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Sommario

Le odierne tecnologie di scansione laser, così come le tecniche di fotografia

digitale, permettono di acquisire facilmente modelli composti da svariati milioni

di punti, consentendoci quindi, di ottenere facilmente una rappresentazione

digitale in alta qualità dell’oggetto di interesse ad un dettaglio sub-millimetrico.

Sfortunatamente, i tradizionali algoritmi di visualizzazione non sono in grado di

gestire un ammontare di dati di tale dimensione in tempo reale, su piattaforme

grafiche di uso comune e di conseguenza, all’utente finale viene generalmente

mostrato solo una versione semplificata in bassa risoluzione del modello ac-

quisito.

Questa tesi si focalizza su un sistema client-server in grado di distribuire sulla

rete e visualizzare in tempo reale, modelli 3D di grandi dimensioni su elabora-

tori di fascia media. La strategia di visualizzazione è basata su una struttura

gerarchica in multi-risoluzione, un BSP tree, composta da nodi compressi con

migliaia di punti ciascuno. I nodi vengono costruiti tramite un processo a 2

fasi: durante la prima si estraggono i nodi foglia dal dataset iniziale, mentre

nella seconda, partendo dalle foglie si creano i nodi interni filtrando le coppie

di figli sino ad ottenere un’unica radice.

La rappresentazione attuale e dipendente dalla vista della struttura in multi-

risoluzione viene aggiornata incrementalmente a tempo d’esecuzione da un pro-

cesso di raffinamento adattivo che accede ad un dataset out-of-core locale o re-

moto. I Fragment ed i Vertex Shaders vengono utilizzati, oltre che per i classici

effetti di ombreggiatura ed illuminazione, per disegnare la rappresentazione del

modello memorizzata nella RAM del processore grafico attraverso una tecnica

basata su ellissi opportunamente orientati.

L’interfaccia utente single-touch, che permette agli utenti finali la fruizione

del modello, include un sistema di hyperlink bidirezionali per l’accesso a con-

tenuti multimediali, connettendo le diverse parti del modello a differenti sor-

genti d’informazione. Sono inoltre stati implementati strumenti di misurazione



per distanze, superfici ed angoli, in aggiunta alle classiche funzioni per il con-

trollo del modello, della camera e dell’illuminazione.

Il sistema vuole fornire un’esplorazione intuitiva di modelli 3D ad alto dettaglio,

da piccoli artefatti a siti più vasti. Può inoltre essere distribuito come web-

plugin, come applicazione stand-alone o come installazione per un kiosko muse-

ale, da posizionare vicino all’opera d’arte originale per migliorare l’esperienza

dell’utente.





Abstract

Today’s 3D laser scanning technologies and digital photography techniques al-

low to easily acquire multi-million points models at a sub-millimetric detail,

providing a hi-quality digital representation of the object of interest. Unfor-

tunately, standard rendering algorithms are not capable to deal, at run-time,

with a such huge amount of data on commodity graphic platforms and often

just a coarse grained low-res model can be shown to the end-user.

This thesis focuses on a client-server system for real-time point based rendering

and network distribution of large 3D models on low-end platforms. Rendering

strategy is based on a hierarchical multi-resolution structure, a BSP tree, com-

posed by compressed nodes with thousands of point samples. Nodes are built

in a 2-phases process: the first phase extracts leaf nodes from the raw input

dataset; the second instead, starting from leafs, builds inner nodes by merging

and filtering pairs of children to obtain the parent node, until the unique root

is constructed.

The actual view dependent representation of the multi-resolution model gets in-

crementally updated at run-time by an adaptive refinement process that fetches

from the local or remote out-of-core multi-resolution structure dataset. Vertex

and fragment shaders are used to render the GPU cached model representation

with a hi-quality elliptical sample drawing and for other several shading effects.

Single-touch user interface, which allows end-users the model inspection, in-

cludes a bidirectional-hyperlink system to access to remote multimedia con-

tents, connecting different parts of 3D model to several information sources.

Area, distance and angle measurements instruments have also been imple-

mented as well as more common tools like model, camera and light control.

The system can provide an effortless exploration of hi-detailed 3D models, from

small artifacts to larger sites and can be distributed as web-plugin, stand-alone

application or even as museal kiosk installation, to be placed next to the real

3D artwork in order to improve visitor’s experience.
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1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction

Nowadays last laser scanning technologies have such amazing perfor-
mance, like acquisition speed, hi-precision and wide operating ranges, that
make it possible to acquire hi-detailed representations of huge slices of the
real world in just a few minutes of work. Of course, a such high detail needs
great amounts of data to be stored in our hard drives, which cannot entirely
fit in the central memory of any of consumer PCs. This brings to light the
most important issue we had to deal with: the real-time visualization of
hi-detailed 3D scanned models.

