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Mobile Graphics Tutorial – 3DV 2018 

High quality illumination 

• Consistent illumination for AR 

• Soft shadows 

• Deferred shading 

• Ambient Occlusion 
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Consistent illumination for AR 

• High-Quality Consistent Illumination in Mobile Augmented Reality by 

Radiance Convolution on the GPU [Kán, Unterguggenberger & Kaufmann, 

2015] 

 

• Goal 

– Achieve realistic (and consistent) illumination for synthetic objects in Augmented Reality 

environments 
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Consistent illumination for AR 

• Overview 

– Capture the environment with the mobile 

– Create an HDR environment map 

– Convolve the HDR with the BRDF’s of the materials 

– Calculate radiance in realtime 

– Add AO from an offline rendering as lightmaps 

– Multiply with the AO from the synthetic object 
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Consistent illumination for AR 

• Capture the environment with the mobile 

– Rotational motion of the mobile 

• In yaw and pitch angles to cover all sphere directions 

– Images accumulated to a spherical environment map 

• HDR environment map constructed while scanning 

– Projecting each camera image 

• According to the orientation and inertial measurement of the mobile 

– Low dynamic range imaging is transformed to HDR 

• Camera uses auto-exposure 

– Two overlapping images will have slightly different exposure 

– Alignment correction based on feature matching  

– All in the device 
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Consistent illumination for AR 

• Convolve the HDR with the BRDF’s of the materials 

– Use MRT to support several convolutions at once 

– Assume distant light 

– One single light reflection on the surface  

– Scene materials assumed non-emissive 

– Use a simplified rendering equation 

• Weight with AO (obtained offline) 

– Built for real and synthetic objects 

– Use the geometry of the scene 

• Use a proxy geometry for the objects of the real world 

• Cannot be simply done on the fly 
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Consistent illumination for AR 

• Results 

         Without AO            With AO 

 

Images courtesy of Peter Kán 
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Consistent illumination for AR 

• Performance 

 

 

 

 

 

• Limitations 

– Materials represented by Phong BRDF 

– AO and most shading (e.g. reflection maps) is baked 
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Soft shadows using cubemaps 

• Efficient Soft Shadows Based on Static Local Cubemap [Bala & Lopez 

Mendez, 2016] 

• Goal 

– Soft shadows in realtime 

 

 

Taken from https://community.arm.com/graphics/b/blog/posts/dynamic-soft-shadows-based-on-local-cubemap 
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Soft shadows using cubemaps 

• Overview 

– Create a local cube map 

• Offline recommended 

• Stores color and transparency of the environment 

• Position and bounding box 

– Approximates the geometry 

• Local correction 

– Using proxy geometry 

– Apply shadows in the fragment shader 
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Soft shadows using cubemaps 

• Generating shadows 

– Fetch texel from cubemap 

• Using the fragment-to-light vector 

• Correct the vector before fetching 

– Using the scene geometry (bbox) and cubemap creation position  

» To provide the equivalent shadow rays 

 

– Apply shadow based on the alpha value 

– Soften shadow 

• Using mipmapping and addressing according to the distance 
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Soft shadows using cubemaps 

• Conclusions 

– Does not need to render to texture 

• Cubemaps must be pre-calculated 

– Requires reading multiple times from textures 

– Stable  

• Because cubemap does not change 

 

• Limitations 

– Static, since info is precomputed 
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Physically-based Deferred Rendering 

• Physically Based Deferred Shading on Mobile [Vaughan Smith & Einig, 2016] 

 

• Goal: 

– Adapt deferred shading pipeline to mobile 

– Bandwidth friendly 

– Using Framebuffer Fetch extension 

• Avoids copying to main memory in OpenGL ES 
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Physically-based Deferred Rendering 

• Overview 

– Typical deferred shading pipeline 

 

G-Buffer Pass Lighting Pass Tone mapping Postprocessing 

G-Buffer 

 

Depth/Stencil 

Normals 

Color 

Light 

Accumulation 

Tone mapped 

image 

Local Memory Local Memory Local Memory 
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Physically-based Deferred Rendering 

• Main idea: group G-buffer, lighting & tone mapping into one step 

– Further improve by using Pixel Local Storage extension 

• G-buffer data is not written to main memory 

• Usable when multiple shader invocations cover the same pixel 

– Resulting pipeline reduces bandwidth 

G-Buffer Pass Lighting Pass Tone mapping Postprocessing 

Tonemapped image 

Local Memory 
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Physically-based Deferred Rendering 

• Two G-buffer layouts proposed 

– Specular G-buffer setup (160 bits) 

• Rgb10a2 highp vec4 light accumulation 

• R32f highp float depth 

• 3 x rgba8 highp vec4: normal, base color & specular color 

 

– Metallicness G-buffer setup (128 bits, more bandwidth efficient) 

• Rgb10a2 highp vec4 light accumulation 

• R32f highp float depth 

• 2 x rgba8 highp vec4: normal & roughness, albedo or reflectance metallicness 
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Physically-based Deferred Rendering 

• Lighting 

– Use precomputed HDR lightmaps to represent static diffuse lighting  

• Shadows & radiosity 

– Can be compressed with ASTC (supports HDR data) 

• PVRTC, RGBM can also be used for non HDR formats 

– Geometry pass calculates diffuse lighting 

– Specular is calculated using Schlick’s approximation of Fresnel factor 
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Physically-based Deferred Rendering 

• Results (PowerVR SDK) 

– Fewer rendering tasks 

• meaning that the G-buffer generation, lighting, and tonemapping stages are properly merged into one 

task.  

