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A B S T R A C T

We present a shape processing framework for visual exploration of cellular nuclear en-
velopes extracted from microscopic images arising in histology and neuroscience. The
framework is based on a novel shape descriptor of closed contours in 2D and 3D. In 2D,
it relies on a geodesically uniform resampling of discrete curves to compute unsigned
curvatures at vertices and edges based on discrete differential geometry. Our descriptor
is, by design, invariant under translation, rotation, and parameterization. We achieve
the latter invariance under parameterization shifts by using elliptic Fourier analysis on
the resulting curvature vectors. Uniform scale-invariance is optional and is a result of
scaling curvature features to z-scores. We further augment the proposed descriptor with
feature coefficients obtained through sparse coding of the extracted cellular structures
using K-sparse autoencoders. For the analysis of 3D shapes, we compute mean curva-
tures based on the Laplace-Beltrami operator on triangular meshes, followed by com-
puting a spherical parameterization through mean curvature flow. Finally, we compute
the Spherical Harmonics decomposition to obtain invariant energy coefficients. Our
invariant descriptors provide an embedding into a fixed-dimensional feature space that
can be used for various applications, e.g., as input features for deep and shallow learning
techniques or as input for dimension reduction schemes to provide a visual reference
for clustering shape collections. We demonstrate the capabilities of our framework in
the context of visual analysis and unsupervised classification of 2D histology images
and 3D nuclear envelopes extracted from serial section electron microscopy stacks.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The last decades have witnessed the rapid improvement and
proliferation of high-throughput digital acquisition technology.
As a result, high-quality digital representations of real-world

∗Corresponding authors: magus@hbku.edu.qa, jeschneider@hbku.edu.qa.

scenes and objects have become commonplace in many ap-
plication domains. In biology and medicine in particular, the
rise of whole-slide scanners and the digitization of traditional,
confocal, and electron microscopy has led to both fully digital
analysis and the creation of large image databases [1]. Early
uses of this technology mostly included tele-pathology, solici-
tation of second opinions, and education in research and clin-
ical practice, as well as visual ultra-structural analysis in neu-
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Fig. 1: InShaDe pipeline: from cell contours extracted from digital histology images (on top) or 3D shapes reconstructed from Serial Section Electron Microscopy
stacks (on bottom), our pipeline computes invariant energy-based Fourier descriptors on top of discrete curvature embeddings. These synthetic descriptors can be
used for visual analysis, proof-reading segmentation results, domain-specific clustering and classification according to specific taxonomies.

roscience. In most cases, digital workflows were designed to
closely mimic the traditional investigation process. Only re-
cent years saw a shift towards exploiting the large amount of
information in the acquired images and collections by means of
novel data-driven analysis methods [2]. In this context, a wide
array of basic tools are employed, ranging from handcrafted
feature descriptors over fully data-driven approaches to combi-
nations of matching of various approaches [3]. Machine learn-
ing, and, especially, deep learning approaches have become
popular in the context of digital pathology and biology. Their
significant success stems from their ability to provide automatic
tools for tasks such as segmentation and labeling of cellular en-
tities from large individual microscope images [4, 5] or for sup-
porting connectomics investigations by reconstructing the neu-
ral connections in large portions of brain tissue samples [6, 7].
One drawback of the current purely data-driven frameworks,
however, is that they often disregard specific domain knowl-
edge and taxonomies [8]. As a result, tools for domain-specific
proofreading of segmented images, classification according to
taxonomies, filtering, visual exploration, and subsequent com-
putation are still lacking. For this reason, many applications
require the use of descriptors that, by design, preserve some
domain-specific characteristics. To better exploit the capabili-
ties of novel learning frameworks we thus advocate not to dis-
miss designing features a priori. Instead, we believe that it is
necessary to research the development of methods integrating
such designed features into powerful descriptive models. One
benefit of taking a hybrid design+data-driven approach is that
domain knowledge can be integrated into the design process.
This potentially leads to models that are easier to explain, and,
thus, result in increased discrimination performance for human
analysis. In addition, since features are designed, the training
efforts in terms of the amount of data and computational power
required can be eased.

Inspired by these considerations, we propose a novel visual
analysis pipeline based on discrete differential geometry con-
cepts, whose recent findings provide very powerful theoretical
formulations for describing 2D and 3D shapes [9, 10]. The
framework is based on a 2D/3D shape descriptor that can be
used in various application domains to complement or enhance

generic deep learning networks, such as U-Net [11]. The de-
scriptor, dubbed InShaDe, is based on the concept of discrete
curvature along closed, resampled contours (see Fig. 1 for an
overview of the proposed pipeline). In 2D, discrete curvature is
computed using vertex and edge osculating circles. Interleav-
ing the resulting edge and vertex curvatures produces a high-
resolution curvature vector. These curvature vectors are nat-
urally invariant under rigid body transformations (translations
and rotations). Invariance under parametric shifts is ensured by
using energy-based elliptic Fourier descriptors. Cellular shapes
in 2D tissue samples are sliced, implying that their apparent
size may be smaller than the real radius [12]. We therefore also
propose to achieve optional invariance under uniform scaling
by replacing components in the curvature vectors by standard
(z-)scores. This manuscript is an extended version of the con-
ference contribution [13] recently presented at the Eurographics
Workshop on Visual Computing for Biology and Medicine (EG
VCBM 2020) held in Tübingen. The conference paper pre-
sented:

i) a robust geometry processing pipeline for computing 2D
invariant shape descriptors exploiting shifted linear inter-
polation and discrete differential geometry schemes, and

ii) visual mapping schemes from 2D cellular contours to
shape descriptor embeddings based on modern dimension
reduction schemes such as UMAP [14].

This manuscript extends the original pipeline by:

iii) extending the shape descriptors to 3D shapes represented
by triangle meshes, and

iv) augmenting the shape descriptors by additional features
based on sparse coding to improve analysis and classifi-
cation performance.

In addition, we study the use of the proposed pipeline for proof-
reading and visual, unsupervised classification of various his-
tology images. We also present results for various 2D and 3D
data sets stemming from histology and neuroscience.
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2. Related Work

Our work is concerned with shape feature extraction
from closed contours and surfaces and with the analysis of
histopathology images and electron microscopy stacks. These
are very broad topics and a full coverage of the state-of-the-
art is beyond the scope of this paper. For a comprehensive
overview of all related fields, we refer the reader to various sur-
veys on 2D shape analysis [15, 3], digital histopathology anal-
ysis [16, 17, 18], and recent deep learning methods for cellular
analysis [19].

In the following, we discuss the methods that are most
closely related to our approach.

2.1. Shape feature descriptors

During the last two decades, significant research efforts have
been carried out on both the theoretical and the practical as-
pects of the shape-based image retrieval problem [3]. For an
overview of the seminal methods for shape-based invariant fea-
ture extraction for object recognition, we refer also to Yang et
al. [20].

In general, there are two main modeling strategies for rep-
resenting shapes: region-based methods and boundary-based
ones. Region-based techniques use moment descriptors to de-
scribe shapes, like geometrical moments [21], Zernike mo-
ments [22, 23], Legendre moments [24], and Tchebichef mo-
ments [25]. Although region-based approaches are global in
nature and can be applied to generic shapes, boundary-based
techniques appear to be more efficient for handling objects that
can be described by their object contours. In this latter category,
a number of boundary-based techniques have been proposed,
including Fourier descriptors [26], curvature scale space [27],
and wavelet descriptors [28]. Our descriptor combines the fea-
tures of curvature analysis and Fourier analysis, similarly to the
technique proposed by El Ghazal et al. [29, 30]. Differently
from them, our method is based on recent findings in discrete
differential geometry [31], thus resulting in a more robust for-
mulation with respect to the sampling strategy and better classi-
fication results. Moreover, Osjanikov et al. applied the concepts
of invariant features in the 3D world to the problem of non-rigid
shape search and retrieval in large databases [32].

Complementing advances for the general classification prob-
lem, machine learning strategies exploiting the existence of
large amounts of data have led to significant advances [33, 34].
Many current efforts attempt to work directly on raw data im-
ages [35, 36], by designing deep neural networks in which the
modeling is hidden in the network design and training strategy
and the feature computation and filtering of information is auto-
matically performed by the network. At the same time and in an
attempt to simplify classification and automatic shape genera-
tion, techniques to reduce the depth of networks by introducing
meaningful parameterizations or embeddings of input shapes
are gaining interest, since such parameterizations can simplify
the automatic classification or shape generation (model-based
or “shallow” learning) and reduce the number of training ex-
amples [37]. Our work goes towards that direction, since we
propose a simplified contour description that can be used either

for supporting machine learning frameworks or for supervised
visual analysis. In this work, we focus on the latter aspect.

