‖si − si−1‖ > ε

f (si) otherwise
(2)

where si−1 is the scalar value at the beginning of the seg-

ment, which is recorded from a previous step together with

F(si−1), and 0 < ε ≪ 1, e.g., ε = 10−4, is used to detect

constant opacity areas. The overall method is numerically

stable and the main assumption behind it is that the scalar

data s along the small segment is well approximated by a

linear interpolation between si−1 and si. Once the average

attributes for the segment have been computed, the extinc-

tion weighted color k̃i and the extinction τi are transformed

into opacity weighted colors c̃i and opacity αi using the rela-

tion αi = 1−e−τidi . We then compute the gradient ∇si using

central differences at t =
ti−1+ti

2
. As for GigaVoxels[6], we

can exploit multilevel access to the hierarchy (see Sec. 5)

to sample both si and ∇si at multiple levels in the octree

hierarchy, and blend them using quadrilinear interpolation

for continuous filtering. In addition, we employ the multiple

values and gradients for multilevel shading effects, such as

exaggerated shading [5] and normal unsharp masking [19].

Fig. 5 Multilevel rendering. Left: using a single LOD per brick may

lead to discontinuities at brick boundaries, while quadrilinear inter-

polation ensures continuous rendering; Right: Tiny details can be en-

hanced at run time by unsharp masking of the gradient field.

All the computed attributes, the current ray position and

direction, and the material and light properties (ambient,

diffuse, and specular factors, plus shininess exponent) are

then made available to “enhancer” objects, which, much as

shaders in a rasterization pipeline, can freely modify them to

implement a variety of effects (see Sec. 4 for examples). All

the active enhancers are chained together, each receiving the

result of the prior one as input. After the enhancers have pro-

duced their final values, the actual shading and compositing

steps can be performed. The shading step simply takes col-

ors and gradients and computes a shaded color. The accumu-

lation and compositing scheme is similar to MIDA [4], even

though in our case we accumulate importance rather than in-

tensity, leading to a Maximum Importance Difference Accu-

mulation (MImDA) approach. First, we compute the current

importance difference δi = max(ιi − ιmaxi
,0), where ιmaxi

is

the current maximum importance value along the ray. We

then compute βi = 1− γδi, and perform the accumulation

according to the following equation:

[c∗i α∗
i] = [c∗i−1 α∗

i−1]βi +(1−βiα
∗
i−1)[ci αi] (3)

where c∗ and α∗ denote accumulated colors and opacity,

and γ ∈]0,1[is a parameter that allows us to smoothly in-

terpolate from plain volume rendering (with γ = 0) to full

maximum importance difference accumulation (with γ = 1).

When γ > 0, more important content shines through previ-

ously accumulated values. Eq. 3 only differs from standard

DVR compositing by the additional weighting with βi of

previously accumulated colors and opacity. Higher promi-

nence is assigned to local maxima of the importance, let-

ting more important content shine through less relevant ma-

terial (Fig. 6). Since Eq. 3 does not ensure monotonically

increasing opacity, early ray termination criteria must be

revised. We thus estimate the max future opacity delta by

∆α∗
i = 1− (1− γ(ι (tf)

max − ιmaxi
))α∗

i , where ι (tf)
max is the max

importance in the transfer function, and stop when ∆α∗
i < ε .

This reverts to the usual accumulated opacity test for γ = 0.

Our framework permits the creation of specialized interac-

tive illustrative techniques that provide different contextual

information in different areas of the display. The underly-

ing idea is to use the point of view relative to the display as

a variable controlling some aspects of the visualizations. A

simple example, shown in the accompanying video, consists

View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays 5

Fig. 6 Maximum importance difference accumulation. In the left

image, all materials are given the same importance. In the right image,

bone is given a higher importance and thus shines through previously

accumulated material layers.

in adaptively showing different registered layers of informa-

tion by controlling a layer’s opacity as a function of the view

direction. More elaborate examples, discussed below, con-

sist in changing the visualization of the volumetric model to

reveal different information from different view angles.

Clip plane with view-dependent context. Frequently, the

use of clipping planes is the only way to uncover other-

wise hidden details of a volumetric data set or to visual-

ize non-orthogonal slices of the objects. Clip planes, how-

ever, provide most of their information when viewers are

facing them, but offer little insight in most other situations.

