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A B S T R A C T

We present a vision-based approach to automatically recover the 3D existing-conditions
information of an indoor structure, starting from a small set of overlapping spherical
images. The recovered 3D model includes the as-built 3D room layout with the po-
sition of important functional elements located on room boundaries. We first recover
the underlying 3D structure as interconnected rooms bounded by walls. This is done
by combining geometric reasoning under an Augmented Manhattan World model and
Structure-from-Motion. Then, we create, from the original registered spherical images,
2D rectified and metrically scaled images of the room boundaries. Using those undis-
torted images and the associated 3D data, we automatically detect the 3D position and
shape of relevant wall-, floor-, and ceiling-mounted objects, such as electric outlets,
light switches, air-vents and light points. As a result, our system is able to quickly and
automatically draft an as-built model coupled with its existing conditions using only
commodity mobile devices. We demonstrate the effectiveness and performance of our
approach on real-world indoor scenes and publicly available datasets.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Acquiring and recovering as-built and existing conditions
models [1] of an indoor environment is an important task for
many real-world applications. As-built models have to be cre-
ated during and after construction to document any deviations
from the architect’s original design, such as doors that were
placed in a different location from the construction documents,
or to determinate the actual size and shape of the building versus
what was specified. Moreover, existing conditions surveys are
usually created post construction on top of an as-built plan, and
include more details regarding, e.g., locations of electrical and
data outlets, duct work, and sprinkler lines. Such information
is essential to obtain an effective Building Information Model
(BIM). Methods and tools to quickly recover such information
is therefore of major practical importance.
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The wide availability of mobile cameras, e.g., on smart-
phones, is making image-based methods very appealing in this
context, since the capturing process is fast, simple and ex-
tremely cost effective. This is particularly true when exploiting
emerging 360◦ cameras, since omnidirectional coverage sim-
plifies geometric reasoning, as capturing of the environment re-
quires very few shots.

In order to generate plausible reconstructions from the
acquired visual information, state-of-the-art approaches (see
Sec. 2) cope with the major problems posed by common in-
teriors, such as typical offices or apartments, using visibility
reasoning methods and exploiting prior knowledge. Handled
problems include occlusions or texture-poor walls, while typi-
cal exploited constraints include the presence of vertical walls
and horizontal floors (and ceilings).

Based on these concepts, a number of 3D solutions have been
introduced for indoor floor mapping, 3D clutter analysis [2]
(e.g., furniture detection or objects for daily human use) or in-
door content creation [3], leading to methods capable to recon-
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Fig. 1. Results preview. Multi-room models reconstructed by our method and the detected objects mapped on them (i.e.Apartment (left) and office (right)).
Ceilings have been moved in the examples to enhance illustration. Beside the models we show the query images (i.e. patches extracted from the processed
images), and the number of occurrences detected by our system. As illustrated in the Results section 6, we achieve solid performances both on real-world
scenes and on publicly available datasets.

struct room shapes, as well as roughly determining furniture
placement.

However, many fundamental objects defining existing con-
ditions are approximately flat and placed on walls, ceilings or
floors (e.g., outlets, air-vents, and a wide variety of integrated
lighting fixtures). The shape, location, and placement of ob-
jects are an integral part of existing condition models, but, due
to their placement and flatness, 3D solutions for object detec-
tion are generally ineffective in automatically identifying these
elements. Therefore, specialized techniques for flat objects de-
tection in the acquired images must be introduced to suitably
augment the 3D models coming from a 3D indoor reconstruc-
tion pipeline.

The typical approach used when looking for approximately
flat objects in sets of images is to apply a pure image-based
method (see Sec. 2). Object detection in spherical images is,
however, difficult, since angles and straight lines are not glob-
ally kept, objects appear variably stretched, and, as for any
image-based approach, the missing metric information leads to
the need for variable scale detectors, which increase the number
of localization errors.

Several works deal with the general problem of object de-
tection in spherical images in different ways, either by con-
verting images with arbitrary projections to standard perspec-
tives [4, 5, 6], or, more specifically, by modifying feature com-
putation to work directly on catadioptric camera cases [7, 8].
We refer to Section 2 for a more detailed discussion. In this
work, we avoid the complication of recognition and matching
in spherical images by introducing a novel integrated approach
tuned for our specific case of reconstructing an indoor envi-
ronment and detecting functional elements in the scene. Our
method exploits the 3D information recovered when extracting
a 3D structured layout to locate the room boundaries, as well
as to directly support image-based search for the elements lo-
cated on them. Since functional elements are flat and typically

stick on walls solely or on the ceilings solely, detection can thus
exploit rectified projection on the reconstructed boundary.

1.1. Our approach
We first register a set of overlapping spherical images in a

common reference frame using Structure-from-Motion. Then,
we recover the underlying 3D structure of the environment, in
terms of interconnected rooms bounded by walls, by analyz-
ing the registered images. This is done using a novel approach
that exploits the Augmented Manhattan World model (which
assumes that walls are vertical but not necessarily orthogonal
to each other). By exploiting the recovered 3D information
we project the original spherical images, obtaining a set of bi-
dimensional undistorted images re-sampled in a metric scale.
Using those undistorted images and the associated 3D data, we
can automatically detect, starting from examples, the 3D posi-
tion and shape of relevant wall, floor, and ceiling-mounted ob-
jects. By exploiting the fact that we work on a rectified metric
scale, we introduce, for detection, an approach based on slid-
ing window and Histogram of Oriented Gradients (HOG) de-
scriptors. As a result, the recovered 3D models, in addition to
as-built room shapes, includes functional elements located on
room boundaries (Fig. 1).

1.2. Contribution
Our approach combines and extends several state-of-the-art

solutions in indoor reconstruction. The main contributions are
the following:

• we introduce, to the best of our knowledge, the first purely
image-based pipeline to automatically recover an existing-
conditions model, which in addition to the 3D room lay-
out, includes the position of important functional elements
located on room boundaries; the pipeline is demonstrated
on a set of real-world scenes, including publicly available
datasets;
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• we introduce a 3D layout recovery method which jointly
exploits multiple spherical images for 3D layout extrac-
tion; the method is robust to clutter, and allows for a con-
sistent 3D structure extraction for complex multi-room en-
vironments. Only few overlapping images are required,
and, thus, the method is much less time-consuming than
dense multi-view approaches;

• we introduce an approach to automatically detect, start-
ing from examples, the 3D location of a large set of flat
objects placed on room boundaries, important for existing
conditions mapping and difficult to handle using geomet-
ric search; the proposed method exploits the recovered 3D
information of the layout and the associated undistorted
images to robustly perform an efficient image search.

1.3. Advantages
Our system enables even non-professional users to quickly

draft an indoor as-built and existing conditions model requiring
only commodity off the shelf devices.

By combining a small number of spherical views, we are able
to fully recover the 3D layout of complex environments, over-
coming the limitations of current single-view and multi-view
approaches.