2.2. Histology analysis
Digital pathology and microscopy-image analysis is widely

used in the biomedical domain for comprehensive studies of
cell morphology or tissue structure. In most cases, analysis is
carried out through manual assessment, which is labor-intensive
and prone to inter-observer variations. Computer-aided systems
have recently attracted significant interest since they can dra-
matically reduce the manual efforts and increase reproducibil-
ity [38, 39, 17].

Among the various parts composing a computer-aided diag-
nostic system, nucleus or cell detection and segmentation play
a key role to describe the molecular and morphological infor-
mation underlying the investigated samples [17, 40]. In the past
few decades, many efforts have been devoted to automated nu-
cleus/cell detection and segmentation, and an independent field
named computational pathology emerged simultaneously to the
rapid proliferation of deep learning (DL) models for quantita-
tive analysis of spatial patterns in digitized whole-slide images
(WSIs) of cancerous tissue [41]. To this end, various tech-
niques for the detection, extraction, recognition of patholog-
ical patterns at various scales have been recently established
[42, 43, 44]. Various medical studies have since demonstrated
the potential of DL models in detecting neoplastic tissue and
recognizing diagnostically relevant structures [45, 44].

One of the most successful and widely used architecture is
U-Net, introduced in 2015 by Ronneberger et al. [11]. U-
Nets operate on the entire image and jointly segment and pro-
vide per-pixel labels, leading to an improvement in spatial seg-
ment and label coherence. The same authors also demonstrate
that U-Nets improve accuracy on several bio-image segmen-
tation tasks, even when the data set is relatively small [11].
In the context of nuclear segmentation of histopathology im-
ages, Chidester et al. [4] enhance U-Nets by enforcing rotation-
equivariance to groups, similar in style to group-equivariant
CNNs (GCNNs) [46].

Moreover, in order to attract efforts to particular tasks in
medical imaging, various challenge contests and public data
sets have been published [47, 41]. However, as of this writing,
such methods are still far from being accepted in fully auto-
mated clinical workflows [48]. Proofreading efforts from do-
main scientists are, thus, still required to double-check labeling
consistency and segmentation accuracy [8].

Consequently, the work presented herein provides a visual
analysis framework that supports digital histologists to effi-
ciently carry out investigations on labeling and segmentation
quality. Our input data is the automatic segmentation ob-
tained from networks of the U-Net family [4]. The proposed
framework then allows for visual analysis in a reduced param-
eter space obtained by performing dimension reduction on our
Fourier-based contour shape descriptor.

To properly capture the visual variance of nuclear shapes
under dimension reduction, autoencoders [49] provide a con-
venient way to effectively uncover latent feature spaces. It
is thus no surprise that their use is increasing in popular-
ity [50, 51]. For instance, Xu et al. propose Stacked Sparse



4 Al-Thelaya et al., InShaDe / Computers & Graphics (2021)

Autoencoders [50] to learn high-level features from pixel inten-
sities. They are then applied to high resolution breast cancer
histopathology images. Hou et al. [51] modify the general au-
toencoder scheme by applying adaptive convolutional filters to
match the size of the nuclei to be represented. In this work,
we use k-sparse autoencoders [52] to produce feature vectors
that describe the inner visual features of nuclei. We then use
these feature vectors to augment our proposed shape descriptor,
resulting in a description of the exterior (shape descriptor) and
interior (auto-encoder) of each nucleus.

2.3. Shape analysis in neuroscience
Recent advances in imaging technology have led to the avail-

ability of 3D sparse and dense reconstructions of brain cells
at high resolution. This, in turn, has fueled the development
of various methods for shape analysis in the context of auto-
matic classification to aid studying the variability associated
with different structures and conditions [53, 54]. Likewise,
the availability of high-resolution imaging data has also trig-
gered shape analysis studies of brain structures at the nanome-
ter scale [55, 56, 54]. For instance, Queisser et al. [57] propose
a method to reconstruct the 3D view of cell nuclear envelopes
from laser scanning confocal microscopy data. Wittmann et
al. [58] later use this method to show how synaptic activity
induces significant modifications in the geometry of the cell
nucleus. To study heterogeneities in nuclear shapes obtained
through optical projection tomographic microscopy, Nanduku-
mar et al. [59] use conformal mapping to extract rotation-
invariant shape descriptors. Finally, Agus et al. [60, 61] perform
classification of nuclear brain cells through implicit and explicit
shape representations of cell nuclei obtained from electronic-
imaging data. They demonstrate an improvement in terms of
classification accuracy over previous approaches based on sim-
ple spherical or ellipsoidal fittings.

In this paper, we improve existing work [61] by introducing
feature vectors based on the spherical harmonics spectrum of
mean curvatures. This reduces the amount of data serving as the
descriptor from three complex vectors to a single real-valued
vector, resulting in faster implementation and processing times.

3. Methodology Overview

Fig. 1 schematically summarizes the InShaDe framework. As
can be seen, we use two separate yet similar pipelines for 2D
and 3D closed nuclear envelopes that use different microscope
imaging techniques as data source. The two methods have im-
portant similarities:

• they use the curvature signal (planar curvature in the 2D
case, mean curvature in the 3D case),

• they involve parametrization (circular parametrization in
the 2D case, and spherical parametrization in the 3D case),

• they involve Fourier analysis (Elliptic Fourier Analysis in
the 2D case, and Spherical Harmonics decomposition in
the 3D case), It is worth noticing that the Spherical Har-
monics framework is a 3D generalization of the Elliptic
Fourier Analysis [62].,

• they use the same strategy for computing energy descrip-
tors according to the harmonic frequencies [63].

Overview of InShaDe 2D. The input to the InShaDe 2D
pipeline are segmented nuclear envelopes of cells obtained
by applying an U-Net [4] on microscopic histopathology im-
ages (see Fig. 1 top). We then extract closed contours (Sec. 4.1)
from each segmentation mask and perform the following pro-
cessing steps (see also Fig. 1, top):

(1) contour smoothing (Sec. 4.2),

(2) geodesically uniform resampling (Sec. 4.3),

(3) discrete curvature computation (Sec. 4.4),

(4) opt. feature scaling using standard (z-)scores (Sec. 4.5),

(5) embedding to constant dimensions (Sec. 4.6),

(6) elliptic Fourier analysis (“EFA”, Sec.4.7).

Contour smoothing serves to reduce pixelation noise, whereas
geodesically uniform resampling removes sampling biases and
is a pre-requisite to computing discrete curvatures using dis-
crete differential geometry formulations using osculating cir-
cles. Embedding the resulting descriptors in constant dimen-
sions helps in removing noise and spurious frequencies during
the EFA stage, but is also necessary to allow for easy compar-
ison between shapes using, e.g., cosine or Euclidean metrics.
The Fourier analysis is used to remove shift (i.e., choice of ori-
gin) from the parameterization of the closed curve. So far the
resulting descriptor is invariant under translation and rotation
(3) and invariant under parameterization shift (6). In addition,
the optional feature scaling step (4) ensures invariance under
uniform scaling. In the result section, we furthermore show
how the final descriptor can be used in combination with di-
mension reduction schemes for visualizing clusters of nuclear
shapes with similar geometric characteristics.

Overview of InShaDe 3D. The input of the InShaDe 3D
pipeline are closed triangular meshes extracted from image
stacks obtained through Serial Section Electron Microscopy ac-
quisition of samples from rodent brains [54]. These shapes rep-
resent the envelopes of brain cell nuclei and are obtained from
images through a processing pipeline involving automatic seg-
mentation tools as well as manual proof-reading tools [64]. We
then process the 3D meshes by performing the following oper-
ations (also see Fig. 1, bottom):

(1) discrete mean curvature computation (Sec. 5.1),

(2) spherical parameterization using Willmore flow (Sec. 5.2),

(3) spherical harmonics decomposition (Sec. 5.3),

(4) computation of invariant energy coefficients (Sec. 5.4).

We use discrete mean curvature (1) as the basis of our embed-
ding and to represent the features of 3D shapes. In contrast to
previous formulations of shape decomposition [60, 61], the pro-
posed embedding is based on a single scalar- and real-valued
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Fig. 2: Contour smoothing: we apply iterative contour smoothing to the
closed contours (here, N=271) extracted from histology images. The higher
the number of iteration steps, the smoother the contours: in the example, 2,
5,10, 20 steps respectively.

function on the spherical domain. The result is a simpler nu-
merical formulation involving only the real part of Spherical
Harmonics (SPH) as well as a significantly lower number of
coefficients. From the coefficients of a truncated SPH decom-
position, we then compute invariant energy coefficients. In the
result section (Sec. 6.4), we show how the obtained descrip-
tor can be used for shallow classification of nuclei represent-
ing brain cells from different layers of somatosensory cortex of
adult rodents.