In particular, when view direction is parallel to the plane, no

information is provided to the viewer (besides the removal

of a portion of the object). Thus, we propose a formulation

that supports traditional cut away visualization, when our

view direction is orthogonal to the clip plane, while offer-

ing more helpful contextual information in other situations

(see Fig. 7). We compute the distance from the plane δi =
n ∗ xi + p. If the distance is positive, we simple modify the

opacity of samples by multiplying it by a view-dependent

correction factor µi = smoothstep(1−max(0,−n ·v), fl, fh),
where the smoothstep function is a cubic polynomial that

smoothly transitions from zero to one as the view dependent

factor varies between fl and fh. If, otherwise, −δthickness <

δi < 0, we smoothly vary the opacity of the plane and shad-

ing parameters from the original ones at δi = −δthickness to

full opacity and ambient plus emission shading at δi = 0,

emphasizing the tissue sliced by the plane. The other sam-

ples on the back of the plane are left unchanged.

Fig. 7 Clip plane with view-dependent context. As the view be-

comes less and less orthogonal to the plane, more and more contextual

information appears.

Context-preserving probe. Our context-preserving probe

provides a means of interactively inspecting the interior of

a volumetric data set in a feature-driven way which retains

context information (see Fig. 8). Our spherical probe is po-

sitioned in space, and has an associated enhancer, which

modifies sample opacity and color by multiplying them with

two correction factors. Both correction factors have a depen-

dency on two weighting functions, ωd, which is a quadratic

polynomial equal to one on the plane passing through the

probe center and oriented towards the viewer and zero at a

distance from this plane equal to the probe radius, and ωa,

computed similarly to the view-dependent factor of our clip

plane and is equal to one when the probe axis is aligned with

the view direction and quickly goes to zero for other direc-

tions. The opacity correction factor µ
(α)
i and the intensity

correction factor µ
(i)
i are computed by:

µ
(α)
i =

{

lerp(0,ηi,ωd) d < dmax

lerp(ηi,1,1−ωd) d ≥ dmax

(4)

µ
(i)
i =

{

1−ηi d < dmax

lerp(1−ηi,1,1−ωd) d ≥ dmax

(5)

where ηi = ωasmoothstep(ιi
‖∇si‖
∇max

,gl ,gh)(1−
(∇si·v)
‖∇si‖

)4. By scal-

ing opacity by a function of gradient norm, we emphasize

edges within contextual information. Since the gradient is a

bad predictor for the surface normal orientation in nearly ho-

mogeneous regions due to the increased influence of noise,

we filter its magnitude through the smoothstep function, which

smoothly transitions from zero to one as the (rescaled) gra-

dient varies between gl and gh. Scaling gradient norm by the

importance ιi allows us to have edges within less important

tissues fade out quickly. ηi is proportional to the alignment

of both the tool axis and the plane defined by the local gra-

dient with the view direction. Rather flat surfaces that are

oriented towards the viewer will thus fade out in the con-

text region. At the same time, edges will only be visible

if looking straight at the tool, and clutter due to contextual

information can be removed by simple head motions. The

distance-based modulation forces everything to transparent

when entering the probe, and gradually increases the opacity

modulation factor to one on the probe back. Thus, the ma-

terial within the probe becomes less and less opaque with

increasing tool penetration. The effect of the color correc-

tion factor is to perform silhouette darkening in the context

region, while gradually blending to the original material in

the back of the probe.

Fig. 8 Context-preserving probe. Material becomes less and less

opaque with increasing tool penetration. Contextual edges are visible

only if looking straight at the tool (left), and clutter due to contextual

information can be removed by a simple head motion (right).

Band picker. Our band picker provides a means to enhance

the importance of a currently selected band in the transfer

6 José Antonio Iglesias Guitián et al.

function. We assume, as usual, that a band is parametrized

by four ordered values, which define a trapezoid function.

The values delimiting the current band can be determined

by accessing an existing transfer function, or by using a

region growing approach similar to [11]. In addition, the

area within which the modification is applied is made view-

and tool-dependent by weighting the importance and opac-

ity modification by factors proportional to the alignment be-

tween the view direction and the tool main axis (see Fig. 9).

In our band picker, we set the importance of the samples

within the selected band to one, and the importance of other

samples to zero. At the same time, we modulate the opac-

ity of the other bands as a function of the view angle. When

looking straight at the probe, only the selected band is vis-

ible, while when looking at an angle other bands provide

contextual information.