Even though spherical images are now very popular, thanks
to their clear advantages in terms of easy capture and visual cov-
erage, current state-of-the-art approaches for indoor reconstruc-
tion are generally related to single room/point-of-view scenes
(see Sec. 2), basically by fitting simple box-like room models
to the image [9] or by sketching the visible space through a
combination of 3D planes [10]. Such approaches are very lim-
iting in common indoor scenarios that usually include many oc-
clusions, hidden corners, open spaces and multi-room environ-
ments, especially when finding far and small objects on room
boundaries. On the other hand, dense multi-view approaches,
which are usually effective in SLAM [11], need for a very small
baseline to get enough 3D features on poorly textured environ-
ments [12], such as the indoor scenes, thus minimizing the ad-
vantage of capturing a scene with few spherical images and with
minimal user interaction. Instead, our approach exploits geo-
metric reasoning, and works with a small number of captured
images. Furthermore, the adopted solution for 3D layout ex-
traction covers a wider range of indoor environments compared
to other general approaches (e.g.,[10, 13]), neither using addi-
tional tracking system for doors matching [13], nor externally
calculated 3D data [14]. Our pipeline recovers, in addition to
the 3D layout, the location of objects on room boundaries. In
order to obtain a complete 3D building model, such a pipeline
can be effectively integrated with existing orthogonal solutions
for furniture detection (e.g., [2]).

By performing object recognition in the rectified space, we
avoid distortion and scaling problems, outperforming query-by-
example methods applied directly to the original images (see
Sec. 6). Specifically, we integrate in the pipeline an effective de-
tection method based on sliding-window and HOG descriptors,
whose applications has already been proved particularly reli-
able in other unrelated bi-dimensional domains, such as text re-
trieval [15]. As the rectified images produced by our integrated

system have the same metric scale, and this scale is globally
kept in all the undistorted room images, the proper HOG cell
size depends only by the query image size, without the need
for any external tuning or pre-calibration [16], thus improv-
ing in terms of automation compared to the methods mentioned
above.

2. Related work

Our approach relies on results obtained in several areas of
computer graphics and compute vision. Here, we only discuss
the methods that are most closely related to our technique.

2.1. Indoor reconstruction from spherical images

In recent years, efforts have been focused on simple and fast
approaches for indoor reconstruction from panoramic images,
regardless of a special hardware (i.e., using the most common
format of equirectangular image). Yang et al. [10] propose an
efficient method to recover the 3D appearance of a single room
based on a constraint graph encoding the spatial configurations
of line segments and super-pixels of a single panoramic im-
age. Although effective in many indoor layouts, this approach
is limited only to single room environment where all the cor-
ners are visible from a common point-of-view. Cabral and Fu-
rukawa [14] propose a system to reconstruct piecewise planar
floorplans from images, however the reconstruction is strength-
ened by an externally calculated 3D point cloud. Similarly to
Yang et al. [10], Pintore et al. [13] integrate the super-pixel la-
beling through the analysis of the image’s edgemap, extending
the result for the single room to multi-room environments by
doors matching [17], with the aid of motion sensors embed-
ded in a mobile device. As for [10], their approach works
only when all the structural features of the room are visible
from a single position. In this work, we improve over previous
solutions by integrating an approach based on the Augmented
Manhattan World assumption and Structure-from-Motion cam-
era alignment, focusing more on boundaries detection. Our new
approach returns a structured reconstruction even when single-
view approaches fail [10, 13], thus requiring less capturing ef-
fort (see Sec. 6). A similar approach is taken by Pintore et
al. [18]. Here, however, we target a very sparse sample, while
that work requires the use of multiple-view features and relative
3D points to produce a result.

2.2. Flat object localization on spherical images

Object localization is a very active area of research, and we
refer the reader to a recent survey for a wide coverage [19].
Specific works recover 3D foreground objects from a spheri-
cal indoor environment, such as the method of Zhang et al. [9],
but these approaches are not well tuned for flat/2D objects on
room boundaries. This is because they target recognition of
fully 3D object shapes using 3D cuboid hypotheses, which are
not compatible with the flatness of our target objects. The usual
approach for 2D objects is instead to perform detection in im-
age space, and to take into account deformation in a consistency
check. For standard narrow-FOV perspectives, this is done by
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Fig. 2. System overview. We capture a set of overlapping equirectangular images, covering the indoor scene and the potentially hidden parts of the
walls. We register the spherical images in a common reference frame using Structure-from-Motion and we automatically recover the underlying 3D layout
by analyzing the registered images through an Augmented Manhattan World model. We project each spheremap on the recovered structure to generate
uniformly sampled bi-dimensional images. Exploiting those undistorted images we are able to introduce an effective instance detection system starting
from examples. The recovered instances are also automatically mapped on the 3D structure.

first detecting scale-invariant features (e.g., SIFT) and check-
ing the consistency of the geometric relations of detected 2D
points with respect to their supposed 3D position [20]. In the
case of an indoor environment captured using equirectangular
images, however, these approaches are not particularly effec-
tive, since the distortion is too wide. Many object detection
methods, instead, use various types of re-projections prior to
object recognition, in order to simplify the detection step by
performing it in a suitable image space. For instance, face
recognition often exploits locally conformal projection [21].
Similarly, panoramic projections are used for identifying ob-
jects from omnidirectional images [22] or videos [4]. Lines,
however, appear bent, and objects that are not centered in the
foreground are widely deformed, making it difficult to exploit
detectors for regular shapes, such as rectangles or lines. Multi-
ple perspective projections (e.g., cubemaps) are often exploited
in order to preserve straight lines (e.g., [23]), with the draw-
back of discontinuity and object distortion at wide FOVs.

Our approach instead adapts the projection to the content of
the scene, exploiting, instead of a generic arbitrary projection,
the boundary reconstruction to detect objects in a fully undis-
torted and re-sampled space.

This approach allows the use of an effective sliding window
strategy [24, 25], with the additional benefit of having to recog-
nize small variations of a known form of a known scale. Having
a known scale is fundamental to the success of such a sliding
window approach because it allows to define the size of the
window and the sliding step consistently with the size of the
searched object, especially when dealing with small objects,
since a small feature size causes the loss of contextual infor-
mation and a large size results in capturing too much irrelevant
information.

Moreover, combined with sliding window, HOG descriptors
have proven to be very effective[26, 27, 28]. Dalal et al. [25]
experimentally show how HOG descriptors significantly out-
perform other feature sets, such as SIFT, for human detection,
while Almazan et al. [15] and Pintus et al. [29] successfully
employed HOGs for word-spotting, using an empirical cell size

adjustment. Cinaroglu and Bastanlar [7, 8] also HOG descrip-
tors and a sliding window approach on a catadioptric image ob-
tained by a photograph of a reflecting sphere, with the goal of
detecting humans and objects in an outdoor scenario. Such an
approach, instead of re-mapping the images, deforms the win-
dow and changes the gradient computation in order to work di-
rectly in the input catadioptric image space. Since our approach
must, anyway, reconstruct wall surfaces in order to compute the
3D layout, and we look for flat objects placed on walls and ceil-
ings, we can perform detection directly on the rectified images
associated to room boundaries. This way, we can directly use
the HOG and sliding window without the need for modifica-
tions.

3. Overview

Our pipeline, depicted in Fig. 2, extracts a simplified and
structured 3D layout from a small set of overlapping equirect-
angular images (Sec. 4) (i.e., spherical images that have 360◦

longitude and 180◦ latitude field of view), with the goal of de-
tecting and mapping the objects of interest located on the room
boundaries (Sec. 5).