Moreover, we also wanted this data to be accessible from anywhere on
the Internet; allowing people to interactively browse a 3D model from his
home position and giving him access to some basic measurement tools to
get quantitative informations like distances, areas and angles.

1.1 Motivations

C
ultural heritage is probably the sector which takes major advantages from nowa-

days laser scanning technologies, for archiving, restoration and dissemination pur-

poses. However, for several reasons, visiting a site could not always be within everyone’s

reach and the ability to access to the same digital representation, sometimes with a detail

even higher than that reachable by the human eye, can be a really valuable way to ex-

perience and understand an artwork. Just think about a large statue like Michelangelo’s

David; many points of view are not directly visible to ordinary visitors, while the chance to

move, rotate and zoom any detail of his scanned representation can even enhance the user

experience. In the same way, consider a larger archaeological site. Often is not possible

get close enough to some particular point of interest or artifact, due to necessity to keep

evidences of past activities preserved or sometimes just for safety reasons. A virtual tour

of the scanned site instead, can give ordinary visitors access to unaccessible places enrich-

ing their experiences through additional multimedia contents properly integrated with real

scanned objects.
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Figure 1.1: Virtual Interaction. A real site digital representation displayed on a wide
touch screen by our multi-resolution renderer.

1.2 Objectives

Complete and final 3D scanned models are usually the result of many single scans, cleaned,

aligned and merged together to compose a multi-million point geometry. Most of the

times, in order to be streamed and visualized by remote end users, these large models

need to be simplified into smaller coarse objects, hindering the original detailed scans.

Despite the constant and rapid improvement of the graphic hardware in the recent years,

interactive and real-time rendering of multi-giga dataset, as well as Internet streaming,

still remains one of the most challenging issue, being capable to overload both performance

and memory capacity of state-of-the-art graphic and network system. For such complex

and large geometries, multi-resolution hierarchies of point primitives can be considered a

valuable alternative to the more traditional mesh refinement (CGG∗04). These techniques

are based on the fact that hi-resolution models, like those generated by scanning devices,

have such high sample rates that triangles will be projected on really small areas of the

screen while, properly selected points splat are sufficient to accurately reproduce the same

model portion. Furthermore, the release of the mesh connectivity information will result

in a lightweight data-packet to be faster streamed through the net.
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professionals with moderate computer skills. Havemann et al. (HSB∗08) proposed a similar

application, but based on the Collada file format, which can render 3D models labeled

with updatable textual content similar to hyperlink and link anchor. These applications

anyway, are still unable to solve the problem of rendering huge 3D models, like those

that can be generated by 3D laser scanners. Virtual inspector (CPCS08) lets naive users

inspect large 3D models at interactive frame rates on commodity PCs. The system obtains

visualization efficiency without sacrificing quality by adopting a continuous level-of-detail

representation. Visual inspector’s use of XML to encode the GUI’s structure and behavior

makes it flexible and configurable. The framework proposed in this thesis takes a similar

approach to Virtual Inspector, but focusing on a point-based multi-resolution hierarchy

rather than a triangulated one. In this way, discarding mesh connectivity information, can

be provided both local and remote explorations.

1.4.1 Point-based Rendering Techniques

The rendering of dense 3D models through point-based 3D graphics techniques has been

studied firstly by Grossman (LW85, Gro98). The improved approach QSplat (RL00, RL01)

instead, has been considered for a long time a reference system in the particular area.

The system for representing and progressively displaying these meshes, combines a multi-

resolution hierarchy based on bounding spheres with a rendering system based on points.

A single data structure is used for view frustum culling, backface culling, level-of-detail

selection, and rendering. The compact representation can be quickly computed, making

it suitable for large data sets. Other several authors have presented different way to

improve rendering performance up the its limit, often through a retained-mode interface

working with blocks of points (WFP∗01, SD01, DVS03, GM04, PSL05, WS06). Layered

Point Clouds (GM04) was the first work to introduce a coarse grained multi-resolution

technique. This system exploits a partitioning of the model into clouds to improve the

efficiency of CPU/GPU communication through a batched communication protocol and to

support conservative occlusion culling for high-depth complexity models. Our rendering

subsystem is based on Layered Point Clouds, but instead of using finer hierarchy levels to

increase resolution of the coarser representation by using all the nodes from the root to the

current cut, in our case all nodes are self-contained and the model representation is given

only by the leaf nodes in the current cut. Moreover, our inner nodes are produced by a

high quality simplification methods, while Layered Point Clouds are constrained to work

on uniformly sampled models using pure subsampling.
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Figure 1.4: Layered Point Cloud. The first work to introduce a coarse grained multi-
resolution technique.