Fig. 9 View-dependent band picker. The tool selectively highlights

the selected material. When looking straight at the probe (left), only the

selected band is visible, while when looking at an angle (right) other

bands provide contextual information using MImDA.

5 Volume rendering architecture

The mentioned illustrative rendering techniques, especially

in the context of the multi-user applications naturally sup-

ported by the display, require a rendering system which is

both flexible enough to support mixing and matching of sev-

eral enhancing methods and performing enough to enable

visualization and manipulation of extremely massive volu-

metric models. In our cluster-parallel implementation, we

run one separate rendering back-end process per board, and

connect each of them to a coordinator process running on

the front-end PC using MPI. A separate rendering is per-

formed for each projector view. Each back-end process con-

trols a portion of the framebuffer, and is capable to overlay a

standard OpenGL rendered image, e.g., for 3D GUI objects,

on top of a volume rendered image rendered with CUDA.

By default, no depth combination is done (and, thus, the

OpenGL objects shine through volumetric objects). It is also

possible, but only without refraction, to depth-combine the

two images, using the depth buffer generated by OpenGL to

clip rays followed in the volumetric renderer.

Each of the volume rendering processes uses an adaptive

out-of-core renderer combining out-of-core data manage-

ment with level-of-detail and visibility culling techniques.

As in other recent massive volume renderers [8,6], we sepa-

rate the creation and maintenance of the rendering working

set from the actual rendering. In our case, adaptive work-

ing set maintenance is performed on the CPU starting from

data stored on disk in octree form, while rendering is fully

performed on the GPU by a single pass CUDA based stack-

less raycaster traversing an adaptively maintained working

set of volume bricks. The CUDA raycaster is designed for

supporting plugging in of enhancer objects.

Fig. 10 Volume rendering architecture. Structure of the rendering

subsystem for one single view.

Data preprocessing and compressed data representation.

Our input model is a full rectilinear scalar volume, with 8 or

16bits/voxel. At preprocessing time, the original volumet-

ric model is decomposed into small cubical bricks of fixed

size (typically 323) with 2 voxels overlap in every direction

organized in an octree. The data contained in each brick is

an 8bit value obtained by linearly mapping each voxel value

to the range of values contained in the brick and quantizing

the resulting scalar number. This simple lossy compression

technique allows the renderer to use hardware accelerated

trilinear interpolation, while increasing cache effectiveness

with respect to the uncompressed version.

GPU cache and spatial index. At run-time, an adaptive

loader updates a view- and transfer function-dependent work-

ing set of bricks incrementally maintained on CPU and GPU

memory by asynchronously fetching data from the out-of-

core octree. The adaptive refinement method is guided by

suitably computed node priorities, determined using infor-

mation fed back from the renderer (see below). Following

Gobbetti et al. [8], our adaptive loaders stores in a 3D tex-

ture a cache of recently used volume bricks, and constructs

at each frame a spatial index for the current working set in

the form of an octree with neighbor pointers. Our spatial

index consists in a single 6×N 2D texture with 32bit com-

ponents. Texture columns index the N nodes of a linearized

octree, while each row contains a different attribute. The first

row contains spatial index nodes, with a 16bit index point-

ing to the node’s parent, and a 16bit index pointing to the

first of eight consecutive children (null for leafs). The sec-

ond row contains the index of associated data in the current

brick pool, or null for empty nodes. The third row contains

the minimum and maximum values used for mapping the

8bit data values contained in the referenced bricks to the

input domain. The fourth, fifth, and sixth rows contain the

(−x,+x),(−y,+y),(−z,+z) neighbor pointers. The cost of

View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays 7

this representation is of 192bits/node, improving over the

256bits/node of Gobbetti et al. [8], even though we store

data ranges, parent pointers, and data pointers for all tree

nodes, as they enable us to perform high-quality filtering.

The GigaVoxel approach, which also supports multilevel ac-

cess to the hierarchy, uses only 64bits/node (but without data

ranges), but forces the usage of kd-restart, leading to many

redundant traversal steps.