We assume that the input images are already aligned to the
gravity vector (i.e., vertical lines in the image are vertical struc-
tures in the real scene) and rectified accordingly. These condi-
tions are usually satisfied by spheremaps generated with the aid
of sensor fusion (for example to compensate hand-held camera
or a support not perfectly parallel to the ground), as in the case
of the adopted mobile spherical camera.

To extract the 3D layout, consisting of interconnected rooms
bounded by walls, we start performing a super-pixels segmen-
tation on the single images (Sec. 4.1) in order to find a simpli-
fied geometric context labeling (i.e. ceiling, wall, floor). Then,
under an Augmented Manhattan World model (e.g., vertical
walls and horizontal floor/ceilings), we apply on the segmented
boundaries (i.e. ceiling-wall and floor-wall contours) a 3D map-
ping function and optimization scheme to infer, in Cartesian



Preprint Submitted for review / Computers & Graphics (2018) 5

Coordinates, the 3D room structure visible from each point-of-
view/image (Sec. 4.2). Afterward we exploit the multi-view
clues to find the 3D position of each spherical pose, (Sec. 4.3),
thus merging in the same 3D model the contribution of all point-
of-views.

Once the 3D model has been extracted, we generate recti-
fied images by projecting the contents of each spherical image
on the detected floor, ceiling and wall planes (Sec. 5.1). Ex-
ploiting the rectified images, we address the problem of flat
object recognition as a query-by-example task: given a query
object image, we identify and retrieve regions of the rectified
images where the query object may be present, using an ap-
proach based on HOG (Histogram of Oriented Gradient) de-
scriptors combined with an Exemplar Support Vector Machine
(E-SVM) (Sec. 5.2). The recovered object instances are also
automatically mapped on the 3D structure.

We show in Sec. 6 how our system provides solid perfor-
mances on a variety of indoor scenes, such as real-world multi-
room environments and various scenes from the publicly avail-
able SUN360 dataset [30].

4. 3D layout extraction

4.1. Image labeling

The pipeline starts by performing, on each image, a super-
pixel segmentation [31] and geometric context labeling, which
assigns regions of the image to ceiling, wall, floor, leaving un-
decided areas labeled as unknown.

As for other indoor reconstruction approaches [13, 14], our
method adopts a simplified classification based on only three
labeled zones. Then, algorithmically, not all super-pixels are la-
beled in this stage of the pipeline. Moreover, our method does
not need to recover the full geometric context for all of them
(i.e., in the presence of clutter). For our neeeds, this partial
classification is more than acceptable, as we are interested only
in reconstructing the boundary structure of each room and in
mapping solely the objects located on this boundary. The goal

Fig. 3. Image analysis and Cartesian mapping. Each image (top left) is au-
tomatically labeled as ceiling, wall, floor, unknown, with the goal of finding
contours between the labeled zones (top right). Contours are transformed
through a mapping function from spherical to Cartesian space (bottom
right).

of this classification is to find the contours Cc and C f , contain-
ing the areas respectively classified as ceiling and floor (Fig. 3
top-right), labeling only those super-pixels that can be unam-
biguously assigned to floor, walls, and ceilings. Classification
of all the super-pixels into ceiling, floor and walls will be made
complete after having obtained the shape of the room (Sec. 4.2).
A comparison between the error propagation at this stage and
after the shape recovery is provided in Sec. 6.3.

In terms of segmentation and labeling, we improve over
previous work [13, 14], which adopt a canonical color dis-
tance [26], by extending labeling propagation (Eq. 1) so that
it takes into account not only a simple color distance, but also
the spatial distance between super-pixels and the statistical dis-
tribution of the color [32]. We experienced that this approach
better preserves geometric clues in indoor scenes, resulting in a
better detection of ceiling/floor contours.

For each unlabeled super-pixel νi, the classification problem
consists of finding the nearest labeled neighbor ν j, according
with the distance function:

Dp(νi, ν j) =
‖ci − c j‖

2

(1 + Ω(ci, σi, c j, σ j)) · (1 + ‖pi − p j‖
2)

(1)

where p, c and σ are respectively the position, the mean
color and the color variance values of a super-pixel, and
Ω(ci, σi, c j, σ j) is an estimation of the volume intersection of
the color space portions inside the super-pixels represented by
the Gaussians N(ci, σi) and N(c j, σ j). After having set all the
super-pixels in the image as unknown, we start from the poles of
the spherical image (defined, respectively, as ceiling and f loor)
and the horizon (wall), and we iteratively propagate the labeling
of labeled super-pixel to its neighbors, until a distance thresh-
old is reached. We tune the threshold (i.e. th=0.5 in our tests)
so as to maximize the ceiling coverage.

Once the propagation is complete (at least 60% of the whole
image), we identify the edges (contours) Cc and C f , respec-
tively for the ceilings and for the floor boundaries. We exploit
these contours to detect the room shape in world coordinates,
as described in the following section.

4.2. Rooms boundary detection
The contours Cc and C f are the boundaries of the ceiling and

the floor found in the equirectangular image. Assuming the
equirectangular image defines a direct mapping between pix-
els and angles of the spherical coordinates, the next step is to
express such angles/pixels in Cartesian coordinates.

We employ a 3D mapping function, based on the following
spherical coordinates parametrization (illustrated at the bottom-
left of Fig. 3):

Pl =

 dl cos γ cos θ
dl cos γ sin θ

dl sin γ


where l = (θ, γ) is any pixel of the image. Obviously, from the
image alone we cannot tell the depth dl of each pixel, but from
the assumption that the ceiling and the floor are horizontal we
can write:

zc = dl sin γ ⇒ dl cos γ = zc/ tan γ ∀l ∈ ceiling
z f = dl sin γ ⇒ dl cos γ = z f / tan γ ∀l ∈ f loor
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where zc and z f are the (unknown) heights of ceiling and floor,
respectively. Therefore, we can express the contour of the ceil-
ing and floor in 2D as a function of their height:

Cc
∗ = {( zc

tan γ cos θ, zc
tan γ sin θ) ∀(θ, γ) ∈ Cc}

C f
∗ = {( z f

tan γ cos θ, z f

tan γ sin θ) ∀(θ, γ) ∈ C f }
(2)

An example of this mapping is illustrated at the bottom-right of

Fig. 4. Contours scaling and matching. To recover the 2D room shape from
the transformed contours C∗c (up-to-scale) and C∗ f (target metric scale) of
eq. 2, we fit the polygon S (zc) (yellow - polygonal approximation of C∗c) on
C∗ f , varying zc (red arrow), until the best scaling (green arrow) has been
found.

Fig. 3, where labeled pixels of ceiling (blue) and floor (red) are
represented in 2D Cartesian space, coupled with their bound-
aries (respectively magenta and cyan contours). As it can be
easily verified looking at Equation 2, the 2D shape of the con-
tours Cc

∗ and C f
∗ is fully determined by Cc and C f , while zc

and z f are merely scaling factors. By using the assumption that
walls are verticals we could state that Cc

∗ ' C f
∗, that is, the

the two contours are similar shapes in the geometric sense and,
furthermore, that we need only one of them to draw the room
boundaries up-to-scale. Since that in practical situations, due
to the furniture and clutter laying on the ground, the segmenta-
tion of the floor is way more prone to have missing parts than
that of the ceiling, the boundary Cc

∗ is usually more reliable.
On the other hand, it is easy to know the actual value of z f by
measuring the height of the camera lens from the ground (i.e.
cm), while is less so for the distance of the camera lens from the
ceiling, which would give zc.