4. InShaDe 2D

In this section, we provide details for the various processing
steps for computing the descriptor for closed shapes extracted
from 2D images.

4.1. Contour Extraction & Chordal Parameterization

Given a segmentation mask, we extract a closed contour
enveloping each nucleus using iso-contouring (specifically
Marching Squares, which is a special case of the Marching
Cubes algorithm [65]). We reject open contours (i.e., the
nucleus intersects the image boundary) and contours falling
into the lowest 5% with respect to their number of samples.
Let C := {pi}N

1 , a closed curve with N vertices pi. We let
∆i := pi+1 − pi, the ith edge, consistent with Bobenko [31],
and abbreviate li := ‖∆i‖2 (edge length). We then obtain an
initial chordal parameterization t (C) with t1 := t (p1) = 0 and
ti+1 := t (pi+1) = ‖∆i‖2 + ti ∀ i > 1.

4.2. Contour Smoothing

The discrete nature of binary segmentation masks may lead
to pixelation artifacts in the extracted contour. To prevent the
resulting high spikes in curvature, we pre-smooth contours iter-
atively, using a superscript ?(k) to denote quantities at iteration
k. The process is shown in Fig. 2. Specifically, we replace each
vertex with a length-weighted average of the bisector of adja-
cent edges,

p(k+1)
i =

l(k)i

(
p(k)

i+1 +p(k)
i

)
+ l(k)i−1

(
p(k)

i +p(k)
i−1

)
2
(

l(k)i + l(k)i−1

) . (1)

As shown by Gottschalk [66], this sum of of length-weighted
edge bisectors computes the barycenter of the points on the
piecewise linear curve segment pi−1,pi,pi+1. Since it is a 2-
stage convex combination of pi−1,pi,pi+1, it is numerically sta-
ble and robust. Similar to virtually all smoothing operators, this

does not yet preserve area. We therefore compute the area a(0)

enclosed by the curve prior to smoothing and the area a(k) after
each iteration. We then scale the curve by

p(k)
i ← p(k)

i

√
a(0)

a(k)
. (2)

4.3. Geodesically Uniform Resampling

In order to remove sampling bias and to employ discrete dif-
ferential geometry formulations for vertex and edge curvature,
we perform geodesically uniform resampling. We do so by
placing equidistant samples p̃ on the piece-wise linear curve
C, thereby yielding a new piece-wise linear curve C̃ that is Arc-
length parameterized with respect to a unit scale u. Starting at
a point p1 = p̃1 and u = 1, we intersect the edges of C̃ with
a unit circle around p1. This yields between zero and two in-
tersection. If we find two intersections, we select one inter-
section as p̃2 and keep track of the last edge, ∆̃1 = p̃2− p̃1. We
then continue intersecting linear segments with unit spheres, but
when deciding on p̃i, we chose the intersection that maximizes〈

∆̃i , ∆̃i−1

〉
, with ∆̃i defined analogously to ∆̃1. This enforces

progress along the curve and prevents jumping back and forth
on the curve. For our data, we did not encounter the case of
finding less than two circle-curve intersections. A total of zero
intersections would correspond to extremely small contours that
cover less than a few pixels after processing; and we remove the
bottom 5% shortest curves. One crossing would arise if part of
the contour degenerates into a double line segment; Marching
Squares does not extract such pathological curves.

Once the best intersection p̃Ñ “laps” past p̃1, we use p̃Ñ = p̃1

instead to close the loop. This means that the last edge ∆̃Ñ−1
may be shorter than unit length. In order to resolve this is-
sue, we now calculate the length L of the curve. Knowing that
‖∆̃i‖2 = u for all but the last edge, we have L =

(
Ñ−2

)
u+

‖∆̃Ñ‖2. To obtain an u for which u−1L is approximately in-
tegral, we round u−1L to the nearest integer L′ and update
u← L′−1L.

We then revert to placing samples along the original curve
C with the updated spacing u. We repeat this process until the
rounding error ρ = |u−1L−L′| (using the old u and the updated
L′) becomes negligibly small. While we do not have a proof of
convergence of this heuristic at the time, we note that the rest of
our method is orthogonal to this Arc-length parameterization.
This means that, in the future, as more robust methods become
available, this step can be exchanged. In all of our experiments,
three to five iterations reduced ρ to less than 10−4. Given any
number x ∈ R+, rounding to the nearest integer changes x by
0.25 on average. We therefore expect that |1− u| ≈ 0.25L−1,
which we see confirmed in our experiments with typical contour
lengths of more than 100 pixel widths (for reference, L= 100→
|1−u| ≈ 2.5×10−3). The result of this step is a new piece-wise
linear curve C̃ that is Arc-length parameterized with respect to
a close-to-unit scale u.
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Fig. 3: Discrete curvatures: following discrete differential geometry [31] we
compute discrete curvatures by considering vertex osculating circles (left), and
edge osculating circles (right).

4.4. Discrete Curvatures
For a discrete Arc-length parameterized curve, there are two

definitions of discrete curvature based on osculating circles [31]
(Sec. 2.3 therein). By defining the turning angle at vertex pi as

φi ≡ arccos〈∆i,∆i−1〉 , (3)

and by embedding the planar curve in the z = 0 plane (see also
Fig. 3), we obtain, assuming for now an Arc-length parameteri-
zation with ‖∆i‖= 1 for all i, the (unsigned) vertex curvature:

κv = 2
|sinϕi|

‖pi+1−pi−1‖2
= 2
‖∆i×∆i−1‖2
‖∆i +∆i−1‖2

. (4)

For the edge curvature we use the standard equation [31]:

κe = tan
φi

2
+ tan

φi+1

2
. (5)

The choice to use unsigned vertex curvature was made to be
consistent with the unsigned edge curvature. Using such a dis-
crete differential geometry approach results in much more ro-
bust and stable curvature estimates than by using an intermedi-
ate interpolating spline. A reason may be that splines tend to
over- and undershoot near vertices, and are thus not representa-
tive of the curvature in these points. Since one of our goals for
the final shape descriptor is optional scale-invariance, we still
have to scale curvatures back from our arbitrary unit length u to
u = 1 in case scale-invariance is not desired. This is achieved
by dividing each κv and κe by u2. Finally, we interleave ver-
tex and edge curvatures to obtain a high-resolution, coherent
descriptor. After this step, we also abandon the notion of curva-
ture “living” on vertices and edges and transition to the notion
that the shape descriptor computed so far is a vector in a high-
dimensional vector space. We also adopt the notion that this
vector represents a 1D periodic signal on a uniform grid on the
2D circle. This interpretation is crucially supported by the fact
that all edges have the same length prior to computing curva-
ture. The descriptor computed so far is invariant under trans-
lation and rotation, but neither parametric shift nor scale. We
now establish the optional scale-invariance followed by shift-
invariance.

4.5. Feature Scaling

Given a sequence of curvatures, {κi}2Ñ
i=1, we compute stan-

dard scores (also called z-scores) by mapping

κi←
κi−µκ

σκ

, (6)

Fig. 4: Resampling to constant dimension: to reduce noise and spurious fre-
quencies during the Fourier analysis and to enforce constant dimensionality of
our descriptor, we apply uniform resampling through shifted linear interpola-
tion [67]. In this example, we show resampling with 64, 32 and 16 points
respectively.

where

µκ =
1

2Ñ

2Ñ

∑
i=1

κi and σκ =
1

2Ñ−1

2Ñ

∑
i=1

(κi−µκ)
2 (7)

are the empiric mean and variance, respectively. Such a scaling
is commonly employed in statistics as well as in training con-
volutional neural networks. However, normally standard scores
are computed using global moments derived from the entire
data set. This, in turn, does not provide full scale-invariance,
since vectors with pre-dominantly small components will stay
small. In contrast, by computing individual standard scores we
enforce the optional scale-invariance of our descriptor. Assum-
ing that the curvature components of each vector are normal-
distributed results in the expectation that all but 0.2% of the
data is represented by z-scores in the range [−3,3].

4.6. Constant Dimensionality
Resampling the contour to a constant dimensionality as de-

picted in Fig. 4 allows us to control the number of elliptic har-
monics in our Elliptic Fourier Analysis in a way to agree with
the Nyquist sampling constraint. It is also a pre-requisite for
easy comparison of shape descriptors using, e.g., cosine and
Euclidean metrics. As an added side-benefit, it also allows us to
eliminate remaining traces of noise on the curve. In this paper,
we perform this resampling step based on shifted-linear interpo-
lation [67] for the following reasons: (i) shifted linear interpo-
lation achieves performances that compare favourably to cubic
interpolation at a much lower computational cost, (ii) shifted-
linear interpolation is still convex, albeit with respect to shifted
samples. It is thus free of oscillations and the amount of foreign
frequencies introduced by resampling can be computed easily.