Stackless octree raycaster. The spatial index is traversed

by a raycaster implemented in CUDA, with a CUDA thread

associated to each ray. Traversal starts by transforming the

ray to volume coordinates and by clipping it to the volume

extent. Empty and non-empty bricks are then enumerated in

front-to-back order, adapting sampling density to brick reso-

lution, and stopping as soon as possible. The brick enumera-

tion strategy improves the stackless approach of Gobbetti et

al. [8] by tracking the location of a small number of coarser

level bricks above the leafs (in this paper: the current node,

its parent, and its grandparent). The basic concept behind the

stackless traversal is to start by performing a down traversal

of the octree for locating the leaf node that contains the cur-

rent sampling position, which, at the start, is the position at

which the ray enters the volume. During the down traver-

sal, a small queue maintains references to parent and grand-

parent data. Then, the leaf node is processed by accumulat-

ing data according to the current rendering mode, stepping

through the associated brick if it contains data, or perform-

ing analytical integration if it is empty. If the ray does not

terminate because maximum opacity is reached, the algo-

rithm determines the face and the intersection point through

which the ray exits the node. Then traversal continues by

following the neighbor pointer of this face to the adjacent

node, eventually performing a down traversal to locate the

leaf node that contains the exit point, which is now the en-

try point of the new leaf node. When moving to a neighbor,

parent and grandparent data are updated only if their index

changes. Pseudo-code of the method is provided in a paper

addendum. We compared the performance of this approach

with GigaVoxel’s kd-restart [6]. In our implementation, full

volume rendering (including data communication) using the

stackless method is about 10% faster in static views and 4%

faster in dynamic views on a NVIDIA 8800GTS 640 (G80

GPU) due to the reduction in traversal steps.

Visibility feedback and adaptive loader. The adaptive loader

maintains in-core a view- and transfer-function- dependent

cut of the out-of-core octree and uses it to update the GPU

cache and spatial index. The basic principle of the method is

to update at each frame the visibility status of the nodes in

the graph based on rendering feedback, and, during the re-

finement cycle, only refine nodes that were marked as visible

during the previous frame and are considered inaccurate and

non-empty according to the current transfer function. Under

this approach, the available GPU texture slots are used for

visible nodes, and load requests will not even be posted for

invisible ones (see Fig. 11).

In order to provide visibility information back to the loader,

we employ a writable CUDA array storing an 8bits value per

spatial index node. The array is initialized at zero before ren-

dering each frame, and each time a non-empty leaf brick is

traversed to accumulate its contribution, the traversal kernel

updates the corresponding array entry by setting the value to

one. Array entries with a value of zero after rendering cor-

respond to bricks that have not been traversed, and are thus

occluded or out of view. At the beginning of each frame,

the visibility feedback array of the previous frame is copied

from the device into the host and the visibility status of the

in-core nodes is updated accordingly. Since the array only

stores data for visited leaves, visibility data is pulled up to

inner nodes by recursively combining visibility information

of child nodes. The visibility feedback and octree refinement

processes are extremely fast, given the coarse granularity of

the octree of bricks. While it is true that scatter writes to

global memory are costly, they occur only upon traversal of

non-empty leaf bricks. The cost, amortized over full brick

traversal, is negligible. We did not find a measurable differ-

ence between a kernel with the scatter write and a kernel not

using it. Transferring the visibility map is also fast, since the

array size is limited by the maximum size of the current view

data (typically a few thousands nodes), not by the maximum

dataset size. The combined cost of downloading the visibil-

ity map to the CPU and pulling up the visibility information

is less than 1ms on a NVIDIA 8800GTS 640MB.

In our parallel implementation, each of the rendering pro-

cesses has access to the full model stored out-of-core, but

only loads the portion associated to each projector using our

adaptive loader. Since a single graphics board is, in general,

rendering images for more than one projector, we amortize

refinement time and reduce memory needs by merging the

refinement and loading step of all views. We thus maintain a

single shared cache and spatial index per process, and, dur-

ing the refinement phase, we define the octree cut by us-

ing the finest resolution required among the different views.

We also use a single combined visibility feedback array ob-

tained by zeroing out the visibility feedback array only once

per frame rather than once per rendering kernel call.

Fig. 11 Visibility culling. Images with different transfer functions,

rendered on a 1024×576 window. Visibility culling reduces the work-

ing set from 4553 bricks to 1554 bricks in a almost opaque case, and

from 4620 bricks to 3290 bricks when surfaces get more transparent.