Assigning to z f a real world value has the important advan-
tage of scaling the whole reconstruction in real-world metric
scale (i.e. cm).

Therefore we adopt the following strategy. We set z f to mi-
nus the height of the camera lens and build the contour C f

∗,
than we find the value of zc that minimizes the difference be-
tween Cc

∗ and C f
∗. In other words we take the actual metric

scale from the floor and the actual shape from the ceiling. This
is carried out by the following steps. We apply an iterative end-
point fit algorithm [33] to the ceiling contour C∗c(zc) to recover
the 2D shape of the room as a closed polygon S (zc) (Fig. 4, yel-
low shape). To find the right z∗c, and consequently the shape of

the room scaled in real-world dimension, we minimize the dis-
tance between points s ∈ S (zc) and points c ∈ C∗ f (z f ) among
all directions θ around the room center (Fig. 4):

z∗c = argmin
zc

2π∑
i=0

‖si − ci‖
2 (3)

thus identifying the scaled polygon S (z∗c) enclosing the floor
contour C∗ f (z f ). From the 2D corners {p0, . . . , pN} of the poly-
gon S (z∗c) we obtain the respective 2N 3D points by assign-
ing them a z component (z f for the floor and zc for the ceiling
points). The resulting 3D model Mk ∈ R3 represents the simpli-
fied geometric structure visible from the k spheremap.

Fig. 5. Multiple poses merging. Single reconstruction are merged exploit-
ing multi-view alignment between overlapping images. More than one re-
construction per room are exploited to refine the same room shape (Room1,
orange and magenta), or joined to cover hidden corners (Room2 is fully
covered by the green and blue reconstruction). Intermediate poses can
connect different rooms (yellow).

The end-point fit algorithm returns a coarse approximation
for the polygon, since we expect a room is represented by a lim-
ited number of corners and linear segments as walls. If there are
many occluders on the ceiling, the projection of the super-pixels
segmentation may lead to a very jagged polygon for which is
hard to find a meaningful threshold for the end-point fit approx-
imation. We conservatively re-run the end-point fit algorithm
with an increasing threshold, until we obtain a shape with at
least 4-corners. This way, a shape is always reconstructed for
each view, considering also the fact that the final reconstruction,
in particular for the most structured cases, will be given by the
union of several views, as we will see in Sec. 4.3.

4.3. Connection of multiple views
As most of the indoor reconstruction methods from spher-

ical images rely on a single-view (see Sec. 2), very few ap-
proaches bring together many rooms, basically exploiting ex-
ternal tools [13] or manual user interaction [17]. In our system
instead we propose a pure vision-based approach, which ex-
ploits only the original images given as input. In-fact, once
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a 3D model Mk is reconstructed in metric Cartesian coordi-
nates, merging models obtained from different panoramic im-
ages reduces to finding the relative position and orientation of
the cameras corresponding to those images. To do this we ex-
ploit a Structure-from-Motion approach to register each cam-
era. As proven in many SLAM techniques for large baseline
motion (e.g., [11]), omnidirectional images allow excellent per-
formances when tracking 3D features to recover the camera
path, although the recovered 3D features are too sparse for a
dense 3D point-based reconstruction in an indoor environment.
We exploit thus a multi-view registration method [34] to extract
each spherical camera orientation [R] and pose [T ]. The re-
sulting 3D tracking features, instead, give enough information
to easily estimate a ground plan z, that is the floor level. We
exploit this information to scale the camera trajectory accord-
ing to the same metric z f value of the local reconstructions (see
Sec. 4.2), thus obtaining consistent dimensions for each refer-
ence frame. In order to account for measurement inaccuracies,
we take as final zc and z f values the median of the estimates ob-
tained for the different views. Then, through the transformation
[RkTk] acting on R3 and associated to the k-image, we trans-
form the coordinates of the corresponding room model Mk to
the common reference frame.

Algorithm 1 Multiple rooms in a single model

1: S n the set of 2D polygons/footprints
2: Gm ← ClusterOnOverlap(S n, 0.2)
3: for all g ∈ Gm do
4: for all f ∈ g do
5: u← u + Union(f )
6: u← u + MergeNearbyCorners( f, 20 cm)
7: u← RemoveCollinearCorners(u)
8: r← createShape(u)
9: floorplan← floorplan + Make3D(r)

An immediate application of such a kind of joining is the pos-
sibility to automatically connect different environments, even
in case of having only an image per room, and to avoid map-
ping errors due to wall thickness. However, there are situations
where it is useful to have more than one view per room, such as
when the scene structure cannot be identified by a single view,
or, as in our specific application, when we need to map the ob-
jects of interest on the rooms boundary.

Such cases are illustrated in the scheme of Fig. 5, where inter-
mediate poses (yellow) connect different rooms and more than
one footprint can be available for same room/environment.

Pseudocode in algorithm 1 shows how multiple footprints are
merged to reconstruct the scene. The input of the algorithm
(line 1) is a set of n footprints S n, recovered as described in
Sec. 4.3. At line 2 these S n footprints are clustered in m groups
Gm (e.g. m < n), in such a way that elements of the same
group overlap for more that 20% their areas (i.e., orange/red
and green/blue in Fig. 5).

Then, for each group g ∈ Gm, we perform a geometric Union
(line 5) to encompass the f ∈ g footprints contained in the
same group, followed by a merging of nearby corners, so ob-
taining a new shape u (line 6). By definition, the Union oper-

ation will create new corners (for example, the one circled in
red in Fig. 5), whereas MergeNearbyCorners will merge cor-
ners closer than a metric threshold (i.e. 20 cm - azure circle in
Fig. 5).

At line 7 we remove corners that lie in the segment passing
by their two neighbors (for example, the one circled in brown of
Fig. 5), and we generate the final 2D shape r from the remaining
corners (line 8).

Finally, as already described in Sec. 4.2, we exploit the zc and
z f components associated to the corner to generate 3D edges
(Make3D) for each corner of the resulting 2D shape r, and we
add the new room to the whole floorplan.

5. Detection of boundary-mounted objects

We exploit the 3D layout recovered in the previous task 4
to enhance the information present in the original images, such
as eliminating distortion and scaling issues ( images rectifica-
tion 5.1), then we perform the object recognition in the rectified
and re-sampled space ( query object recognition 5.2).

5.1. Images rectification
For each spherical panorama with a correspondent underly-

ing geometry we generate three rectified images by decompos-
ing the room into walls, ceiling and floor sides (Fig. 6).