1.4.2 Elliptical Splat Drawing

There are several works that try to enhance the rendering quality of point-sampled models.

For very large models, it’s common to use spheres (RL00), tangential disks (PZvBG00,

ZPvBG01), or high degree polynomials (ABCO∗01) instead of raw point primitives, as

well as improving filtering in image space (ZPvBG01) or object space (RPZ02). The

system proposed in this thesis can provide two different rendering mode: the first one is

based on simple OpenGL smooth points; while the second one, for most advanced graphic

cards, supports vertex and fragment shaders to perform elliptical splatting as proposed

in (BK03). The rendering pipeline also supports screen space ambient occlusion as well as

tone mapping.

1.4.3 Single-touch User Interface

In order to allow naive users to explore 3D large sites and models, these kind of systems

have to provide a quite intuitive user-friendly interface. Our single-touch interface can be

considered similar to Unicam (ZF99), with some additional options like model manipulation

and ambient exploration. Moreover, has been integrated a direct camera manipulation

interface and a system for selection predefined views, as done, e.g., in the recent Safe 3D

navigation interface (FMM∗08).
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2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data Representation

Interactive real-time 3D models rendering frameworks are usually com-
posed by a client that constantly fetches data packets from the server, to
provide smooth updates to the previous rendered model representation in
response to the viewer motion. To this end, a compressed data repre-
sentation needs to meet several requirements: high compression ratio, in
order to reduce transmitted data; random access to different portions of the
dataset; hierarchical structuring able to support variable resolution; low de-
coding complexity at both server and client-side, to ensure scalability and
support heterogeneous clients.

We have managed to meet these requirements defining a data repre-
sentation based on coarse-grained multi-resolution point-based hierarchy.
We’ve also made a specialized version of the end-user viewer, in order to
allow the access to external layers of multimedia contents from hot-spots
attached to the model.

2.1 Attributes Precomputation

T
he input model we need to process is composed by a certain number of sample points,

each of which has associated attributes including position, normal and eventually

color and radius information. During the pre-processing step, data pre-filtering and radius

computation operation have performed as well as others using a streaming approach as

proposed by (Paj05). Points are sorted along a direction in Euclidean space (assumed to

be the z-axis without loss of generality).

Before sorting, we rotate the point set to align the dominant axis of its covariance

matrix with the z-axis. In this way, we can reduce the maximum complexity encountered

during streaming. Then different kinds of operators can be applied to compute attributes

which depend only on a local neighborhood, by only loading into memory a small layer of

data around the currently processed point.

In our system, the first preprocessing step consists in associating an influence radius

to each point, which is done either by using a PCA approach (PGK02) or by fast density

estimation (CGM∗09).
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Figure 2.1: Node Data Representation. Node attributes – bounding box, mean samples
distance and the is_leaf_ boolean – followed by point associated attributes that are stored
separately inside an std::vector container.

2.2 Multi-resolution Model Construction

The implemented multi-resolution structure is a coarse-grained kd-tree partition of the

input dataset, with leaves containing less than a predefined target sample count (few thou-

sands of samples) and with inner nodes containing a filtered version of their children, with a

number of samples equal to the target count. We construct this structure off-line, starting

from the generic point cloud model and perform a simple I/O efficient recursive clustering

algorithm, which is realized on top of a single out-of-core component: a standard C++

array (compatible with std::vector), which keeps a small in-core window for requested

data, in order to handle, efficiently, even very large datasets.

The construction procedure, explained in the following subsections, consists of two

phases.

2.2.1 1st Phase: Building Leaf Nodes

The first phase of the hierarchical multi-resolution structure construction, consists in build-

ing and extracting leaf nodes from the raw input dataset, partitioning it into a kd-tree of

point clouds. This is done by processing an out-of-core array of uniformly distributed point

samples, together with its bounding volume. This recursive procedure firstly considers the

N samples of the current points set, if N is less than M , the maximum predefined point

count for a single node, than a new leaf node is generated; otherwise the current points

set gets parted by bisecting the bounding box at the midpoint of its longest axis. The two

new children will be later processed, recursively continuing the partitioning procedure.
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2.3 Compression

Unfortunately, the only multi-resolution approach alone, is not enough to permit a smooth

and low-latency inspection of the model in remote settings. The hierarchical tree, with dif-

ferent levels at different resolutions, allows to fetch only nodes we actually need to renderer,

obtaining a view-dependent model representation, but it will be even more advantageous

to compress nodes data to better exploit available network bandwidth.