The basic idea of shifted-linear interpolation is to sample
the original signal at positions other than the original under-
lying sampling grid, followed by standard linear interpola-
tion. Blu et al. prove, somewhat surprisingly, that there is a
data-independent and thus constant shift τ ≈ 0.21 that results
in L2−optimal reconstruction of the unknown original signal
given only the known samples [67]. Samples κ ′i at shifted posi-
tions t ′i are obtained using the infinite impulse response scheme
described by Blu et al.,

κ
′
i =−

τ

1− τ
κ
′
i−1 +

1
1− τ

κi. (8)

It should be noted, however, that linear interpolation on κ ′ is
literally shifted “to the right” by τ , meaning that a sample κ ′(t)
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corresponds to κ(t − τ). The resulting interpolation thus be-
comes a shifted discrete convolution of the hat kernel

Λ(t) :=

{
1−|t| if |t|< 1
0 otherwise,

(9)

with the shifted discrete signal κ ′:

κ(t) = ∑
i

κ
′
i Λ(t− ti− τ). (10)

4.7. Elliptic Fourier Analysis (EFA)

To achieve shift-invariance (i.e., invariance under choice of
parametric origin), we consider the Fourier spectrum of each
given curve. In particular, we compute elliptic Fourier de-
scriptors [62], similarly to what was proposed by Khazhdan et
al. [63] and what has been successfully used in various applica-
tions [60, 61, 12].

For a piecewise linear, periodic function κ(t) t ∈ [0,2π] rep-
resenting the curvature of a contour, its Fourier elliptic expan-
sion is obtained through linear combination of elliptic harmon-
ics functions which provide a complete orthonormal basis for
the decomposition

κ (t) = a0 +
∞

∑
n=1

(
an cos

(
2πnt

T

)
+bn sin

(
2πnt

T

))
. (11)

In order to compute the coefficients for the curvature function
κ (t) representing closed contours, we normalize the parame-
terization t to the interval [0,2π]. As we are concerned with
closed contours, the assumption of periodicity, t = 0 ≡ 2π is
naturally supported. We then consider the classic method pro-
posed by Kuhl and Giardina [68] for piecewise linear contours.
This method essentially equates the discrete time derivative of
Eqn. (11), at locations pi,

κ̇i :=
∂κ

∂ t

∣∣∣∣
ti

, thus, (12)

κ̇i =
∞

∑
n=1

(
−an

2πn
T

sin
(

2πnti
T

)
+bn

2πn
T

cos
(

2πnti
T

))
,

with a Fourier expansion of the time derivative of the curvature,

κ̇i =
∞

∑
n=1

(
αn cos

(
2πnti

T

)
+βn sin

(
2πnti

T

))
. (13)

Noting that in Eqn. (13), the coefficients αn and βn can be com-
puted as

αn =
2
T

N

∑
i=1

κ̇i

(
sin
(

2πnti
T

)
− sin

(
2πnti−1

T

))
and

βn =
2
T

N

∑
i=1

κ̇i

(
cos
(

2πnti
T

)
− cos

(
2πnti−1

T

))
, (14)

Kuhl and Giardina derive the following for the nth harmonic, by
equating the two different derivative expressions in Eqn. (13)

and (12):

an =−
1

πn

N

∑
i=1

κ̇i

(
cos
(

2πnti
T

)
− cos

(
2πnti−1

T

))
,

bn =
1

πn

N

∑
i=1

κ̇i

(
sin
(

2πnti
T

)
− sin

(
2πnti−1

T

))
. (15)

Fig. 5: Invariant descriptor: the discrete curvature formulation of InShaDe
descriptor is by design invariant to rotations (middle row), while the derive
frequency-based energy descriptors are invariant also with respect to shift (bot-
tom row).

We would like to remind here that, according to the Nyquist
theorem, the number Ns of contour samples after smooth-
ing and resampling limits the number Nh of harmonics neces-
sary to reconstruct the contour curvature without adding noise(
Nh ≤ Ns

2

)
. Finally, in order to obtain shift-invariance, we com-

pute harmonic energies through the Euclidean norm of the har-
monic coefficients [63], resulting in the following Curvature
Fourier Descriptor K with

Kn =
√

a2
n +b2

n, (16)

which provides a vector of shape features that can be used
for various machine learning applications. Like the more
commonly employed traditional Fourier transform, the elliptic
Fourier transform results in a space-agnostic spectrum, thereby
making our descriptor invariant under parameter shift (transla-
tion of the underlying domain). In this paper, we chose the el-
liptic Fourier transform over the traditional Fourier transform
since its additional expressiveness resulted in better results.
Fig. 5 demonstrates both rotation- and shift-invariance.

Sorted curvatures. We also consider another, much simpler
scheme for obtaining shift-invariance, namely, to sort the in-
dividual (unsigned) curvatures from highest to lowest (see also
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Fig. 6: Synthetic descriptors: In addition to the proposed InShaDe energy-
based shape descriptors, we considered other representations based on sorted
local curvatures (top right) and sparse coding of the foreground segment against
a black background (bottom right).

Fig. 6). The feature vector obtained in this way can be further
augmented with energy-based coefficients to obtain a compos-
ite feature vector. We would like to note that, in our experience,
sorted descriptors are outperformed by spectral descriptors if
used in stand-alone fashion.

Fig. 7: Sparse coding: given images of segmented cell nuclei against a black
background (on the left some examples), we use k-sparse autoencoders to find
a dictionary codebook (center) that can be used for computing a compressed
representation of the original images (on the right some examples).

Sparse-coding based image descriptors. Finally, we consider
a compact descriptor of images representing cellular structures
obtained through sparse coding. To provide additional shape
cues for this case, we place the segmented nuclei on a black
background, as shown in Fig. 7, left. Sparse coding methods
are typically composed of two steps. Firstly, an offline learning
process for finding a dictionary W that sparsely represents the
image data {Ii}N

i=0, and, secondly, an encoding step that maps
a given input image I to a compressed feature vector x̂ using
W , normally through a pursuit algorithm for minimizing the
constrained least squares problem

x̂ = argmin
x
‖I−Wx‖2

2 , s.t. ‖x‖0 < k. (17)

For obtaining the codebook (see also Fig. 7, center) and creating
the approximated sparse representation of nuclei images (Fig. 7,
right), we use the K-sparse autoencoder proposed by Makhzani
and Frey [52]. The technique uses linear activation functions
and tied weights. In contrast to other autoencoders, only the
k largest codes are used while the others are set to zero. The

resulting code k-vector gives us additional cues that, albeit not
rotation invariant, can be combined with the InShaDe descrip-
tor (see also Fig. 6, right). Section 6 evaluates various descrip-
tors obtained by composing the three different feature vectors:
sorted curvatures, energy coefficient and sparse coding weights.

5. InShaDe 3D

Fig. 8: InShaDe 3D processing: starting with a triangular mesh of a closed
object, we compute mean curvature H, and we use Willmore flow to obtain a
conformal spherical parametrization of the original mesh. The result is a scalar
function H (θ ,φ) over the spherical domain that we further decompose using
spherical harmonics.

Our 3D pipeline is a natural adaptation of the 2D case. From
a mathematical perspective, the Laplace-Beltrami operator on
either 1- or 2-manifold induces a Fourier space. That is, the
eigenfunctions of the Laplace-Beltrami operator constitute the
”classic” Fourier space in the 2D case and Spherical Harmon-
ics for the 3D spherical case. Albeit we use the elliptic Fourier
transform for its superior performance in the 2D case [12], the
two pipelines share the same mathematical foundations. We
then compute discrete differential geometric attributes of the
manifold and express them in this Fourier space. It is imag-
inable to generalize this even further by utilizing manifold har-
monics [69], at the likely expense of higher computational com-
plexity. The bottom half of Fig. 1 depicts the pipeline schemat-
ically for easy comparison with the 2D pipeline (Fig. 1, top).
The details of the processing steps are provided in this section.