To create the images we exploit the original equirectangu-
lar map as a texture, using the projection function of eq. 4,
which assigns to each 3D point p(x, y, z) of the underlying re-
constructed model its u, v texture coordinates.

u =

arccos( x√
x2+y2

)

2π
v =

arctan( z√
x2+y2

)

π
+

1
2

(4)

This projection represents the decomposition of the room
boundaries into 2D planar elements (walls, ceiling, floor
planes), under the assumption of vertical walls and horizontal
ceilings. The representation removes the distortion on straight
lines, room boundaries and objects. Furthermore, it projects the
information contained on the original image to a dense grid of
uniformly spaced cells, with a constant metric scale (e.g. 4 pix-
els per cm - see 6). As proof-of-concept in Fig. 6 we show an
example of the original spheremap compared with its three rec-
tified images. In particular, the ceiling projection shows how
two of the four air ducts, practically unrecognizable in the orig-
inal spheremap, are clearly highlighted in the rectified ceiling
image.

5.2. Query object recognition
This step takes as input the rectified images obtained at

task 5.1. Any image patch extracted from them can be a query
object for the detector (examples of queries are showed in
Fig. 1). This is actually the only part of the system where a min-
imal user intervention is required, limited to selecting what is
the object (image patch) to be searched. The advantage of such
query-by-example approach is that does not need long train-
ing by using external labeled data, as well as the search can be
easily extended to arbitrary flat objects, such as in the example
showed at Fig. 11(a).
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Fig. 6. Rectification. For each original equirectangular image we generate three bi-dimensional images in uniformed metric dimensions: floor, ceiling and
walls images. The ceiling projection shows how two of the four air ducts, practically unrecognizable in the original image, are instead clearly highlighted
in the rectified image.

Since the queries and the processed images are in bi-
dimensional rectified space, we are able to simplifying search-
ing by introducing a sliding-window approach based on HOG
descriptors. HOGs, in-fact, combined with a sliding win-
dow approach, are particularly reliable for flat object detec-
tion [27, 28]. These descriptors are used to train a classifier
for the query image in an Exemplar Support Vector machine
(E-SVM) detector.

Such detector, compared to a standard nearest-neighbor
scheme, can be trained in a high discriminative way [16]. Ac-
tually, instead of a single complex category detector, we exploit
a large collection of simpler individual Exemplar-SVM detec-
tors, each highly tuned to the single exemplar’s appearance. In
other words each of these Exemplar-SVMs is thus defined by a
single positive instance and many of negatives.

Since we adopt a linear SVM, each classifier can be inter-
preted as a learned exemplar-specific HOG weight vector.

Given the HOGs of a set P of positive regions (relevant to
the query), and a set N of negative regions (not relevant to the
query), we train an E-SVM at query time to find the occurrences
of the query across the dataset.

To evaluate the similarity between a region y and the query
q, we consider the dot product qT y between their corresponding
HOGs. We exploit this similarity definition to minimize this
cost function:

argmin
w

1
2
‖w‖2 + C1

∑
yp∈P

L
(
wT yp

)
+ C2

∑
yn∈N

L
(
−wT yn

)
(5)

where L (x) = max (0, 1 − x) is the hinge loss and C is a cost
parameter (for a detailed description of cost parameters see the
work of Malisiewicz et al. [16]). The weight vector w is the
optimized, learned model giving the set of trained parameters
for classification.

In our specific case, the vector w found is a weighting vector
of the regions relevant to the query, and it can be seen itself as
a new representation of the query. This vector is used during
the retrieval process to compute the region similarities with the
aforementioned dot product, and it will produce high positive
scores for relevant regions, and high negative scores for regions
not relevant to the original query.

Compared to standard two-class or one-class SVMs, our E-
SVM produces a two-class classifier for each item in the pos-
itive set against all the negative regions, in order to cast votes

that are calibrated and combined to obtain the final classifica-
tion results. Positive/negative sets are built on-the-fly at query
time. To this end, we construct the positive set by deforming the
query and shifting the window around the query, and the neg-
ative set by randomly picking regions in the scene. Although
different from a complete unsupervised approach, we perform
training/learning at query time, thus increasing flexibility and
applicability.

However one of the most critical parameter for an effec-
tive HOG computation is the cell size, which requires prior
knowledge of the scale of the most relevant features in the
query object. Differently from what done in other domains
(e.g. [15, 29]), where the size of the cell and the desired scale
are empirically established, our approach improves over previ-
ous applications since enables HOG use without manual inter-
vention, as rectified images (including the query object) have a
single known (metric) scale and thus even the objects of interest
have a known size. It should be noted that for a single image
our algorithm could, theoretically, work in the same way even
without a metric scale. However, in most application scenarios,
such as architectural surveys, it is mandatory to have a metric
scale, and we can thus exploit it in the recognition.

In Sec. 6 we show that our technique outperforms detection
methods applied directly to the original images. Furthermore
the objects found on such a kind of rectified images implicitly
have a 3D position in the underlying model.

6. Results

We have implemented a pipeline that, starting from a col-
lection of spherical images, automatically produces a 3D room
layout augmented with the locations of boundary-mounted ob-
jects.

6.1. Implementation

We developed the 3D layout extraction and rectification tools
(Sec. 4 and Sec. 5.1) through C++ on top of OpenCV, for a
better CPU/GPU optimization. To facilitate comparison with
other approaches, the detection methods have been instead im-
plemented with Matlab. To obtain camera poses we developed
a tool based on the approach of Kangni and Laganiere [34].
Other available tools, such as PhotoScan1, are equally valid

1http://www.agisoft.com/

http://www.agisoft.com/


Preprint Submitted for review / Computers & Graphics (2018) 9

Fig. 7. Ground truth drawings and our as-built reconstruction. We show our 3D reconstruction of all the rooms beloging to Apartment (left) and office
(right) environments, compared with their as-built drawings. For the Apartment rooms we manually recover the as-built situation and the position of
functional elements by performing on-site inspection aided by laser measures. For the Office rooms we exploit instead the available existing conditions
plans.

for the same purpose. The rectified images are generated by a
GPU shader implementing Eq. 4, through the rendering of the
original equirectangular images and the reconstructed underly-
ing model on frame buffer objects. For each input spheremap,
we create three rectified images, re-sampled with a number of
pixels per cm chosen to make the most of the original resolution
of the equirectangular image (e.g. 14Mpixel). Before detection,
we convert rectified images to a gray-scale signal through a de-
colorization technique to increase the effectiveness of gradient-
based descriptors [35].

6.2. Data collection

We tested our system on a variety of indoor scenes, includ-
ing real-world residential and commercial buildings and vari-
ous scenes from the public SUN360 dataset [30]. Since the
goal of the system is to recover a real situation that can be dif-
ferent from blue prints or available schematics, the main pri-
ority has been to collect data where a ground truth was avail-
able. Although some indoor public datasets provide 360 im-
ages [30, 36], as they are mostly targeted to support other ap-
plications, they do not provide as-built and existing conditions
information. Moreover, very few examples of private resi-
dential building are available, even in popular datasets as the
SUN360 [30] (i.e. actually almost all images of SUN360 bed-
room category are hotel rooms). Therefore we considered to
carry out a specific acquisition campaign, creating ground truth
data from on-site inspection aided by laser measures and com-
paring these reliefs to available blue prints (Fig. 7). We col-
lected many scenes including objects of interest, which have
been exploited both as single scenes or grouped in the multi-
room structures from which they originate. We make such data
available to allow further studies and comparisons 2. Further-
more, we present detection results in Tab. 3 on the SUN360
dataset [30], performed after manually labeling visible flat ob-
jects of interest, even if geometric ground truth and existing
conditions are not available for this data. To collect the real-

2http://vic.crs4.it/download/datasets/

world examples (Fig. 7) we capture equirectangular images,
covering a full viewport of 360◦ longitude and 180◦ latitude, at
the resolution of 5376x2688, by using a commodity mobile Ri-
coh Theta S spherical camera 3. To avoid unpleasant occlusion
on the bottom hemisphere we mount the camera on a tripod,
also using a fixed distance of 170cm (i.e. −z f = 170cm - see
Sec. 4.2) from the ground floor, thus exploiting this information
to obtain final models in real-world metric dimensions. To re-
cover the camera positions and orientations we acquire the im-
ages so they always have some overlap between them, approx-
imatively capturing at least two images for large environments
to assure a full visual coverage of the room boundaries.