The multi-resolution structure contains nodes composed by per-node data, basically a

simple header, and per-point data. The header, that is stored and transmitted uncom-

pressed, contains a flag to indicate whether the node is a leaf or not, the node’s bounding

box, the radius range (minimum, maximum, and average) and the total count of points

contained in the associated point cloud. The per-point data instead, consists different ar-

rays of sample attributes (position, normal, color, and radius); gets compressed and later

stored in the multi-resolution structure and de-compressed at run-time just before entering

the view-dependent model representation.

We chose to use a simple wavelet-based compression scheme, which is quite fast and is

also able to reduce memory occupancy by almost an order of magnitude.

During the first phase of compression, we sort the point cloud in an order that minimizes

the Euclidean distance among subsequent points, to produce a point strip. Points attributes

in the point strip are then stored in a the rows of a 2D array. These rows are then

transformed using a reversible n-bit to n-bit transform based on the Haar wavelet transform

in order to reduce entropy (SLDJ04).

The transform is performed iteratively and at each iteration is applied to the low-

pass coefficients resulting from the previous iteration until there is only a single low-pass

coefficient remaining. We next map resulting coefficients to positive integers using a simple

Elias gamma code (Eli75) to encode them; therefore, the positive integer x is represented

by: 1 + ⌊log2 x⌋ in unary (that is, ⌊log2 x⌋ 0-bits followed by a 1-bit), followed by the

binary representation of x without its most significant bit. To de-compress data we just

undo above steps in the reverse order, with the exception of the sorting. To transform the

input data to coefficients, we perform an adaptive quantization which also considers the

local sample spacing. Positions are expressed in relation to the node bounding box and

quantized to the minimum number of bits per component that produces a quantization

error less than a quarter the minimum sample radius. The same error threshold is used for

radii which are expressed in relation to radius range and during decompression, in order

to ensure that no additional hole is introduced, radii are enlarged by the quantization

error. Normals are quantized to 16 bits using radial projection. Colors are mapped to the

YCoCg-R color space (MS03) to reduce correlation and mapped to 5 bits for the luminance

and 6 bits for each chroma components.
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The average compression rate obtained on our test datasets is of 3.6 bytes per sample,

which means that, for a standard patch of 2000 samples, the compressed occupied space is

about 7KB instead of 62KB for the original uncompressed data. This is a quite competi-

tive result if compared with other point based systems; for instance, QSplat (RL00) uses

5.375bytes/sample to encode the same attributes.

Figure 2.3: Sant’Antioco Basilica. Information layer structure, hot spot, and web browser
additional information.

2.4 Information Layers

We wanted to enhance the user experience by permitting the access to different types of

external multimedia contents, linked to various parts of the model through 3D hot-spots.

Through the hot-spot interface, the user can so enable/disable different layers hierarchically

organized in a tree, which can provide several kind of information; textual data for instance,

could contain historical informations, as well as useful scanning annotations used to keep

track of the acquisition procedure. Moreover, in order to prevent the model perception

to be spoiled when too many hot-spots are present at the same time, can be enabled an

additional function that visualize just hot-spots inside a small invisible round area centered

in the mouse cursor. Another interesting feature is the bidirectional connection between

model and multimedia layer; this means that we can access external informations (text,

pictures, websites ...) by clicking the related hot-spot, but can also visualize the model

from a particular point of view through an hyperlink in a webpage. All these additional

informations can be held in separated servers and stored as hierarchical tree in xml files.
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Client-server Framework

This chapter contains detailed informations about the client-server frame-
work; in particular about the data storage, server-side distribution com-
ponents and the client-side streaming and rendering methods. The main
objective is to better describe how the compressed multi-resolution point
cloud representation is able to adapt to client characteristics and exploit
available network bandwidth. A block diagram of our system’s design is
presented in figure 3.1.

3.1 Server design and implementation.

T
he server-side system has been designed to support and handle different data reposi-

tories at the same time. A repository, looked from the server side, simply consists in a

database which stores the entire compressed information of a single 3D model. The imple-

mented system uses a unique node ID to access the bytes block containing the compressed

node information of the hierarchical multi-resolution structure.

The storage component instead, has been implemented through the Oracle Berkeley

DB library, which provides complex data management features including high throughput,

low-latency reads, high concurrency, data scalability and in-memory caching. It’s a reliable

solution with over 15 years of production capable to deliver fast, scalable and flexible data

management services and handle up to terabytes of data. A Berkeley DB subsystem

within an environment is described by one or more regions, containing all of the per-

process and per-thread shared information; including configurable caches. Thanks to these

caches, different instances of the same database are able to share index memory and reduce

memory load for servers dealing in parallel with hundreds of clients.