8 José Antonio Iglesias Guitián et al.

Custom compositing behavior. The above rendering struc-

ture requires particular care in implementation to ensure rea-

sonable flexibility and performance. In our design, the ren-

dering kernel is a generic function whose template param-

eters define the stepping behavior within non-empty bricks

and a series of up to three chained enhancing behaviors. A

multiple dispatching code run at each kernel launch, trans-

forms all dynamic types into static types before kernel invo-

cation (pseudo-code is provided in a paper addendum). An

enhancer is seen as a class providing three device functions

of the current accumulated and sampled state that define the

behavior at ray start, at each sampling step, and at ray ter-

mination. These device functions operate on the rendering

state, and also have access to a specific enhancer’s constant

and variable state. The constant state is a structure contain-

ing the current enhancer parameters, which is stored in de-

vice constant memory and shared among all threads. The en-

hancer variable state, instead, is a per-thread structure stored

in device shared memory, and initialized by the kernel be-

fore ray traversal using a specific enhancer’s entry point. In

our design, a specific kernel is generated (and optimized by

the compiler) for each of the possible combinations of step-

pers and enhancers. A special class, with empty constant and

variable data and no operations performed in device func-

tions implements the default pass-through behavior.

Adaptive frame reconstruction. Rendering performance for

large pixel count displays can be further improved by taking

into account spatio-temporal coherence. In this work, we re-

duce the amount of pixels generated at each frame, and re-

construct full images based on samples acquired at differ-

ent times. Our aim is to increase responsiveness, while not

compromising the ability to render static images at full qual-

ity. Our method is purely image-based and works without

making assumptions about the rendered scene and render-

ing process. No cooperation from the renderer is required,

besides the ability of computing images. The basic idea is to

use an adaptive spatio-temporal filter, which strives to pro-

vide spatially detailed imagery where the viewed scene is

static, and low-latency (if blurred) imagery where it is dy-

namic. In order to fully exploit parallel rendering perfor-

mance and to avoid destroying coherence among neighbor-

ing rays, we do not perform adaptive sampling, but group

pixel batches in sub-frames aligned on a quincunx lattice.

We explicitly avoided using more elaborate sparse/adaptive

schemes because we want to reduce CPU/GPU communica-

tion. Moreover, it is generally better to trace many groups of

very nearby rays to reduce thread divergence than selecting

fewer sparse rays to trace. Screen pixels are thus assigned

to N sub-frames (4 in our current implementation) made of

interleaved pixels on x and y axes (see Fig. 12 left), which

are sequentially rendered and buffered. At each frame pre-

sented to the viewer, only one sub-frame is re-rendered, and

frame reconstruction is performed for presenting the image.

The reconstruction process starts by copying the pixels of

the just rendered sub-frame to the appropriate locations in

the final image. All other pixel values are then generated

by a spatio-temporal filter. The basic idea is to compute a

new not-rendered pixel Q′
t by combining its previous ver-

sion in time, Qt−1, with its four cross neighbors in space,

At ,Bt ,Ct ,Dt (see Fig. 12 right). We first compute a spatial

approximation Q
spatial
t by averaging the two opposite neigh-

bors with lower color difference (i.e., At ,Ct or Bt ,Dt). Then,

we estimate the temporal change ∆Q of the pixel by taking

the maximum absolute color difference among (At ,At−1),
..., (Dt ,Dt−1). The new pixel color is then computed by Q′

t =

Qt−1 + smoothstep(∆Q,∆l,∆h)(Q
spatial
t −Qt−1), where the

smoothstep function smoothly transitions from zero to one

as ∆Q varies between ∆l and ∆h. The process is then re-

peated for all other missing pixels, by suitably shifting and

rotating the reconstruction grid when applying the same re-

construction process. With such an approach, where the im-

age is dynamic, more recent samples are emphasized, re-

sulting in up-to-date, but possibly slightly blurred images.

Where the image is more static, older samples dominate re-

construction, leading to sharp images. In static image areas,

the method is guaranteed to converge to the same image that

would have been computed by performing a full-resolution

ray-casting. We have purposely decided not to include mo-

tion compensation or reprojection steps, since we prefer in-

creased blur in motion areas over artifacts when dealing with

semi-transparent objects.

Fig. 12 Frame reconstruction. Left: sub-frame pixels are arranged

according to a quincunx pattern. The last sub-frame, as well as the four

previously rendered ones, contribute to the full image. Right: a spatio-

temporal filter reconstructs a full image.