5.1. Mean curvature

According to the differential geometry theory of surfaces, for
every twice-differentiable surface we can find the tangent plane
for a point on the surface. We can then proceed to define a
quadratic form, that is a polynomial containing only terms of
degree two, using the two tangent directions x,y [70, chapter 19
therein]. This quadratic form, sometimes called the shape ten-
sor describes extrinsic invariants of the surface, such as princi-
pal curvatures, at the point where manifold and tangent plane
touch. This form is called the second fundamental form II,

f (x,y)≈ 1
2
[
dx dy

]
II
[

dx
dy

]
. (18)
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The second fundamental form approximates the surface z =
f (x,y) with z = 0 the plane tangent to the surface (informally,
z is the “height over tangent plane”) in a neighborhood around
the touching point. Therefore, the idea of the second fundamen-
tal form is to measure, in R3, how a surface curves away from
its tangent plane at a given point. The eigenvectors of the 2×2
matrix II are called principal directions, and the eigenvalues
are called principal curvatures, denoted κ1,κ2 [9]. Given the
principal curvatures, the mean curvature H = κ1+κ2

2 provides a
meaningful and natural description of 3D surfaces, and it can
be computed on triangular mesh using a discretization of the
Laplace-Beltrami operator [9]. In this work, we compute the
mean curvature at each vertex of a closed triangle mesh. Given
a parameterization (s, t) of the triangle mesh, we thus obtain a
discrete, scalar function H(s, t) (see also Fig. 8).

5.2. Spherical parametrization
As hinted at in the last section, our 3D pipeline relies on a

surface parameterization. We use a spherical parameterization,
which, despite its apparent simplicity, is much harder to obtain
than circular parameterizations of planar shapes. From a ge-
ometrical point of view, the second fundamental form can be
used for classifying surface points according to the signs and
values of principal curvatures κ1 and κ2. Of particular inter-
est are so-called umbilic (“locally spherical”) points for which
κ1 = κ2. A measure for “local sphericity” can thus be defined
based on κ1,κ2, such as the Willmore energy of a surface S,

E =
1
4

∫
S
(κ1−κ2)

2 dA. (19)

The geometric flow associated with this energy,

Ṡ=−∇SE (S) , (20)

will evolve any genus-0 surface S to a sphere, providing a way
to obtain a spherical parameterization. In this work, we use
the discrete Willmore flow formulation proposed by Crane et
al. [71] that was also previously used by Agus et al. [61]. This
spherical parameterization maps each vertex of the 3D input
shape to a corresponding point (θ ,φ) on the unit sphere S2,
thereby also providing a parameterization for the discrete scalar
function H (θ ,φ).

5.3. Spherical Harmonics decomposition
The Spherical harmonic basis provides a Fourier basis for

functions defined over a sphere. We can thus approximate a
generic function defined over a closed surface as a finite lin-
ear combination of spherical harmonics Y m

l (θ ,φ) up to a given
maximum frequency L:

F (θ ,φ)≈
L

∑
l=0

l

∑
m=−l

wm
l Y m

l (θ ,φ) , (21)

where the weights wm
l can be found through least-square

error minimization with respect to the samples computed on
the original 3D shape. To this end, we used a method simi-
lar to [61], with the main difference that, since the mean cur-
vature signal is scalar, we only consider the real part of the

spherical harmonics. As a result, the weight coefficients are
also real. Specifically, given the real part of spherical har-
monics Rm

l (θ ,φ) = ℜ(Y m
l (θ ,φ)), a spherical parameterization

of the surface S, ΣS =
{
(θi,φi) = (θ(vi),φ(vi)) ∈ S2,∀vi ∈ S

}
,

and the mean curvature values computed across the surface
HS = {Hi :=H(pi),∀pi ∈ S}, the spherical harmonic decompo-
sition is obtained by computing the coefficients w = {wm

l ,0 ≤
l ≤ L,−l ≤ m≤ l} that minimize the square error:

w = argmin
w ∑

i

∥∥∥∥∥Hi−∑
l

∑
m

wm
l Rm

l (θi,φi)

∥∥∥∥∥
2

2

, (22)

leading to the linear system

RT R ·w = RT HS. (23)

We solve this system using LDLT factorization, a robust, sym-
metric pivoting variant of the Cholesky decomposition [72,
chapter 4.1.7 therein], in combination with Tikhonov regular-
ization [61]. This regularization add a diagonal matrix T de-
pending on the Spherical Harmonics order and weighted by a
small numeric value ν (see [61] for details). Hence, the final
linear system has the following form.(

RT R+νT
)
·w = RT HS. (24)

We set the Tikhonov regularization weight to ν = 10−5 in all
experiments reported in this paper.

5.4. Energy coefficients

Similarly to the 2D formulation we use the harmonic ener-
gies, to gain rotation-invariance. Energies are defined as the
Euclidean norm of the Spherical Harmonic coefficients w for
each harmonic frequency separately. Specifically, the 3D cur-
vature Fourier descriptor Φ is defined by

Φl :=

√√√√ l

∑
m=−l

(
wm

l

)2
. (25)

These coefficients provide a compact descriptor of genus-0
shapes, and can be used for the analysis of nuclear envelopes
extracted from Serial Section Electron Microscopy stacks.

6. Results

We implemented our general shape descriptor pipelines and
tested them on several challenging use cases. In this section, we
first provide details on our implementation (Sec. 6.1) and then
provide an evaluation on general shape analysis, on the anal-
ysis of histopathological images, and nuclear shapes extracted
from Serial Section Electron Microscopy (SSEM) stacks. We
separate the evaluation of the two pipelines: for the 2D frame-
work, we report on consistency evaluation performed on classic
shape collections commonly used in literature for testing shape
retrieval methods (Sec. 6.2). We also provide results obtained
with our pipeline on various histology samples for medical di-
agnostics and neuroscience investigations (Sec. 6.3). For the 3D
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framework, we report on the usage of the pipeline for the classi-
fication of neural cells reconstructed from a rodent brain sample
(Sec. 6.4). In both evaluations, we involve expert domain sci-
entists, for providing a qualitative evaluation of the framework,
and for getting suggestions for designing a full visual analytics
framework for histology images.

6.1. Implementation notes

The code used to generate the results presented in this pa-
per for the InShaDe 2D pipeline is available in GitHub1(Python
scripts & Jupyter notebooks). After further testing and clean-
ing, we plan to also release the C++ code for the InShaDe 3D
pipeline.

InShaDe 2D. We implemented the 2D geometry processing
pipeline in Python using the following building blocks & mod-
ules: G-U-Net [4] for automatic segmentation, sklearn, skim-
age for contour processing and dimension reduction, interactive
matplotlib for visualization. For testing the pipeline, we de-
veloped simple interactive widgets in which users can compare
the clustering visualization in the parameter space to the recon-
structed cellular shapes in the histology images. In order to at-
tenuate the amplitudes of high frequencies, we used a frequency
equalization scheme weighting of the InShaDe coefficients ac-
cording to the square root of their order

(
w(k) =

√
k
)

. Our
geometry processing pipeline can be used in combination with
different dimension reduction schemes and clustering methods.
In this work we use the recent Uniform Manifold Approxima-
tion and Projection (UMAP) method, which is based on Rie-
mannian geometry and algebraic topology [14]. For clustering,
we used HDBSCAN [73] or k-Means [74, 75, 76] (depending
on the case).

InShaDe 3D. We implemented the InShaDe 3D pipeline in
C++, using conformal curvature flow based on spin transfor-
mations2. We furthermore used the Eigen library [77] for the
LDLT solver arising in the SPH least squares optimization. For
the SPH functions we used boost and libigl for geometry pro-
cessing. We then fed the parameters derived from the SPH de-
composition to standard machine learning methods (e.g., sup-
port vector machines, SVMs) using Python’s sklearn to classify
the nuclei.

6.2. Consistency validation

We first performed a consistency validation of the InShaDe
descriptor. For this, we used MPEG-7 and Animals [78],
which are among the most popular data sets for evaluating and
comparing the accuracy of shape retrieval methods [78]. The
MPEG-7 shape collection is composed of 1,400 binary im-
ages containing objects of 70 different classes [79] (see Fig. 9
left), while the Animals shape collection (see Fig. 9 right) is
an even more challenging data set containing 2,000 binary im-
ages grouped in 20 classes of 100 animals each one. To test

1https://github.com/HBKUVisCommunity/inshade/
2https://github.com/nitronoid/flo

Fig. 9: Shape retrieval experiments: we evaluate the InShaDe 2D pipeline
through classical shape collections commonly used for testing shape retrieval
methods: MPEG-7 (left), and Animals (right).

the InShaDe 2D descriptor we considered three different assess-
ment criteria:

(1) Retrieval accuracy of a basic SVM scheme, trained on an
augmented data set. We triple the size of the input data
set by adding randomly rotated and shifted copies of origi-
nal images. Moreover, we use a hyperparameter optimiza-
tion scheme to find the best SVM linear parameters with
respect to cross-correlation accuracy, and we test the ob-
tained model over the original collection. We also show
the accuracy of shape retrieval in the form of a confu-
sion matrix to highlight the accuracy differences between
classes.