Data serving is done through an Apache2 server extended with an ad-hoc module.

Apache2 is a secure, efficient and extensible server for modern operating systems that

provides HTTP services in sync with the current HTTP standards. Besides, it is scal-

able, multithreaded and includes features like persistent server processes and proxy load

balancing, which are essential for the performance of our application. The implemented
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Figure 3.2: Patch Refinement. 1665 patches with a total of 1.3M samples.

The user-selected pixel threshold is the value that drives the refinement of the rendering

algorithm: this value represents the required average sample distance between adjacent

splats on the screen. The refinement algorithm, performing a single-pass recursive traversal

of the multi-resolution structure, selects the nodes that have to be rendered. For each node,

we use its bounding box to test whether the node is totally outside the view frustum. In this

case, recursion stops, discarding the entire branch of the tree, otherwise we can render the

node, or possibly continue the refinement with its children. We project the node’s average

sample distance onto the screen to obtain its average splat size. A consistent upper bound

on the projected size is obtained by measuring the apparent size of a sphere with a diameter

equal to the object space average sample distance and centered at the bounding box point

closest to the viewpoint. If the projected splat size is less than the threshold, we select

the node’s point cloud for rendering and we coarsen the subtree underlying the node, to

remove overrefined data from the current representation. Otherwise, if the projected splat

size is higher than the threshold, we try to refine the node. In that case, in order to avoid
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blocking the renderer because of data access latency, especially in the case of rendering data

over wide-area networks, we first check whether the node’s children data is immediately

available, i.e., if it is already in the GPU cache or considered in-core by the data access

layer. If data is available, we proceed with refinement, otherwise, we select the node for

rendering. When refinement is completed, all the selected nodes can be rendered, using

their cached GPU version if already available or creating a new VBO entry in the GPU,

for the nodes which were just created in the last traversal (see figure 3.2).

Figure 3.3: Sant’Antioco Basilica. Rendered at 100 fps on a 1024x768 window, with
elliptical splats enabled.

3.2.2 Multithreaded data access layer.

A multithreaded data access layer hides from the application the technique used for ac-

cessing the model repository. In our current implementation, we use a HTTP/1.1 per-

sistent connection approach and optionally employ HTTP pipelining. The combination

of these two techniques improves bandwidth usage and reduces network latency. We can
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also keep the protocol simple from API point-of-view, since clients benefit from an under-

lying connection-based implementation hidden under a reliable connectionless interface.

The pipelining approach allows multiple HTTP requests to be written together out to the

socket connecting client and server ,without waiting for the corresponding responses. The

client then waits for the responses to arrive in the same order in which they were requested.

Requests pipelining can turn out in a dramatic response times improvement, especially over

high latency connections.

The client data access layer is subdivided into two threads that communicate through

a shared cache of compressed point clouds indexed by node IDs to hide network latencies.

The main thread requests the node data that is needed to refine the kd-tree graph from

the current point of view. Requests are pushed in a priority queue. At the end of the

frame, only as many new requests as those allowed by the estimated network bandwidth

are issued and managed by a separate network access thread, and the remaining ones are

ignored. Since issued requests are sorted coarse to fine and by estimated projected error,

and unhandled requests are repeated at each frame, a simple limited memory first-in/fist-

out queue induces a request ordering that is both I/O efficient and ensures to download

the most relevant data as soon as possible. The second thread manages the network by

accepting the incoming compressed bitstream from the server and storing them in the

shared cache.

3.3 Rendering process.

At the end of the incremental refinement process, graph’s leaves contain the current model

approximation, in a format suitable for graphics rendering. Since we have to manage

heterogeneous clients with varying graphics capabilities, in our implementation, at the

beginning of rendering, we detect which kind of GPU is available, thus tuning the graphics

approach that will be used to enable our application to work also on low-end GPUs or,

in the extreme case, in software-only environments. Communication with the GPU is

made exclusively through a retained mode interface. We manage a cache of Vertex Buffer

Objects in the GPU to exploit spatial and temporal coherence, reusing the same data for

several frames without no need to move it again to the GPU. A backup solution is also

used for the CPU - GPU data communication if no Vertex Buffer Objects are available,

and it is based on the standard Vertex Arrays, which are provided since OpenGL 1.1. Two

rendering modes are supported: a first simple straight rendering method that uses a single

splat size for each point cloud, and draws circular splats through glPointSmooth. A higher

quality representation has instead been obtained through a vertex and a fragment shader

to draw an oriented 3D circle, depicting a textured quad for each sample (BK03). This

second rendering approach tries to simulate a smooth surface drawing each splat with his
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User Interaction