The frame reconstructor is fully implemented in a single

CUDA kernel. Each thread reconstructs a quad of 2×2 pix-

els using a three phase process. First, threads within the

same thread block cooperate to load into shared memory

the tile of present and past pixel values required for recon-

struction, and copy to the output buffer the single up-to-date

pixel associated to them. Then, each thread reconstructs the

diagonal neighbor of that pixel. Finally, the horizontal and

vertical neighbors are reconstructed. A syncthreads() barrier

at the end of each phase ensures that the four neighbors of

the next reconstructed pixels are up-to-date.

View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays 9

6 Implementation and results

An experimental system has been implemented on Linux us-

ing OpenGL and NVIDIA CUDA 2.1. The out-of-core oc-

tree structure is implemented on top of Berkeley DB, with

LZO compression applied to data nodes. OpenMPI 1.2.6 is

used for interprocess communication in the rendering clus-

ter. When running on a desktop configuration, the rendering

kernel is embedded directly in a single-process application,

using a separate thread for asynchronous data loading.

We have tested our system with a variety of high resolu-

tion models and settings. In this paper, we discuss the results

obtained with the inspection of two 16bit/sample micro-CT

datasets: a Veiled Chameleon (1024× 1024× 1080) and a

Pichi Armadillo (1024 × 1024 × 999) specimens 2. In or-

der to test the system with extremely large and demand-

ing datasets, the original data has been artificially zoomed

by 4× in a preprocessing step (i.e., to ≈ 4K3 voxels) by

tricubic interpolation plus procedurally added detail. The

construction of the octree from source data was performed

using octree bricks of 323, instructing the preprocessor to

use the compressed 8bit format and to filter out data with

a value lower than 6400, in order to discard most of the

noisy empty space. For the chameleon, data preprocessing

took 12.3hours on a Linux PC 2.4GHz CPU and produced a

15GB octree database starting from an uncompressed source

size of 135GB. The RMS error was 14.6, and the AMAX er-

ror was 116. The armadillo dataset produced similar results

(13.8GB octree database, RMS = 15.8, AMAX = 122).

Standard desktop rendering. We evaluated single PC ren-

dering performance on a number of interactive inspection

sequences using the 4K models and measuring actual frame

rates (i.e., not only raw rendering times, but frame-to-frame

times). We report here on the results obtained when ren-

dering on a PC with NVIDIA GTX 280 using a window

size of 1024×576 pixels and 1voxel/pixel accuracy to drive

the adaptive renderer. When using the moderately opaque

transfer function of Fig. 11 left, the frame rate of typical in-

spection sequences of the chameleon dataset varies between

23Hz for extreme close-up views to over 60Hz for overall

views. Making the model highly transparent, as in Fig. 4, re-

duces the performance to 11Hz− 39Hz. Adding refraction

leads to rendering rates of 7Hz − 32Hz. Using interactive

tools, which activate enhancers in the CUDA raycaster, de-

creases the performance by about 10%. Interactive rates are

thus guaranteed even in the most demanding situations. Part

of the performance is due to the frame reconstruction ap-

proach, which guarantees a speed-up of 2.15×−3.3× de-

pending on the situation. The speed-up is sub-linear, since

2 Source: Digital Morphology Project, the CTLab and the Texas Ad-

vanced Computing Center, University of Texas, Austin

Fig. 13 Multi-user interactive exploration of 64Gvoxel datasets

on a 35Mpixel light field display. Users freely mix and match 3D

tools creating view-dependent illustrative visualizations. Objects ap-

pear floating in the display workspace, providing correct parallax cues

while delivering direction-dependent information.

we reduce the number of traced pixels by 4. The additional

overhead is mostly due to the reduced coherence of rays

traced from a sparser pixel grid, leading to increased diver-

gence among threads traversing the spatial index structures.