• reduction in memory bandwidth 

– 53% decrease in reads and a 54% decrease in writes 

• Limitations 

– Still not big frame rates 
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Ambient Occlusion in mobile 

• Optimized Screen-Space Ambient Occlusion in Mobile Devices [Sunet & 

Vázquez, Web3D 2016] 

 

• Goal: Study feasibility of real time AO in mobile 

– Analyze most popular AO algorithms: Crytek’s, Alchemy’s, Nvidia’s Horizon-Based AO (HBAO), 

and Starcraft II (SC2) 

– Evaluate their AO pipelines step by step 

– Design architectural improvements 

– Implement and compare 
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Ambient Occlusion in mobile 

• Ambient Occlusion. Simplification of rendering equation 

– The surface is a perfect diffuse surface (BRDF constant) 

– Light potentially reaches a point p equally in all directions 

• But takes into account point’s visibility 

 
 

Light reaches 
the surface Light does not 

reach the surface 
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Ambient Occlusion in mobile 

• AO typical implementations 

– Precomputed AO: Fast & high quality, but static, memory hungry 

– Ray-based: High quality, but costly, visible patterns… 

– Geometry-based: Fast w/ proxy structures, but lower quality, artifacts/noise… 

– Volume-based: High quality, view independent, but costly 

 

– Screen-space:  

• Extremely fast 

• View-dependent 

• [mostly] requires blurring for noise reduction 

• Very popular in video games (e.g. Crysis, Starcraft 2, Battlefield 3…) 
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Ambient Occlusion in mobile 

• Screen-space AO: 

– Approximation to AO implemented as a screen-space post-processing 

• ND-buffer provides coarse approximation of scene's geometry 

• Sample ND-buffer to approximate (estimate) ambient occlusion instead of shooting rays 

 
Assassin’s Creed Syndicate 
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Ambient Occlusion in mobile 

• SSAO pipeline 

1. Generate ND (normal + depth, OpenGL ES 2) or G-Buffer (ND + RGB…, OpenGL ES 3.+) 

2. Calculate AO factor for visible pixels 

a. Generate a set of samples of positions/vectors around the pixel to shade. 

b. Get the geometry shape (position/normal…) 

c. Calculate AO factor by analyzing shape… 

3. Blur the AO texture to remove noise artifacts 

4. Final compositing 
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Ambient Occlusion in mobile 

• Optimizations.  

– G-Buffer storage (less precision) 

•  8 not enough 

• 16 and 32 similar quality 

– Normal storage (RGB vs RG) 

• RGB normals are faster  

– Samples generation (offline) 

• Poisson disc (2D) and 8-point cosine-

weighted hemisphere (3D) 

– Geometry recovery  

• Similar triangles instead of inverse tf 

– Geometry storage 

• Store depth instead of 3D positions 

– Trades bandwidth for memory 

 

 

 

 

 

 

• Optimizations (cont) 

– Banding and noise 

• Reduce noise using bilateral (separable) 

filter instead of Gaussian 

– Progressive improvement 

• Amortize AO through multiple frames 

 

 

 

Frame i - 1 Frame i 
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Ambient Occlusion in mobile 

• Optimizations 

– Naïve improvement: Reduce the 

calculation to a portion of the screen 

• Mobile devices have a high PPI resolution 

• Reduction improves timings dramatically 

while keeping high quality 

 

– Typical reduction: 

• Offscreen render to 1/4th of the screen 

• Scale-up to fill the screen 

 

• Results 
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Rendering Volumetric Datasets 

• Introduction 

• Challenges 

• Architectures 

• GPU-based ray casting on mobile 

• Conclusions 

36 



Mobile Graphics Tutorial – 3DV 2018 

       Capturing     Rendering 

Rendering Volumetric Datasets 
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3D texture 

GPU- based 

ray casting 

Output 



Mobile Graphics Tutorial – 3DV 2018 

Rendering Volumetric Datasets 

• Introduction 

– Volume datasets 

• Sizes continuously growing (e.g. >10243) 

– Complex data (e.g. 4D) 

– Rendering algorithms  

• GPU intensive 

• State-of-the-art is ray casting on the fragment shader 

– Interaction 

• Edition, inspection, analysis, require a set of complex manipulation techniques 
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Rendering Volumetric Datasets 