Typical 3D navigation applications provide modal tools like pan, zoom, and
rotation to facilitate freeform navigation in the 3D scene. Mastering these
navigation tools requires a significant amount of learning, while we want
to provide an inspection experience which could be enjoyed also by new-
to-3D users. The application can be used as a remote exploration tool
through a web plugin to facilitate dissemination of huge 3D models, but
can also be placed in a museal kiosk installation next to a real 3D artwork
to improve museum visitor’s experience. In both cases, we must allow for
inexperienced users. User interaction must be kept as simple as possible
and the application should not only be operated with standard 2D mouse,
but also through a touch-screen for multimedia kiosk installations. In our
approach, all the user interface is designed to require input from a single-
button mouse or a single-touch screen. Context information and gestural
recognition are exploited to intuitively choose among different actions.

4.1 Single-touch interaction.

O
ur approach, based on context and gesture recognition, allows users to navigate

within a 3D environment, as well as to manipulate a 3D model/tool in an intuitive

manner. It requires only a single-button stylus or mouse (or a single-touch screen) to

directly invoke specific operations within a single 3D view. No 2D widgets or keyboard

modifiers are necessary. Our viewing window is subdivided into two areas: a rectangular

center region and a small bar on the right, highlighted in a light semi-transparent color

(see figure 4.2). If the mouse is over the right bar, the movement along the y screen axis

is interpreted as moving forward/backward. When the mouse is over the main area, we

need to differentiate among four different actions: rotation around a pivot, rotation around

camera, panning, and moving toward a target. A single click on the 3D model activates a

target, a small sphere below the 2D mouse position is displayed. Subsequent actions have

the following meanings: click and drag within the main area performs a rotation around

the target. Click on the target will automatically animate the camera from its current

position to a new position that looks at the target. The target is deactivated by clicking
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Figure 4.1: Touch Screen. Selection and animation moving toward precomputed view.

outside the small sphere.

If the target is not active, actions within the main area are interpreted in two different

ways. A film-plane translation (panning) is performed by starting the movement vertically,

while a rotation around the viewpoint is performed by starting the movement horizontally.

This last gesture is particularly useful when the user explores an environment. In addition

to camera motion, single touch interaction is also used for operating simple 3D tools (see

below). For camera motion, the single-touch interaction system has been enriched with

the possibility of browsing a list of precomputed view positions, displayed as a series of

thumbnails in the lower part of the screen. When a view is selected, the camera is smoothly

animated from the current position until it reaches the selected view (see figure 4.1).

4.2 Tools

The client framework provides some simple tools to perform different kinds of measure-

ments: lenghts, areas and angles. The tools can be optionally enabled in the viewer,

depending on configuration. All these tools are based on the ability to project the 2D

mouse position onto the model to find a 3D intersection. This is achieved by casting a

ray toward the 3D model and exploiting the kd-tree structure for traversing all the in-

tersected leaf nodes in a front-to-back order until an intersection with the point cloud

is found. Examples of tools are measuring tools (for distances, areas, and angles). The
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Figure 4.2: Single-touch interaction scheme. Red arrows, activated when an anchor
is present: A) rotation about anchor; B) animation toward anchor. Black arrows, activated
without anchor: C) rotation about camera; D) x-y pan. Anchor-independent: E) Move in-
ward/outward; F) precomputed views.

polyline tool, which measures an area and a perimeter defined by a polyline, performs a

minimum-area triangulation of the polyline and calculates the area by summing up all tri-

angle areas. Other tools include clipping and the possibility of drawing axis-aligned grids

(see figure 4.3).

4.3 Browser Web Plugin

The viewer can also be used as a remote exploration tool through a web plugin to facilitate

dissemination of huge 3D models, or can be placed in a museal kiosk installation next to a

real 3D artwork to improve museum visitor’s experience. The plugin has been implemented

by using the Nokia Qt API. In particular with the QtBrowserPlugin framework we managed

to build a browser plugin that can be used in Mozilla FireFox, Safari, Opera, Google

Chrome, QtWebKit and any other web browser that supports the "Netscape Plugin API",

NPAPI. The Windows version is a single DLL file and can easily be installed in all popular

browsers on Windows; the Unix is instead a single static object library file (.so).