Large scale light field display. Our 3D display is capa-

ble of visualizing 35Mpixels by composing images gener-

ated by 72 SVGA LED commodity projectors illuminating

a 160×90cm holographic screen. The display provides con-

tinuous horizontal parallax within a 50◦ horizontal field-of-

view with 0.8◦ angular accuracy. The pixel size on the screen

surface is 1.5mm. The rendering back-end is currently run-

ning on an array of 18 Athlon64 3300+ Linux PCs equipped

with two NVIDIA 8800GTS 640MB (G80 GPU) graphics

boards running in twin-view mode. Each back-end PC has

thus to generate 4 × 800 × 600 pixels using two OpenGL

graphics boards with CUDA capability 1.0 and based on an

old G80 chip. It is obviously impossible to fully convey the

impression provided by our system on paper or video. As

a simple illustration of our system’s current status and ca-

pabilities, we analyze the behavior of the multi-user appli-

cation that allows users to interactively position, scale, and

explore volumetric models using Intersense IS900 trackers.

We recorded the performance using a hand-held video cam-

era freely moving in the display workspace. Representative

video frames are shown in Fig. 1 and Fig.13. Note the par-

allax effects, the view-dependent illustrative visualizations,

and the good registration between displayed object space

and physical space, which demonstrate the multi-user ca-

pability of the display. Thanks to stereo and motion paral-

lax, MImDA images proved easy to understand on the 3D

display even though they provide mixed depth cues. The

various view-dependent illustrative tools proved intuitive to

use and able to reveal important volumetric details. Com-

bining view dependent rendering mechanisms with stereo

projections inherently leads to the issue of presenting two

images to the viewer that differ by more than just the view

point. However, we did not notice problems related to this

fact. This is because our visualizations have a strong corre-

lation between views, and subtle differences are extremely

well tolerated by the human visual system. Even though

the rendering hardware is definitely not high end, the ap-

plication remained interactive for large models. The average

10 José Antonio Iglesias Guitián et al.

frame rate during the recorded interaction sequences was of

9.8fps. During the entire inspection sequences, the resident

set size of each rendering process is maintained well within

the 600 MB/board of pre-allocated cache size by the out-

of-core data management system. The average octree size

in the render nodes was of 1549 bricks/process, while the

most loaded process handled 2087 bricks. Thus, introduc-

ing a load balancing strategy could (slightly) improve the

system’s performance by ≈ 30%. The good load balancing

achieved by the static image distribution is caused by the ge-

ometry of the display, with all projectors typically looking at

the same portion of the displayed object. The visibility feed-

back mechanism has proved to be able to reduce working set

size, especially when using transfer functions with moderate

to high opacity. It should be noted that the graphics boards

used in our cluster are two generations older than the one

used for desktop testing, leading to a noticeable slowdown,

that we have quantified to 2.3×−3.2×, the higher figures

being for the most demanding situations. Please refer to the

accompanying video for further results.

7 Conclusions

We have described a flexible multiresolution volume render-

ing system capable to interactively drive large scale multi-

projector light field displays which can provide stereo and

motion parallax cues in a setting supporting collaborative

use. The system improves over recent work by proposing

specialized interactive illustration techniques based on a flex-

ible compositing engine. The illustrative techniques are de-

signed to exploit the view-dependent characteristics of the

display to provide different contextual information in differ-

ent viewing areas.

Acknowledgments. This work is partially supported by the EU Marie

Curie Program under the 3DANATOMICALHUMAN project (MRTN-

CT-2006-035763).

References

1. Agus, M., Bettio, F., Giachetti, A., Gobbetti, E., Iglesias Guitián,

J., Marton, F., Nilsson, J., Pintore, G.: An interactive 3d medical

visualization system based on a light field display. Visual Com-

puter 25(9), 883–893 (2009)

2. Agus, M., Gobbetti, E., Guitián, J.A.I., Marton, F., Pintore, G.:

GPU accelerated direct volume rendering on an interactive light

field display. Computer Graphics Forum 27(2), 231–240 (2008)

3. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative

context-preserving exploration of volume data. IEEE Trans. Vis.

Comput. Graph 12(6), 1559–1569 (2006)

4. Bruckner, S., Gröller, M.E.: Instant volume visualization using

maximum intensity difference accumulation. Computer Graphics

Forum 28(3) (2009)

5. Cignoni, P., Scopigno, R., Tarini, M.: A simple normal en-

hancement technique for interactive non-photorealistic renderings.

Computer & Graphics 29(1), 125–133 (2005)

6. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels:

Ray-guided streaming for efficient and detailed voxel rendering.