6.3. 3D layout extraction and mapping

In Fig. 7 we show the 3D reconstruction of the multi-room
environments Apartment (left) and office (right), beside their
ground truth maps. Each view, once scaled by 4, requires 2.5
seconds to be processed on an Intel i7-4700HQ processor with
16GB RAM. This time includes super-pixels segmentation, la-
beling and shape inference. Recovering the whole SfM tra-
jectory (i.e., time to align about 30 full-size poses) costs less
than one minute, on the same hardware. Once the trajectory has
been recovered the merging of different views/shapes is almost
immediate.

Results in Tab. 1 shows detailed performances for each scene
contained in the Apartment and in the Office blocks. We com-
pare with the method of Pintore et al. [13], which is the most rel-
evant to ours in terms of multi-room metric reconstruction from
spherical images. To do the tests we implemented their method
for the single rooms reconstruction through OpenCV, while for
rooms assembly by doors-matching we adopt an equivalent, in
terms of accuracy, manual alignment approach [17].

We focus our tests to highlight the aspects which directly af-
fect object detection and mapping: PCE ( Pixel Classification
Error), Geometric error and Mapping Error. The geometry
to which we refer for our method is the final connected layout

3https://theta360.com/en/about/theta/

http://vic.crs4.it/download/datasets/
https://theta360.com/en/about/theta/
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(a) Room1 image (b) ground truth labels (c) initial labeling PCE : 45% (d) f inal shape PCE : 3%

(e) D4 image (f) ground truth labels (g) initial labeling PCE : 33% (h) f inal shape PCE : 7%

(i) pano 4 image[10] (j) ground truth labels[10] (k) initial labeling PCE : 34% (l) f inal shape PCE : 6.7%

Fig. 8. Intermediate labeling and final reconstruction coverage. We show some intermediate and final results of our method with respect to pixel classifi-
cation error. We show case from the presented dataset (Room1 and D4) and, for comparison, with the data used by a generic single view method [10]. All
ground truth images have calculated according with our simplified model (ceiling, floor and wall).

Scene PCE
Geometric

error
Mapping

error
Our Other Our Other Our Other

Name Type V.
label
[%]

final
[%]

final
[%]

c
[deg]

l
[%]

a
[%]

c
[deg]

l
[%]

a
[%]

dist
[cm]

dist
[cm]

Living Res 3 42 4 11 0.5 4 6 0.5 10 10 0 0
Atrium Res 2 46 5 12 4.5 8 10 5.0 9 12 10 18
Corridor Res 5 48 3 10 3.0 7 9 9.0 16 20 22 32
Pass Res 1 35 4 4 0.0 5 5 0.0 5 5 24 42
Room1 Res 2 45 3 6 0.5 9 10 0.5 12 12 18 65
Room2 Res 2 39 3 - 1.5 8 8 - - - 20 -
Room3 Res 2 35 5 12 0.5 4 4 1.0 5 6 25 56
Room4 Res 3 38 6 14 1.5 5 6 1.5 10 12 36 64
Rest1 Res 1 39 4 5 5.5 3 4 6.0 4 4 28 68
Rest2 Res 1 40 5 6 2.5 10 12 2.0 10 12 40 70
Kitchen Res 3 44 12 - 6.5 6 8 - - - 15 -
D1 Com 6 38 3 9 1.0 7 8 1.5 10 10 0 0
D2 Com 5 40 3 - 1.5 9 10 - - - 23 -
D3 Com 7 21 9 - 0.0 5 6 - - - 26 -
D4 Com 4 33 7 - 1.5 10 12 - - - 12 -
D5 Com 5 41 4 - 1.5 10 10 - - - 16 -
D6 Com 3 33 6 12 0.5 8 10 0.5 10 10 8 -

Table 1. Reconstruction facts. We present performances of our method
compared with ground truth and with the method of Pintore et al. [13]
(indicated as Other). For each scene we indicate the typology (Residential
or Commercial) and the number of views (V.) captured. PCE shows the
Pixel Classification Error compared to the other approach, also detailing,
for our method, the intermediate labeling performance ( label). Geometric
error shows the per-room performance in terms of absolute corner angle
error (c), maximum percent wall length (l) and area error (a), compared
with the alternative method. The Mapping error shows, instead, the error
of each room in terms of absolute position in the floorplan.

from more views (column Views), projected to the equirectan-
gular image which has the maximum coverage of the room, that
is the image one used to compare the other approach [13]. We
have chosen for our experiment mostly cases that highlight the
need to have more views (i.e., clutter and hidden corners). In the
simplest cases on only one image per room (i.e., Rest1, Rest2),
our method basically performs similarly to the other method.
Proposed PCE shows the capability to correctly map a pixel
to the underlying room boundary (i.e. ceiling, floor and wall

planes), that is a local error with respect to each environment.
For the test the same equirectangular image have been projected
on the ground truth room boundaries (from a CAD based on
laser measures) and on the reconstructed as-built models for
comparison.

As described in Sec. 4.2, such simplified classification is dif-
ferent from other models [10], and targeted mainly to identify
areas that are ceiling, floor and wall, whereas the wall label
means not only the actual walls but also everything that is not
clearly floor or ceiling, as much of the clutter in the room. Thus,
according with this labeling, our ground truth room model con-
sists of vertical walls bordered by horizontal floor and ceilings.
To better illustrated this aspect, we show in Fig. 8 image la-
beling evaluation and intermediate results of our reconstruc-
tion pipeline. We show original images from our dataset (e.g.
Fig.8(a), Fig.8(e)) and from data presented in the work of Yang
et al. [10] (e.g. Fig.8(i)). We show in Fig. 8(b), Fig. 8(f) and
Fig. 8(j) the ground truth labeling (N.B. according with our sim-
plified model), the intermediate super-pixels labeling (Sec. 4.2)
in Fig 8(c), Fig. 8(g), Fig. 8(k), and the final labeling using the
recovered 3D shape in Fig. 8(d), Fig. 8(h) and Fig. 8(l).

It should be noted that PCE is significant in the intermediate
labeling stage (i.e., 34% in Fig. 8(k)), compared, for example,
to PCE values of Yang et al. [10] on the same image (i.e., 26%),
but also how this value rapidly decreases in the final stage (i.e.,
6.7%). We detail these quantitative differences for each room
in Tab. 1.