(2) Bull’s Eye accuracy, which is commonly used to score
shape retrieval tasks when the number of objects is limited:
First, a similarity distance between objects represented by
feature vectors is defined. For this, we use the L1 norm
(Manhattan Distance), d(x,y) = ∑i |xi− yi|. For any ob-
ject O of class C, find a given KO nearest neighbors with
respect to d (KO = 4 in our case). After that, count how
many objects NO in the set of KO nearest neighbors share
the same class CO of object O. Finally, the Bull’s Eye score
is defined as B = ∑O

NO
KO

.

(3) Qualitative visual assessment of the reduced parameter
space obtained by projecting the feature vectors on a 2D
plane through dimension reduction techniques and observ-
ing how objects cluster together. In our experiments we
used UMAP [14].

For the composition of the feature vector we consider three
different contributions: the sorted local curvature signal Γ, the
elliptic Fourier analysis energy coefficients Φ, and the weight
values of k-sparse autoencoding [52] (see the examples in
Fig. 10). The purpose of using sparse coding features is not to
precisely reconstruct the original image, but rather to extract the
important information using very few parameters. The recon-
structed images, using only 256 coefficients, clearly represent
the main contents of the original images.

We investigate all possible composition permutations: sorted
local curvatures alone (Γ), Fourier energy coefficients alone
(Φ), sparse coding weights alone (Ω), local curvatures and
energy coefficients (ΓΦ ), local curvatures and sparse coding
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Fig. 10: Sparse coding: we used k-sparse autoencoders for encoding MPEG-7
(top row) and Animals (bottom row) shape images. Left: dictionary W . Center:
shape examples. Right: corresponding images reconstructed from sparse codes
with k = 256 coefficients. The reconstructed images clearly represent the main
contents of the original images.

Fig. 11: Bull’s Eye score for shape collections: various descriptors are com-
pared with respect to the Bull’s Eye accuracy on top of 4 retrievals for varying
number of coefficient. On the left, MPEG7 results, while on the right Animals
results. We compare simple and composed descriptors based on sorted curva-
tures, elliptic Fourier energy coefficients, and sparse coefficients. The highest
Bull’s Eye accuracy scores are 0.54 for Animals and 0.87 for MPEG7, and they
are obtained for the composed descriptor ΓΦΩ containing sorted curvatures,
energy coefficients, and sparse coefficients.

weights (ΓΩ), energy coefficients and sparse coding weights
(ΦΩ), local curvatures together with energy coefficients and
sparse coding weights (ΓΦΩ). For merging heterogeneous fea-
ture vectors, we perform pre-normalization of the various fea-
ture vectors. Fig. 11 shows the Bull’s Eye score obtained for
both shape collections on top of four retrievals for various fea-
ture vector compositions at varying number of coefficients. The
highest accuracy was obtained for 240 coefficients and with the
descriptor ΓΦΩ (composing sorted curvatures, energy coeffi-
cients, and sparse coefficients). Considering the feature coeffi-
cients alone, sparse coding descriptors outperform sorted cur-
vatures and energy descriptors: we suspect that this is due to
the fact that sparse coding is able to provide a valid descrip-
tion of both the boundary shape and the inner part of the ob-
jects. Nonetheless, incorporating the energy coefficients proved
to be beneficial since the composed descriptors can take into ac-
count transformations like rotations and shifts. The obtained
values are in line with current state of the art methods (see
tables in [78]): for example the obtained Bull’s Eye score on
MPEG-7 data set is 0.87 (versus 0.863 for Hierarchical String
Cats [80] and 0.876 for Fourier Transform Group Feature [81]),

while for the Animals data set the Bull’s Eye rate is 0.54 (versus
0.436 Hierarchical String Cats [80]). Better performances can
be obtained through post-processing retrieval schemes that are
orthogonal to our method and can be incorporated successively:
for example the Online to Offline O2O scheme [78] applied on
top of different descriptors can achieve Bull’s Eye score up to
0.99 for the MPEG-7 data set and 0.66 for the Animals data set.
In our experiments, we also noticed a slight degradation of ac-
curacy for feature dimensions higher than 500, indicating that
the curse of dimensionality can affect the proposed descriptor.

Fig. 12: Processing time for descriptors: we compared the CPU processing
time of InShaDe 2D energy descriptor with the sparse coding scheme computed
through k-sparse autoencoders [52] with respect to the number of coefficients.
We report the processing time per shape for MPEG-7 (on the left), and Ani-
mals (on the right).

We also compared the CPU computation times per shape be-
tween the various descriptors on the MPEG-7 dataset (the aver-
age number of vertices per shape is 1917) and Animals (the av-
erage number of vertices per shape is 961). For timing measure-
ments, we used a workstation equipped with an Intel i9-9900
CPU (8 cores, 3.1 Ghz), 64 GB of RAM, and an Nvidia RTX
2080 GPU with 8GB RAM. In Fig. 12, we report the processing
times per shape as function of number of coefficients, and for
both datasets (left: MPEG-7, right: Animals). For the k-sparse
autoencoder, we report the training time for 500 epochs using
the total images of the dataset for training but averaging the
times reported by the number of images. The input image reso-
lution is 256×256 for MPEG-7 and 640×432 for Animals. It
is worth noticing that, according to the number of coefficients,
the memory resources needed for using k-sparse autoencoder
are proportional to the size of input images and the size of out-
put sparse descriptor and can easily reach the limits of available
RAM in many systems. Moreover, the InShaDe pipeline can be
further accelerated through GPU-friendly implementations that
would be able to manage batches of images in parallel.

Fig. 13 and 14 show the UMAP projection of the composed
descriptor for the various shapes for both MPEG-7 and Animals
data sets as a visual reference (separated in groups of at most
12 labels to reduce clutter).

It appears evident that the proposed descriptor is, in most
cases, able to discriminate the shapes of MPEG-7 data set. The
clusters for the Animals data set appear more confused, thus
confirming the retrieval rates in this work and prior literature.
Fig. 15 depicts a typical failure case of our scheme on the Ani-
mals data set. A leopard is considered very similar to a cow, a
cat and another cow. The middle row shows the local curvature
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Fig. 13: MPEG-7 UMAP clustering: we test UMAP dimension reduction on the composed descriptor ΓΦΩ for MPEG-7 collections (256 feature elements per
descriptor for a total of 768 features). The Bull’s Eye score obtained for this collection was 0.898. In order to reduce visual cluttering, the various shapes are
separated in 6 groups of maximum 12 labels.

Fig. 14: Animals UMAP clustering: we test UMAP dimension reduction on the composed descriptor ΓΦΩ for Animals collection. The Bull’s Eye score obtained
for this collection was 0.543. In order to reduce visual cluttering, the various shapes are separated in 3 groups of maximum 7 labels.

signals computed over the shape contour, while the bottom row
shows the composed feature vector containing the sorted cur-
vatures (left), the energy coefficients (middle), and the sparse
coefficients (right).

Fig. 16 shows the confusion matrix for linear SVM classifi-
cation obtained for our composite descriptor ΓΦΩ. In terms of
accuracy, we obtain results aligned with state of the art methods
(88.4% for our descriptor on the MPEG-7 data set versus 66%
for Curvature based Fourier descriptor [29], 78% for blurred
shape models [82], 78% Morphological Pattern Spectrum [83]
and 90% for Zernicke moments with geometric features [79]).
It is important here to note that the composition of shape fea-
tures and image features significantly improved retrieval accu-
racy in agreement with prior work [79] (88.4% for the com-
posed descriptor versus 87.5% for the sparse coding descriptor
and 78% of the simple energy shape descriptor proposed in the

conference paper [13]). Given that the results show the pro-
posed descriptor to be consistent for classifying shapes of natu-
ral objects, we will now proceed to analyze its performance for
the analysis of biomedical images.

6.3. Histopathology analysis
For the analysis of histopathology images, we use public do-

main data from the MoNuSeg contest [47], and the very recent
PanNuke data set [41]. The former contains 30 images from
seven organs with unclassified annotations of more than 20k
individual nuclei. The latter contains more than 220K labeled
nuclei from 19 different tissue types and, as of writing, is the
largest open pan-cancer histology data set for nuclei instance
segmentation and classification. Finally, we apply the pipeline
to a whole slide image representing a paediatric appendix spec-
imen.
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Fig. 15: Bull’s Eye testing: Here, we show a typical failure case using the
L1 Bull’s Eye score for the descriptor ΓΦω on the Animals data set. Top row,
left to right: a leopard is considered similar to a cow, a cat, and another cow.
We also show the curvature signal of each curve (middle row) and composite
descriptor (bottom row).