Javascript can also be used for user interaction, to open a particular model or even select

the desired view directly with browser components. Moreover, shaders can be installed,

in the same directory of the plugin library file, to allow a better rendering quality on

supported GPU.
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Results and Conclusions

Two case studies are described here: the Sant’Antioco Cathedral (see fig-
ure 5.4) made of 37M samples, which has been acquired with a Leica
ScanStation2, and a detail of the same cathedral: the Cavallo Alato bas-
relief (8M samples), acquired with a Minolta Vivid-9i. The cathedral was
digitalized in two one-day sessions by three people, while the Cavallo Alato
was acquired in about two hours, by the same group of people. Both mod-
els were acquired under a project in cooperation with Roberto Coroneo,
professor of Medieval Art History at University of Cagliari, who also pro-
duced the multimedia information related to the two models.

5.1 Laser Scanning Technologies Overview

T
ridimensional laser scanners devices analyze a real-world environment or object

to acquire its geometry and appearance (i.e. color); the collected data is typically

a colored point cloud that can be used to digitally visualize 3D models. Many different

technologies are used to build these advanced scanning devices, each with a different cost,

acquisition speed, precision and measurement error. Non-contact 3D scanners can be

divided into two main categories, active scanners and passive scanners; passive devices

detect the reflected ambient radiation, instead the active one, like laser scanners, emit

some kind of radiation or light and detect its reflection in order to probe a model or

surrounding environment.

In the following sections can find some detail of the two particular kinds of laser scanners

we used to acquire several models and environment well suited to be rendered with our

system.

5.1.1 Triangulation-based Systems

These 3D scanners are so called due to their use of the principle of triangulation. That is,

typically a thin stripe of laser light is projected on the surface of an object and is detected by
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a digital camera. Being the laser emitter and camera positions fixed and known, geometry

can be simple computed along the laser stripe in 3-dimensions.

Triangulation-based laser scanners typically have a really high precision making them

ideal for accurately recording fine details on sculptured stonework.

Furthermore, the high accuracy also allows to directly measure changes in the surface

of the artifact either caused by decay, or maybe even vandalism. The flip-side is, of course,

that extremely large datasets can be generated, but this has already been exploited by our

framework.

The Konica Minolta The VIVID 9i is the scanner we used to acquire several medium

size artifacts. It requires only 2.5 seconds per scan to acquire accurate 3D data and has

different scan ranges, from 0.6 up to 2.5 meters. Tele, middle and wide lenses can be

selected to accommodate the size of the measurement target; the accuracy is ±0.05 mm

using tele lens at distance of 0.6 m and the precision on the z-axis at the same distance is

0.008 mm.

Figure 5.1: Minolta Vivid 9i. Triangulation Laser Scanner.
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5.1.2 Time-of-flight Systems

Time-of-flight scanners operate on a different set of principles to triangulating scanners. A

time-of-flight scanner simply shoots a laser pulse at the object and then measures the time

taken for the pulse to return to the scanner. Given that the speed of light is constant, the

distance from the scanner to the surface of the object can be calculated quite easily. The

scanner’s motors move the laser emitter backwards and forwards across the object shooting

a laser pulse out at regular time intervals. The 3-dimensional points are calculated as a

combination of the horizontal and vertical angles of the motors plus the measured distance.

Time-of-flight scanners cannot be used for recording fine detail, such as the small arti-

facts, but can give great results when acquiring really wide areas.

The Leica ScanStation 2 is the device we used to acquire large environments, like the

St. Antioco Basilica. With a maximum instantaneous scan speed of 50,000 pts/sec and a

detection range up to 300 m, this device permitted us to acquire the church’s indoor in a

few hours of work.

Figure 5.2: Leica ScanStation. Time-of-Flight Laser Scanner.
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5.1.3 Main differences

Triangulation and time-of-flight range scanners both have pros and cons that make them

suitable for different situations. An advantage of time-of-flight range devices is that they

are capable of operating over quite long distances, up to kilometers. These scanners are

thus can be used to acquire large structures like buildings or geographic features. The

flip-side of using time-of-flight range finders is their precision. Due to the high speed of

light, detecting the round-trip time is difficult and consequently the distance measurement’s

accuracy is relatively low, on the order of millimeters.

Triangulation range scanners are exactly the opposite. Their accuracy is relatively high,

on the order of tens of micrometers, but have a limited range of some meters.

Furthermore, time of flight scanners accuracy can be lost when the laser hits the edge of

an object since the information sent back to the device comes from two different locations

for one laser pulse. For a point that has hit the edge of an object, the coordinate relative

to the scanners position will be computed based on an average and therefore the point will

be positioned in the wrong place.

With a high resolution scan on an model the chances of the laser ray hitting an edge

are higher and the resulting data will have noise right behind edges . This issue can be

solved by using scanners with a smaller beam width, but the operating range will decrease

as the beam width will increase over distance. Software can also be very useful, indeed we

can determine when the first object to be hit by the laser ray should cancel out the second.