In: Proc. I3D, pp. 15–22 (2009)

7. Dayal, A., Woolley, C., Watson, B., Luebke, D.: Adaptive frame-

less rendering. In: Rendering Techniques, pp. 265–276 (2005)

8. Gobbetti, E., Marton, F., Guitián, J.A.I.: A single-pass GPU ray

casting framework for interactive out-of-core rendering of massive

volumetric datasets. Visual Computer 24(7–9), 797–806 (2008)

9. Havran, V., Bittner, J., Sára, J.: Ray tracing with rope trees. In:

Proc. Spring Conf. Comput. Graph, pp. 130–140 (1998)

10. Herzog, R., Eisemann, E., Myszkowski, K., Seidel, H.P.: Spatio-

temporal upsampling on the GPU. In: Proc. I3D (2010)

11. Huang, R., Ma, K.L.: RGVis: region growing based techniques for

volume visualization. In: Proc. Pacific Conf. Comput. Graph. and

Applic, pp. 355–363 (2003)

12. Jones, A., McDowall, I., Yamada, H., Bolas, M.T., Debevec, P.E.:

Rendering for an interactive 360 degree light field display. ACM

Trans. Graph 26(3), 40 (2007)

13. Kraus, M.: Pre-integrated volume rendering for multi-dimensional

transfer functions. In: IEEE/EG Symposium on Volume and Point-

based Graphics, pp. 97–104 (2008)

14. Ljung, P.: Adaptive sampling in single pass, GPU-based raycast-

ing of multiresolution volumes. In: Proc. Volume Graphics, pp.

39–46 (2006)

15. Luo, Y., Guitián, J.A.I., Gobbetti, E., Marton, F.: Context preserv-

ing focal probes for exploration of volumetric medical datasets.

In: Second 3D Physiological Human Workshop (2009)

16. Niski, K., Cohen, J.D.: Tile-based level of detail for the parallel

age. IEEE Trans. Vis. Comput. Graph. 13, 1352–1359 (2007)

17. Popov, S., Günther, J., Seidel, H.P., Slusallek, P.: Stackless kd-

tree traversal for high performance GPU ray tracing. Computer

Graphics Forum 26(3), 415–424 (2007)

18. Ropinski, T., Rezk-Salama, C., Hadwiger, M., Ljung, P.: Gpu vol-

ume raycasting with advanced illumination. In: Eurographics Tu-

torial 4 (2009)

19. Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading

for depicting shape and detail. ACM Trans. Graph. 25(3), 1199–

1205 (2006)

20. Segovia, B., de Iehl, J.C., Mitanchey, R., Péroche, B.: Non-

interleaved deferred shading of interleaved sample patterns. In:

Graphics Hardware, pp. 53–60 (2006)

21. Viola, I., Kanitsar, A., Groller, M.E.: Importance-driven feature

enhancement in volume visualization. IEEE Trans. Vis. Comput.

Graph 11(4), 408–418 (2005)

22. Vollrath, J.E., Schafhitzel, T., Ertl, T.: Employing complex GPU

data structures for the interactive visualization of adaptive mesh

refinement data. In: Proc. Volume Graphics, pp. 55–58 (2006)

23. Yang, L., Sander, P.V., Lawrence, J.: Geometry-aware framebuffer

level of detail. Computer Graphics Forum 27(4), 1183–1188

(2008)

View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays 11

José Antonio Iglesias Guitián is

a Marie Curie Early Stage Re-

searcher in the Visual Computing

group of the Center for Advanced

Studies, Research and Develop-

ment in Sardinia (CRS4). He ob-

tained his Masters degree in Com-

puter Science in 2006 at the Uni-

versity of A Coruna, Spain.

Enrico Gobbetti is the director

of the Advanced Computing and

Communications Program and of

the Visual Computing group at the

Center for Advanced Studies, Re-

search, and Development in Sar-

dinia (CRS4). His research spans

many areas of computer graphics

and is widely published in ma-

jor journals and conferences. En-

rico holds an Engineering degree

(1989) and a Ph.D. degree (1993)

in Computer Science from the

Swiss Federal Institute of Technol-

ogy in Lausanne (EPFL).

Fabio Marton is a researcher in

the Visual Computing group at the

Center for Advanced Studies, Re-

search, and Development in Sar-

dinia (CRS4). He holds a Laurea

(M.Sc.) degree (1999) in Computer

Engineering from the University of

Padua, Italy. His current research

interests include out-of-core data

processing, multiresolution model-

ing and time-critical rendering.