Fig. 17 shows examples of images from the MoNuSeg data
set [47] classified by our framework: we reduce the dimensions
of the feature descriptors using UMAP, followed by k-Means
for clustering. We then color-code contours by cluster. We no-
tice that cells recognized as having similar shape features ac-
cording to UMAP do not necessarily relate to intuitive discrim-
ination through visible attributes such as length or thickness or
smoothness. However, they do not only form feature clusters
(same color) but also tend to form spatial clusters. The latter
fact can provide additional visual information to digital pathol-
ogists for diagnosis through spatial aggregation of such clusters.
While further investigation is needed to understand and evalu-
ate the clinical value and to find explainable taxonomies, initial
feedback from pathologists confirmed that in many cases nu-
clear features and clusters can provide decisive information for
recognizing specific conditions.

Histopathology shallow classification. We also tested whether
our descriptor could be used for shallow classification of nu-
clear cells for diagnostic purposes. To this end, we tested vari-
ous composed descriptors (Φ, Ω, ΦΩ, and ΓΦΩ) with varying
number of features (64,128,256), and we trained a linear SVM
classifier on PanNuke data set [41] for discriminating between
three classes of nuclei: neoplastic cells, inflammatory cells, and
others. Fig. 18, left, shows the accuracy performance of the
various descriptors considered in this work. The highest accu-
racy (0.601) is obtained for the composite descriptor ΓΦΩ with
256 features per component. However, the improvement of the
composed descriptor with respect to the sparse coding descrip-
tor is almost imperceptible (0.578 for the descriptor Ω). In this
case, sparse coding captures not just the shape but also texture
information, which might be helpful for classification. Thus,
the improvement brought by InShaDe is less pronounced com-
pared to Fig. 11, where the input images only contain shape
and not texture. In this case, the proposed shape descriptor
cannot adequately discriminate the various cell classes accord-

ing to the proposed taxonomy. It is still far from being suffi-
ciently accurate for reliable classification of individual nuclei.
However, this preliminary accuracy performance was obtained
with a simple SVM classifier, and it can be improved by con-
sidering more sophisticated classifiers, like ANNs. In general,
the dimension reduction plots show that cells of same type do
not cluster together when using the InShaDe descriptor (see in
Fig. 18 right some examples). Nonetheless, the presence of
outliers in the parameter space can provide pathologists visual
hints for proofreading the labeling of nuclei or evaluating the
accuracy of contours (see an example in Fig. 18 right, in which
a group of images is processed together to obtain a paramet-
ric scatter plot to be used for proof-reading patches). Fig. 19
shows an example for the visual analysis of whole slide images
(WSIs). We trained an SVM model on InShaDe feature vectors
derived from PanNuke data. Then, we used the SVM to classify
nuclei in a large-scale, 80,986×99,328-pixel WSI of a paedi-
atric appendix specimen. All nuclei are classified as either neo-
plastic (red), inflammatory (blue), or other (green). Inflamed
nuclei cluster together, providing a clear indication of specific
affected areas. Neoplastic nuclei are very rare and do not form
structured clusters. They are therefore considered classification
errors by the domain scientists. Histopathologists can use the
processing pipeline for preliminary analysis targeted at the in-
dividuation of inflammatory areas. We believe (a hypothesis
supported by the domain scientists in our team) that spatial ag-
gregation of classes, i.e., density estimations of the nuclei dis-
tribution in space (also see Fig. 19), could become a valuable
diagnostic tool in discriminating and individuating different tis-
sue regions. Since a full study into the usefulness of such spatial
density estimates is beyond the scope of this work, it is left as a
future research direction.

Qualitative evaluation. We tested our InShaDe processing
pipeline also on histology images of rodent brain samples stem-
ming from neuroscience. Two expert neuroscientists aided this
study by providing a qualitative evaluation of the framework as
applied to images obtained with different staining techniques.
As a general outcome, the domain scientists particularly appre-
ciated the fact that they could try to map specific features in the
shape features space to specific patterns in the histology images.

Specifically, Fig. 20, left, shows the outcomes of Nissl stain-
ing of mice brain sections. clustering was obtained with k-
Means. The Nissl staining is not specific for particular cell
types and is commonly used for cell counting, since it pro-
vides an excellent contrast between the cellular and extracel-
lular space. On the other hand, it does not provide a very good
contrast between the cytoplasm and the cell nucleus. In the ex-
ample reported, the contrast allowed the automated algorithm
to efficiently segment cell profiles, but only few nuclei were
segmented correctly (mostly in light blue, some of them high-
lighted with blue arrows). In this case, the usage of the parame-
ter space for highlighting the contour shapes in the image space
provides visual hints for recognizing particular features, like
blurred segmentations of soma mixed with dendrites, appear-
ing as irregular and elongated shapes (see red arrows in Fig. 20
top right). So far, neuroscientists consider the framework po-
tentially useful for proofreading the quality of the staining, and
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Fig. 16: Shape retrieval experiments: a simple Support Vector Machine classifier using our descriptor is able to obtain classification accuracy on par with standard
geometry-based classification methods (88.4% for the MPEG-7 and 55% for Animals over the complete shape collection). We also show the full confusion matrix
obtained on the testing data (left: MPEG-7, right: Animals collection).

Fig. 17: Examples of combining the InShaDe pipeline with dimension reduction and clustering for visual classification in histology: Color-coding of shape
clusters in the MoNuSeg data set [47] result in recognizable spatial patterns. Similar shape features according to UMAP do not necessarily relate to intuitive
discrimination through visible attributes such as length or thickness or smoothness.

Fig. 18: Accuracy on PanNuke data set: we trained a linear SVM model on
our descriptor and we compared the accuracy with respect to different feature
vectors obtained by composing energy coefficients and/or sparse coding coeffi-
cients (left). The maximum obtained accuracy over 3-classes is 0.601. PanNuke
represents the largest open pan-cancer histology data set for nuclei instance seg-
mentation and classification [41]. InShaDe can be used for proof-reading the
quality and the accuracy of labelling (right).

Fig. 19: Visual analysis of WSI: the InShaDe processing pipeline is applied
to the analysis of Whole Slide Images (WSI). A paediatric appendix specimen
(top left inset) is analyzed by a linear SVM model trained on InShaDe features
from PanNuke data. Histopathologists can identify inflammatory areas (blue)
against irrelevant background (green). Spurious cancer cells (red) do not form
structures and are correctly interpreted as classification error.
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Fig. 20: Visual analysis of mouse brain sections: our visual analysis pipeline
is used for a neuroscience investigation. Top: a brain section fixed with
paraformaldehyde is stained with Cresyl Violet, which highlights Nissl sub-
stance in the cytoplasm of neurons. Only few nuclei are segmented correctly
(in light blue and highlighted with blue arrows on the right) and in various cases
soma are mixed with dendrites (in red and highlighted with red arrows). Bot-
tom: toluidine blue is used in an attempt to discriminate pyramidal neurons
nuclei (in pink and highlighted by pink arrows) from blood vessels (in red and
highlighted with red arrows) and artifacts.

filtering some information even in case of wrong staining.
Finally, Fig. 20, right, shows a portion of somatosensory cor-

tex from an ultrastructural work on ageing [84, 85, 86]. Nu-
clei were stained with toluidine blue on semithin sections pre-
pared for electron microscopy in order to count cells. The ex-
tracted contours were clustered through k-Means. In this case,
the shape feature space enabled scientists to distinguish im-
mediately between blood vessels (in red, with some of them
highlighted by arrows), and nuclei from different kind of neu-
rons (pyramidal neurons mostly in pink, highlighted by arrows
and with different distribution according to the layer).

6.4. Evaluation of 3D pipeline
For the evaluation of the InShaDe 3D pipeline, we used two

collections of 3D reconstructions of brain cells nuclei, extracted
from reconstructions of nanometric scale electron microscopy
stacks, obtained after imaging a volume of brain parenchyma
from layer II/III (see Fig. 21 left )and layer VI (see Fig. 21
right) somatosensory cortex of a P14 rat [54]. The nuclear
shapes were manually assigned to known cell types, namely
neurons, astrocytes, microglia, pericytes, unknown cells (most
likely oligodendrocytes), and endotelium cells for both collec-
tions. We used InShaDe 3D feature vectors as the input for

Fig. 21: Data sets: we tested the InShaDe 3D pipeline on two collections
of brain cells nuclei extracted from layer II/III (left) and layer VI (right) of
somatosensory cortex of a P14 rat.

a kernel SVM with radial basis functions. To assess the clas-
sification performance, we considered four cases for SPH de-
composition with order Lmax = 8,16,24,32, corresponding to
the number of rotation-invariant energy descriptors (see also
Sec. 5.1). For each case, we performed a grid-search to config-
ure the two hyperparameters in the SVM model: the constant γ

of the Gaussian radial basis function, and the weight C for the
soft margin regularization function. We chose a grid logarith-

Fig. 22: Accuracy for 3D nuclei classification: we trained SVMs with
InShaDe 3D features on nuclei shape collections from somatosensory cortex
of a juvenile rat in layer III and layer VI. Left: cross accuracy of the SVM
model for layer III collection, layer VI collection and full collection. Right: we
compare the accuracy performance of InShaDe with respect to WISH [61] on
the same data. Despite the simplified formulation, the accuracy is similar.

mic in C (ranging from 10−2 to 1010) and γ (ranging from 10−9

to 103). We then trained the model on 95 nuclear shapes for
the layer VI shape collection, and 82 shapes for the layer II/III
shape collection. We performed a 5-fold cross-validation using
sklearn’s StratifiedShuffleSplit function. This partitions the in-
put data into five image sets while maintaining the relative ratio
of classes in each set. Four sets were used for training and vali-
dation (using an 80/20 split) and the remaining set was used for
a blind test. Fig. 22, left, summarizes the best cross-accuracy
among the five folds for the SVM models trained on different
shape collections and varying feature dimensions.