With a time-of-flight devices, an high resolution scans with millions of samples can

take several dozen of minutes; this can create distortion from motion. Being each point

sampled at a different time, any motion in the subject or the scanner will distort the

collected data. Thus, it’s usually necessary to mount the scanner on stable platforms and

minimize vibration. Moreover, some modern scanners, can automatically perform multiple

scans at different times of the same area, in order to exclude object in motion like people

or vehicles.

5.2 Test Results

The framework has been implemented in C++ and OpenGL on a standard Linux PC. Tests

have been performed on an Intel Core2 Quad CPU Q6600 2.40GHz - RAM 4GB running

Gentoo Linux 2.6.24, with nVidia GeForce 9800 GX2 - 1GB, and a SATA2 hard-drive

500GB. Rendering tests were also performed on a lower performace laptop Intel Core2

CPU T7200 2.0 GHz RAM 2GB with GeForce Go 7400 graphic board, running a Gentoo

Linux 2.6.25 distribution, and connected with a standard 7Mb ADSL. The cathedral was

preprocessed in 2h47m, producing a BerkeleyDB database of 439MB. The bas-relief was
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preprocessed in 40m, producing 111MB. It should be noted that these figures include

BerkeleyDB overhead.

Figure 5.3: Sant’Antioco Basilica. The Sacred Heart of Jesus Statue and Altar.

Rendering of the two models has been tested on the two PCs in a variety of situations,

on a window of 1000x900 pixels, with pixel tolerance 2. On the high-end PC frame rates

exceed on average 100 fps with a mean throughput of about 110Msplat/sec. On the lower-

end PC average frame rates are 25 fps, and go down to 5 fps for an extreme closeup in the

cathedral environment, with an average throughput of 8Msplat/sec. The system is fully

usable in a standard remote settings. The measured bandwidth on the ADSL link was

1.3Mbps, which enables loading full refined views from scratch in few seconds. Thanks to

our compressed representation, this bandwidth permits to upload about 47K point samples

per second. The user interface has been found profitable and easy-to-use from different

user kinds, ranging from new-to-3D users, to Cultural Heritage scholars, to 3D graphics

experts. In particular, the single-touch interface has proven easy to learn even without

any explanation. Figure 4.1 illustrates a simple interaction sequence using a wall-mounted

touch screen.
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5.3 Scanning Activity

Many models have been scanned and digitalized with scanning devices described above

but two in particular have been tested to show our framework performance with different

kind of inspection, that are the large environment navigation and middle sized hi-detailed

object exploration. To demonstrated and test navigation and interactive rendering perfor-

mance we’ve choosen the Palaeo-Christian Basilica of Sant’Antioco model; for the middle

sized object test we’ve instead taken the Cavallo Alato Bas-relief. In the table of the figure

5.5 will find some detail about the acquisition campaign and building/rendering tests per-

formed on an Intel Core2 Quad CPU Q6600 2.40GHz - RAM 4GB running Gentoo Linux

2.6.24, with nVidia GeForce 9800 GX2 - 1GB, and a SATA2 hard-drive 500GB.

Figure 5.4: Sant’Antioco Basilica. Gateway and Cathedral Plant.
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Model: Sant’Antioco Basilica Cavallo Alato bas-relief

Device: Leica Scanstation 2 Minolta Vivid i9

Technology: Time-of-Flight Triangulation Based

Model Size: 18.95m x 28.8m x 21.5m 38.8cm x 41.6cm x 5.7cm

Tot Points Count: 36.6 millions 8 millions

Average Resolution: 6mm 0.15mm

Raw Data Size: 1812MB 314MB

Compressed Multires.
Structure Size:

312MB 217MB

Scans Total Time: 1.5 days 2/3 hours

Scansions Count: 10 20/25 (Tele Lens)

Figure 5.5: Main Scanning Activities and Performed Test Results. Tests have been
performed on an Intel Core2 Quad CPU Q6600 2.40GHz - RAM 4GB running Gentoo Linux
2.6.24, with nVidia GeForce 9800 GX2 - 1GB, and a SATA2 hard-drive 500GB.

5.4 Conclusions

We presented a distributed system for exploring massive 3D models. It supports streaming

and rendering of very large datasets, multiple multimedia information layers, and simple

measurement tools. Our future work includes setting up a publicly available web server

to disseminate our 3D acquisition repository, as well as setting up multimedia kiosks to

support on-site inspection of 3D artworks.
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Figure 5.7: San Saturnino Basilica. The Jesus statue: real picture versus digital repre-
sentation.
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Figure 5.8: San Saturnino Basilica. Altar: real picture versus digital representation.
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