• Desktop vs mobile 

– Desktop rendering 

• Large models on the fly 

• Huge models with the aid of compression/multiresolution schemes 

– Mobile rendering 

• Standard sizes (e.g. 5123) still too much for the mobile GPUs 

• Rendering algorithms GPU intensive 

– State-of-the-art is GPU-based ray casting 

• Interaction is difficult on a small screen 

– Changing TF, inspecting the model… 

39 



Mobile Graphics Tutorial – 3DV 2018 

Rendering Volumetric Datasets 

• Challenges on mobile: 

– Memory: 

• Model does not fit into memory  

– Use client server approach / compress data  

– GPU capabilities:  

• Cannot use state of the art algorithm (e.g. no 3D textures) 

– Texture arrays 

– GPU horsepower:  

• GPU unable to perform interactively 

– Progressive rendering methods 

– Small screen 

• Not enough details, difficult interaction 
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Rendering Volumetric Datasets 

• Mobile architectures 

– Server-based rendering 

– Hybrid approaches 

– Pure mobile rendering 

 

– Server-based and hybrid rely on high bandwidth communication 

41 



Mobile Graphics Tutorial – 3DV 2018 

Rendering Volumetric Datasets 

• Pure mobile rendering 

– Move all the work to the mobile 

– Nowadays feasible 

 

• Direct Volume Rendering on mobile. Algorithms 

– Slices 

– 2D texture arrays 

– 3D textures 
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Rendering Volumetric Datasets 

• 2D texture arrays + texture atlas [Noguera et al. 2012] 

– Simulate a 3D texture using an array of 2D textures 

– Implement GPU-based ray casting  

• High quality 

• Relatively large models 

• Costly 

• Cannot use hardware trilinear interpolation 
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Rendering Volumetric Datasets 

45 

• 2D texture arrays + texture atlas 
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Rendering Volumetric Datasets 

• 3D textures [Balsa & Vázquez, 2012] 

– Allow either 3D slices or GPU-based ray casting 

– Initially, only a bunch of GPUs sporting 3D textures (Qualcomm’s Adreno series >= 200) 

– Performance limitations (data: 2563 – screen resol. 480x800)  

• 1.63 for 3D slices  

• 0.77 fps for ray casting 
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Rendering Volumetric Datasets 
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Rendering Volumetric Datasets 

• 2D slices vs 3D slices vs raycasting 
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Rendering Volumetric Datasets 

• Using Metal on an iOS device [Schiewe et al., 2015] 

55 

Taken from [Schiewe et al., 2015] 
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Volume data. GPU ray casting on mobile 

• Using Metal on an iOS device [Schiewe et al., 2015] 

– Standard GPU-based ray casting 

– Provides low level control 

– Improved framerate (2x, to a maximum of 5-7 fps) over slice-based rendering 

– Models noticeably smaller than available memory (max. size was 2562x942) 
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Volume data. GPU ray casting on mobile 

• Progressive Ray Casting for Volumetric Models on Mobile Devices [Díaz et 

al., 2018] 

– Two algorithms for progressive ray casting adapted to smartphones 

– Tested on Android 

– Using OpenGL 
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Volume data. GPU ray casting on mobile 

• Overview 

– Common core: Progressive ray-casting 

• Low-level resolution 

– Two methods for progressive refinement 

• FBSlabs: Refine front to back 

– Budget-based rendering  (slab sizes) 

– Requires lower level OpenGL ES/WebGL (3.0 [or lower], no compute shaders) 

– Progressive refinement more noticeable 

• STiles: Refine tile-based 

– Budget-based rendering  (number/size of tiles) 

– Less visible update changes 

– Requires higher level OpenGL (3.1 or higher, compute shaders to sort tiles) 
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Volume data. GPU ray casting on mobile 

• FBSlabs 
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Volume data. GPU ray casting on mobile 

• FBSlabs 
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Volume data. GPU ray casting on mobile 

• STiles 
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Volume data. GPU ray casting on mobile 

• STiles 
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Volume data. GPU ray casting on mobile 

• Results. Completion time 
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Volume data. GPU ray casting on mobile 

• Results. Framerate 
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Volume data. GPU ray casting on mobile 

• Results. Perceptual differences vs previous frame 
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Rendering Volumetric Datasets 

• Challenges: Transfer Function edition 

66 
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Rendering Volumetric Datasets 

Finger 
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• Challenges: Transfer Function edition 
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Rendering Volumetric Datasets 

• Conclusion 

– Volume rendering on mobile devices possible but limited 

• Can use daptive rendering (half resolution when interacting) 

– 3D textures in core GLES 3.0  

• Requires progressive raytracing for not so large models 

– Interaction still difficult 

– Client-server architecture still alive 

• Can overcome data privacy/safety & storage issues 

• Better 4G-5G connections 

• … 
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MOBILE METRIC CAPTURE AND 
RECONSTRUCTION 

Next Session 
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