Geometric Error analysis shows 2D error for corner angles,
wall length and room area, compared to the method of Pintore
et al. [13]. As we expected, such error is similar for both meth-
ods when the room has little clutter and its structural parts are
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Fig. 9. Multi-room retrieval summary. We compare the performance our method (HOG RECT) with a common SIFT approach, both on the original
images (SIFT ORIG) and on the rectified images (SIFT RECT). We can see how our approach retrieves almost all the Relevant Objects (RO - ground truth)
as an output set of True Positives (TP). Average precision is computed on the ranked list of spotted instances of the queries showed in Fig. 1. Actually, the
Led-light query is not a real flat object. In this case our method perform similarly to SIFT.

evident even from a single point of view ( Pass, Room3, Rest2).
Instead, while our method continues to maintain similar reliable
performance, the compared single-view approach tends to con-
siderable errors for long corridors ( Corridor) and moderately
cluttered rooms ( Living, Room4), up to the point of failure the
reconstruction in case of more clutter ( Room2,Kitchen) or large
open spaces ( D2,D3,D4,D5).

The Mapping Error is instead related to the capability of
mapping an object in a multi-room floor plan. This is an im-
portant measure because a functional map of a building should
connect elements distributed among several rooms. We indicate
this value as the Euclidean distance between the real position of
a room (i.e. its relative center), with respect to the absolute
center of the floor plan (i.e. the center of the first acquired
room), and its estimation by a reconstruction method. Re-

Fig. 10. Spherical vs Cubemaps vs Rectified. We compare object recogni-
tion of an almost circular shape on the original equirectangular images
(first row), using cubemaps (second row) and with our rectified images
(third row). Successfully retrievals are marked with a green check.

sults on Mapping error highlight, beside the limitations already
seen, one the major weakness of the currently alternative ap-
proaches [13, 17], namely the capability to manage multi-room
environments. Such methods, in-fact, are based on very strong
assumptions, i.e. that the rooms are practically closed, and that
rooms are connected to each other through well-defined doors.

Furthermore, even under the assumptions described, these ap-
proaches does not take into account the thickness of the walls.
It is also noticeable how the failure of a single room reconstruc-
tion in the doors-matching methods affects the alignment of any
other connected room, such as room D6. It should also be noted
that the other method is not capable to return results in several
difficult cases (cells containing ”-” in the table). This is be-
cause many acquisitions do not have all corners visible from a
single point of view, and because the edgemaps of the images
are often noisy and do not allow that method to complete. By
contrast our new solution exploits multi-view information, and
is therefore more general and robust.

SIFT HOG
Spherical Cubemaps Rectified Rectified

Size 4Mpixel 4pixels/cm
#Image 7 7 21 21
Time 28s/im 7s/im 12s/im 7s/im
TP/RO 4 / 7 2 / 7 7 / 7 7 / 7
FP 2 0 10 85
FN 3 5 0 0
AP 57.1% 28.6% 68.9% 100%

Table 2. Retrieval comparison. Retrieval details for room D3 (Fig. 7) and
the query airvent (Fig. 1). We report the number of True Positives (TP)
over Relevant Objects (RO), False Positives (FP), False Negatives (FN) and
the resulting Average Precision (AP). We also give an average time-per-
image spent to retrieve the query. our rectified images improve detection
performance even using a standard detector based on scale invariant SIFTs
and leads to near perfect results, in terms of average precision, with our full
HOG/E-SVM approach.

6.4. Flat object detection

Since we are looking for flat objects placed on walls and
ceilings, which are reconstructed by our pipeline, we can per-
form recognition directly in rectified space, searching for ob-
jects on the textures associated to each room boundary. This is
a much more constrained situation than general object recogni-
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Scene TP/RO FP FN AP [%] 3D model
Name Query Other Our Other Our Other Our Other Our PCE

Childroom aclzqydjlssfry Lights 1/4 4/4 0 25 3 0 25 100 6.7%

Childroom azzjipzfnrdhxv F. tiles 1/10 10/10 0 102 9 0 10 57 6.9%

Classroom azeguairoehroh Outlets 1/6 6/6 0 256 5 0 17 86 4.8%

Classroom azeguairoehroh Speakers 0/8 8/8 0 97 8 0 0 93 4.8%

Hospital arziggvjlludoe Lights 1/3 3/3 0 216 2 0 33 100 7.2%

Hospital arziggvjlludoe Outlets 0/5 5/5 0 495 5 0 0 100 7.2%

Hospital ayuhcqtaohwvwn Air ducts 1/4 4/4 1 15 3 0 25 100 5.2%

Office acpizmtldontna Lights 1/16 16/16 0 63 15 0 6 73 9.7%

Bedroom abglgjxkiglddp Sprinklers 1/3 3/3 0 192 2 0 33 100 5.8%

Living acroxxginqzgaw Lights 1/4 4/4 6 13 3 0 25 95 6.2%

Living acroxxginqzgaw Sensors 1/2 2/2 0 247 1 0 50 100 6.2%

Table 3. Detection performances on the SUN360 dataset. In the first columns we indicate the scene naming (category and string) in compliance with the
SUN360 database and the query object. We report the number of True Positives (TP) over Relevant Objects (RO), False Positives (FP), False Negatives (FN)
and the resulting Average Precision (AP). We test both our method and a standard detector, indicated as Other, based on scale-invariant SIFTs [20] for
comparison. In the last column we show a screenshot of the underlying 3D model and its PCE.

tion in spherical images, which is typically targeted through re-
projection to remove distortions or through direct computation
of features and neighborhoods in spherical images (see Sec. 2).
In order to qualitatively show how important spherical distor-
tions are in our case, we present detection results on room D3
(Office scenario illustrated in Fig. 7). We track the same ob-
ject (airvent) over 7 different views, showing its deformation
under different projections in Fig. 10. In the first row we show
the deformation of the object in the original equirectangular
projection, in the second row the deformation with a cubemap
projection and in the third one our rectification result. Please
note that with our approach the object is always recognizable.

In Tab. 2 we show the quantitative statistics and comparisons.
Assuming as Relevant Objects (RO) the 7 occurrences of the
same object in the different images, we report the number of
True Positives (TP) over Relevant Objects (RO), False Positives
(FP), False Negatives (FN) and the resulting Average Precision
(AP), as well as the processing time to detect each image oc-
currences. Since we recover a ranked list of occurrences taking
into account the order in which the elements are returned, we

can adopt Average precision instead single-value metrics, such
as Precision or Recall, which instead do not consider the order
of the elements and are less suitable in this case.

Results demonstrate how our rectified images improve detec-
tion performance (100% of true positives, 68.9% average pre-
cision) even using a standard detector based on scale invariant
SIFTs [20], and leads to near perfect results (i.e. 100%), in
terms of average precision, used in our full HOG/E-SVM ap-
proach. We have also verified how spherical projections work
better than commonly used cubemaps (i.e. 57.1% vs. 28.6%),
for circular shapes, that is the air vent shape, as theoretically
expected (see Sec. 2). Successfully retrievals are marked with a
green check in Fig. 10.

In Fig. 9, we summarize the quantitative detection results ob-
tained on the 17 scenes enlisted in Tab. 1. Such rooms are the el-
ements of multi-room datasets of which existing conditions are
available (i.e. Apartment and Office). Final results are mapped
on the whole multi-room models and illustrated in Fig. 1.