We also compared the performances of this new formulation
with respect to our previous framework WISH [61] (also see
Fig. 22 right). The InShaDe accuracy is similar to WISH, with
a best score of 83% versus 84% for the layer VI data set. It is
worth noting that this is despite the new formulation proposed
here containing fewer coefficients (one real-valued vector here
as opposed to three complex vectors [61]) and is easier to com-
pute numerically. In Fig. 23 we report the average processing
times of the Spherical Harmonics coefficients for varying orders
of components. It is evident that the simplified formulation re-
sults in a dramatic reduction of computation times. These tim-
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Fig. 23: Processing time for SH computation: we compare the processing
time for coefficients computation between InShaDe 3D and WISH [61]. The
simplified formulation results in a dramatic reduction of processing times.
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Fig. 24: Dimension reduction: dimension reduction projections of InShaDe
3D features for all collection shapes. From top to bottom: PCA, t-SNE, and
UMAP. Neurons from different layers tend to form clearly separate clusters.

ings were measured on a Razor Stealth laptop equipped with an
Intel i7-8565U CPU (4 cores, 1.8GHz) , 16GB RAM and con-
nected through USB-C to an e-GPU NVIDIA Titan RTX with
24GB RAM. Moreover, the spherical parametrization step is
identical between the two pipelines InShaDe and WISH, and the
mean curvature signal is obtained as free by-product from the
usage of Willmore Flow [87]. Given the availability of shape
collections extracted from different layers, we tested whether
models trained on one collection could be generalized for infer-
ence on the shapes of another collection. The resulting perfor-
mance was poor, in particular for neurons (below 60%). This
confirms the hypothesis from domain scientists [54] that nu-

clear envelopes exhibit different shape features according to the
layer from which they are extracted. To confirm this point,
Fig. 24 shows the full shape collection under different dimen-
sion reduction schemes. It appears that it is not possible to clus-
ter together cells extracted from different layers (II & III vs VI).
From these preliminary results, it appears evident that:

• it is difficult to find models using InShaDe 3D descriptors
that can generalize the classification of cell types regard-
less of the layers from which they are extracted;

• neurons of different layers appear to form separate clus-
ters, suggesting a shape variability depending on the area
from which they are extracted [88]. This is an interesting
hypothesis worthy of further investigations which we plan
to carry out in the future.

6.5. Discussion

We summarize the main outcomes of this study as follows.

• Relationships between shape parameter space and im-
age space: in various cases we notice that spatial clusters
of cells exhibit closer shape features in the reduced param-
eter space. Further investigation is needed to understand
whether and in which cases spatial patterns or clusters in
the image space correspond to patterns or clusters in the
parameter space, and to associate shape clusters to spe-
cific taxonomies. In this context, we would like to remind
that performing clustering on parameter space obtained af-
ter dimension reduction is still considered a complex task
prone to producing unreliable results [89]. Therefore, we
plan to explore different automatic and manual dimension
reduction techniques to support domain scientists during
their analysis.

• Coupling with image descriptors: we integrated the
InShaDe 2D with sparse coding for decomposing the inner
part of nuclei as function of specific texture patterns with
different physical and molecular characteristics. Sparse
coding features outperform the proposed descriptor (we
suspect that the reason is related to the fact that they can
also describe shape boundary features), while composed
descriptors provide slightly better discrimination capabil-
ities for standard evaluation datasets because they recover
invariance with respect to transformations. However, the
composed descriptors are not reliable yet for fine-grain
diagnosis on histopathology images. Spatial aggregation
(i.e., class density estimation) could be used to alleviate
this problem, but future research is needed. We also sus-
pect that we have hit a performance wall for engineered
and model-based descriptors. Therefore, we plan to in-
tegrate model-based descriptors into more general deep
learning architectures.

• Caveats due to staining techniques: depending on the
structure to be identified within a cell, or the type of tissue,
a large plethora of immunohistochemical staining tech-
niques are available. The proposed analysis framework
can provide effective proof-reading tools for checking the
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quality of staining methods and semi-automatically indi-
viduating the structures of interest.

• Taxonomy-based visual analytics system: a real chal-
lenge in the analysis of histology images is the difficulty
to individuate correct taxonomies of nuclei in order to
simplify understanding and diagnosis. A visual analytics
framework incorporating contour analysis, image analysis,
and expert domain knowledge would help digital patholo-
gists in labeling and proof-reading, and would provide fast
ways for creating labeled data for more sophisticated arti-
ficial intelligence frameworks.To this end, our processing
pipeline provides encouraging results and can be easily in-
tegrated in such systems.

• 2D Arc-length parameterization: while we have yet to
observe our Arc-length parameterization algorithm to di-
verge, we do not have a formal proof of convergence at the
time of writing. We believe it works so well since changes
in u happen very gradually and the original curve re-
mains untouched. Each reparameterization attempt there-
fore slides vertices around the input curve. While formal
analysis is hindered by the fact that our method is discon-
tinuous at original vertices, we believe a full treatise to be
an interesting direction for future work.

• Benefits of scale-invariance: for the MPEG-7 and an-
imals data sets, utilizing the optional scale-invariance
boosts performance by up to 10% in many of our exper-
iments. This should come as no surprise, since, e.g., the
outline of a butterfly stays the outline of a butterfly un-
der magnification and minification. Consequently, deep
learning-based pipelines have made rescaling a main step
of their data augmentation stage, in an attempt the achieve
de-facto rather than by-design scale-invariance. What is
surprising, however, is that scale-invariance added only
marginal and in many cases statistically insignificant im-
provements for cell nuclei classification. We believe that
this is due to the “apparent size” problem, in which cell
nuclei always appear smaller than the original size due to
slicing. It seems that having plenty of slices under differ-
ent angles at the classifiers disposal is more important than
to remove scale-variance. A full analysis of this problem
is beyond the scope of this paper and offers an interesting
future research direction.

• Limitations of 3D pipeline: the encouraging results ob-
tained with our 3D formulation are counterbalanced by
two important limiting bottlenecks. Firstly, the process for
producing nuclear surfaces from electron microscopy im-
age stacks is still time consuming and requiring highly spe-
cialized human efforts. Even though important progresses
in automatic segmentation of EM stacks has recently been
made [19], custom models for automatic extraction of nu-
clei are not available to our knowledge. We plan to focus
future efforts towards this direction. Secondly, the spher-
ical parameterization task is complex and can be unsta-
ble. One of its limitations is that it cannot be applied to
arbitrary closed shapes but only genus-0 and (if the flow

is appropriately regularized) genus-1 surface (that is, sur-
faces either homeomorphic to spheres or torii with at most
1 hole). To overcome these limitations, we plan to inves-
tigate more general invariant formulations based on mani-
fold harmonics [90].

7. Conclusion

We have presented a general shape processing framework
rooted in a novel differential-geometry-based descriptor of
closed contours and surfaces. Our descriptor provides an em-
bedding into a fixed-dimensional feature space that can be uti-
lized for various applications, which range from serving as in-
put feature for deep and shallow learning techniques to support-
ing dimension reduction schemes for providing a visual refer-
ence for clustering collection of shapes. While our methods are
of general use, our work is motivated by the study of cellular
nuclear envelopes extracted from histopathological images and
serial section electron microscopy stacks. In this context, we
have shown the capabilities of the proposed framework for vi-
sual analysis and unsupervised classification. Our results are
very encouraging and we identify several major areas of future
work in the previous section. In particular, we plan to develop,
on top of our pipeline, a taxonomy-based visual analytics sys-
tem to simplify study and diagnosis.
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