We search the occurrences in all the rooms of 5 relevant ob-
jects (wall outlet, airvent, led light, spot light, floor outlet), de-
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(a) azzjipzfnrdhxv (b) azeguairoehroh

(c) arziggvjlludoe (d) ayuhcqtaohwvwn

(e) abglgjxkiglddp (f) acroxxginqzgaw

Fig. 11. Detection details on SUN360 dataset. We present qualitative details about the SUN360 cases proposed in Tab. 3. In the first illustration (a) we
show the detected particular tiles (i.e. butterfly-like tiles in a childroom), which have instead a very high deformation in the original image, highlighting the
successful detections with red rectangles. In the classroom case (b), we show both speakers (red) and floor outlets (purple) detections. (d) case illustrate
air ducts detection for the rectification prrof-of-concept case presented at Fig. 6. In the illustrations (d), (f) we show lights detections (yellow and red), wall
outlets ( (c) red) and fire sprinklers ( (f) yellow).
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(a) aapcyahhkcfvkc (b) abouthfwaqoeew (c) abouthfwaqoeew our (d) abouthfwaqoeew ground truth

Fig. 12. Failure cases. We show several failure cases on images from the publicly available SUN360 dataset [30]. In 12(a) we present a case of sloped
ceiling room, that is an example of non compatible case with our method. The second case 12(b) is instead formally under our assumptions, as well as the
quality of the image should allow detection of structure. Instead, the strong discontinuities in the ceiling and floor zones lead to a wrong reconstruction of
the room (Fig. 12(c)), where the whole part behind the first ceiling beam is not reconstructed,as well as the lights beyond are not detected (Fig. 12(d) shows
ground truth).

fined by the query images showed in Fig. 1. Indeed the same
procedure can be applied to any other custom object or im-
age patch in the scene. We compare the performance of our
method (HOG descriptor + rectification), SIFT [20] on the orig-
inal equirectangular images and SIFT on our rectified images.

Our approach (HOG RECT) retrieves almost all the occur-
rences (RO-Ground truth), outperforming the standard detec-
tor based on scale-invariant SIFTs [20] both in terms of True
Positives than in terms of Average Precision. Our rectifica-
tion also positively affects other methods in a minor way (SIFT
RECT). In the case on the Led-Light query our method (HOG
RECT) performs as SIFTs on rectified images concerning the
average precision, although it is still better in terms of occur-
rences found (100%). Actually the Led-Light query is not a
real flat object but occupies a significant volume in the scene
(thickness of 10cm). As a further proof of the effectiveness of
our system we discovered, during our tests, that the provided
existing-conditions plans for the Office floor (Fig. 7) had many
inaccurate light and wall positions.

In Tab. 3 and Fig. 11 we show results on additional scene
types from the public SUN360 dataset [30]. Since no real
ground truth is available for SUN360 data, reconstruction is
necessary up-to-scale. Query objects have been instead manu-
ally labeled on the images to provide ground truth for detection.
We choose different target objects to stress the system, ranging
between small sprinklers, smoke sensors, speakers, air ducts
and even particular floor decals with notably deformations (i.e.
butterfly-like tiles in a childroom). For an easy comparison we
indicate for each scene the original SUN360 naming. Also in
these use-cases our method achieves solid performances, even
compared to competing methods. The number of retrieved oc-
currences in Tab. 3, no matter they are true or false positives,
depends on two parameters: a matching threshold and a max-
imum number of retrieved occurrences, arbitrarily set to 500
for this test. Since we are looking to retrieve an ordered list
of matches, we set these two numbers to very conservative val-
ues, in order to avoid missing true positives. For this reason
we measure the quality of the algorithm with the Average Pre-
cision (AP), and not by using Precision/Recall statistics on the
final set. The high values of AP proves that the true positives
are among the first retrieved items; for instance, for Hospital
arziggvjlludoe dataset, although we have 495 False Positives,
all the True Positives are the first 5 elements of the retrieved
list, producing an AP of 100%.

6.5. Limitations and failure cases
Based on the Augmented Manhattan World assumption [37],

our approach works only on scenes described by 3D vertical
and horizontal planes (but differently from Manhattan World,
we do not require vertical planes to be orthogonal with respect
to each other).

Since many indoor scenes meet this assumption [38, 39] this
limitation is generally acceptable. Fig. 12(a) shows an exam-
ple of environment not compatible with our method, due to the
sloped ceiling (i.e. aapcyahhkcfvkc from SUN360 dataset).

However, even under these limitations there are cases where
the method may not work. As highlighted in Sec. 4.2 in-fact,
a large fraction of the ceiling edges and also of the floor must
be visible and recognizable. Various factors can limit the de-
tection of the boundaries, such as the lighting conditions and
the quality of the image. Anyway, even in the presence of rec-
ognizable structures in the image there may be cases where the
method could fail. The case in Fig. 12(b), form example, should
be formally under our assumptions, as well as the quality of the
image clearly allows the detection of structural features. In-
stead, the strong discontinuities in the ceiling and floor zones
lead to a wrong reconstruction of the room (Fig. 12(c)), where
the first beam in the ceiling is recognized by our system as a
room boundary (Fig. 12(d) shows ground truth), as well as the
lights beyond can not be detected and mapped. Although our
reconstruction is limited by non-negligible assumptions, the re-
sulting approximation can provide an effective geometric con-
text to enhance the detection of the boundary-mounted objects,
even when only one image is available for the environment.

7. Conclusions

We have presented a novel and practical approach to auto-
matically retrieve an augmented indoor representation, starting
from a small set of overlapping spherical images that can be
quickly captured with commodity cameras.

Our main advances are in two principal areas. First of all, we
expand over purely single view by exploiting multiple views to
automatically reconstruct global and consistent multi-room en-
vironments through geometric reasoning. The method removes
the limitations of single-view-per-room approaches, which typ-
ically require manual stitching or auxiliary data to align par-
tial reconstructions, while requiring much less acquisition bur-
den than full multi-view approaches requiring dense coverage.
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Second, we exploit the reconstructed model to enhance image-
based search for the elements located on room boundaries. This
makes it possible to effectively detect the 3D position and shape
of relevant wall, floor, and ceiling-mounted objects by look-
ing for templates on undistorted images mapped on the room
boundary polygons.

As a result, our system is an important step to quickly and
automatically draft a rich as-built model coupled with existing
conditions. The method can be easily combined with orthogo-
nal solutions for 3D clutter detection [40] in order to create a
complete furnished 3D model.

In our future work, we will explore how to integrate in our
pipeline further detectors for generic object categories, such as,
for example, the recent region-based fully convolutional net-
works [41] or deformable CNN [42], or to exploit spherically
rendered views of the recovered scene to build a learning-based
pipeline and do away with the semi-automatic object selection.
We will also exploit how to efficiently use more images to re-
move some constraints on the methods (e.g., the Manhattan
World assumption), expanding the approach to more complex
buildings, such as ancient ones with curved walls and ceilings.

Given the increasing diffusion and performance of modern
mobile devices, such as the mobile spherical cameras, we fore-
see in our future work to overcome these strict assumptions by
taking advantage of many more panoramic images and their
multi-view 3D clues, thus expanding scene recovery capability.
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