
Visual Computing Group

Part 4.5

Scalable Mobile Visualization:

Smart precomputation for complex lighting

Pere-Pau Vázquez, UPC

1

Mobile Graphics Tutorial – 3DV 2018

High quality illumination

• Consistent illumination for AR

• Soft shadows

• Deferred shading

• Ambient Occlusion

2

Mobile Graphics Tutorial – 3DV 2018

Consistent illumination for AR

• High-Quality Consistent Illumination in Mobile Augmented Reality by

Radiance Convolution on the GPU [Kán, Unterguggenberger & Kaufmann,

2015]

• Goal

– Achieve realistic (and consistent) illumination for synthetic objects in Augmented Reality

environments

Mobile Graphics Tutorial – 3DV 2018

Consistent illumination for AR

• Overview

– Capture the environment with the mobile

– Create an HDR environment map

– Convolve the HDR with the BRDF’s of the materials

– Calculate radiance in realtime

– Add AO from an offline rendering as lightmaps

– Multiply with the AO from the synthetic object

Mobile Graphics Tutorial – 3DV 2018

Consistent illumination for AR

• Capture the environment with the mobile

– Rotational motion of the mobile

• In yaw and pitch angles to cover all sphere directions

– Images accumulated to a spherical environment map

• HDR environment map constructed while scanning

– Projecting each camera image

• According to the orientation and inertial measurement of the mobile

– Low dynamic range imaging is transformed to HDR

• Camera uses auto-exposure

– Two overlapping images will have slightly different exposure

– Alignment correction based on feature matching

– All in the device

Mobile Graphics Tutorial – 3DV 2018

Consistent illumination for AR

• Convolve the HDR with the BRDF’s of the materials

– Use MRT to support several convolutions at once

– Assume distant light

– One single light reflection on the surface

– Scene materials assumed non-emissive

– Use a simplified rendering equation

• Weight with AO (obtained offline)

– Built for real and synthetic objects

– Use the geometry of the scene

• Use a proxy geometry for the objects of the real world

• Cannot be simply done on the fly

Mobile Graphics Tutorial – 3DV 2018

Consistent illumination for AR

• Results

 Without AO With AO

Images courtesy of Peter Kán

Mobile Graphics Tutorial – 3DV 2018

Consistent illumination for AR

• Performance

• Limitations

– Materials represented by Phong BRDF

– AO and most shading (e.g. reflection maps) is baked

Mobile Graphics Tutorial – 3DV 2018

Soft shadows using cubemaps

• Efficient Soft Shadows Based on Static Local Cubemap [Bala & Lopez

Mendez, 2016]

• Goal

– Soft shadows in realtime

Taken from https://community.arm.com/graphics/b/blog/posts/dynamic-soft-shadows-based-on-local-cubemap

Mobile Graphics Tutorial – 3DV 2018

Soft shadows using cubemaps

• Overview

– Create a local cube map

• Offline recommended

• Stores color and transparency of the environment

• Position and bounding box

– Approximates the geometry

• Local correction

– Using proxy geometry

– Apply shadows in the fragment shader

Mobile Graphics Tutorial – 3DV 2018

Soft shadows using cubemaps

• Generating shadows

– Fetch texel from cubemap

• Using the fragment-to-light vector

• Correct the vector before fetching

– Using the scene geometry (bbox) and cubemap creation position

» To provide the equivalent shadow rays

– Apply shadow based on the alpha value

– Soften shadow

• Using mipmapping and addressing according to the distance

Mobile Graphics Tutorial – 3DV 2018

Soft shadows using cubemaps

• Conclusions

– Does not need to render to texture

• Cubemaps must be pre-calculated

– Requires reading multiple times from textures

– Stable

• Because cubemap does not change

• Limitations

– Static, since info is precomputed

Mobile Graphics Tutorial – 3DV 2018

Physically-based Deferred Rendering

• Physically Based Deferred Shading on Mobile [Vaughan Smith & Einig, 2016]

• Goal:

– Adapt deferred shading pipeline to mobile

– Bandwidth friendly

– Using Framebuffer Fetch extension

• Avoids copying to main memory in OpenGL ES

Mobile Graphics Tutorial – 3DV 2018

Physically-based Deferred Rendering

• Overview

– Typical deferred shading pipeline

G-Buffer Pass Lighting Pass Tone mapping Postprocessing

G-Buffer

Depth/Stencil

Normals

Color

Light

Accumulation

Tone mapped

image

Local Memory Local Memory Local Memory

Mobile Graphics Tutorial – 3DV 2018

Physically-based Deferred Rendering

• Main idea: group G-buffer, lighting & tone mapping into one step

– Further improve by using Pixel Local Storage extension

• G-buffer data is not written to main memory

• Usable when multiple shader invocations cover the same pixel

– Resulting pipeline reduces bandwidth

G-Buffer Pass Lighting Pass Tone mapping Postprocessing

Tonemapped image

Local Memory

Mobile Graphics Tutorial – 3DV 2018

Physically-based Deferred Rendering

• Two G-buffer layouts proposed

– Specular G-buffer setup (160 bits)

• Rgb10a2 highp vec4 light accumulation

• R32f highp float depth

• 3 x rgba8 highp vec4: normal, base color & specular color

– Metallicness G-buffer setup (128 bits, more bandwidth efficient)

• Rgb10a2 highp vec4 light accumulation

• R32f highp float depth

• 2 x rgba8 highp vec4: normal & roughness, albedo or reflectance metallicness

Mobile Graphics Tutorial – 3DV 2018

Physically-based Deferred Rendering

• Lighting

– Use precomputed HDR lightmaps to represent static diffuse lighting

• Shadows & radiosity

– Can be compressed with ASTC (supports HDR data)

• PVRTC, RGBM can also be used for non HDR formats

– Geometry pass calculates diffuse lighting

– Specular is calculated using Schlick’s approximation of Fresnel factor

Mobile Graphics Tutorial – 3DV 2018

Physically-based Deferred Rendering

• Results (PowerVR SDK)

– Fewer rendering tasks

• meaning that the G-buffer generation, lighting, and tonemapping stages are properly merged into one

task.

• reduction in memory bandwidth

– 53% decrease in reads and a 54% decrease in writes

• Limitations

– Still not big frame rates

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• Optimized Screen-Space Ambient Occlusion in Mobile Devices [Sunet &

Vázquez, Web3D 2016]

• Goal: Study feasibility of real time AO in mobile

– Analyze most popular AO algorithms: Crytek’s, Alchemy’s, Nvidia’s Horizon-Based AO (HBAO),

and Starcraft II (SC2)

– Evaluate their AO pipelines step by step

– Design architectural improvements

– Implement and compare

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• Ambient Occlusion. Simplification of rendering equation

– The surface is a perfect diffuse surface (BRDF constant)

– Light potentially reaches a point p equally in all directions

• But takes into account point’s visibility

Light reaches
the surface Light does not

reach the surface

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• AO typical implementations

– Precomputed AO: Fast & high quality, but static, memory hungry

– Ray-based: High quality, but costly, visible patterns…

– Geometry-based: Fast w/ proxy structures, but lower quality, artifacts/noise…

– Volume-based: High quality, view independent, but costly

– Screen-space:

• Extremely fast

• View-dependent

• [mostly] requires blurring for noise reduction

• Very popular in video games (e.g. Crysis, Starcraft 2, Battlefield 3…)

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• Screen-space AO:

– Approximation to AO implemented as a screen-space post-processing

• ND-buffer provides coarse approximation of scene's geometry

• Sample ND-buffer to approximate (estimate) ambient occlusion instead of shooting rays

Assassin’s Creed Syndicate

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• SSAO pipeline

1. Generate ND (normal + depth, OpenGL ES 2) or G-Buffer (ND + RGB…, OpenGL ES 3.+)

2. Calculate AO factor for visible pixels

a. Generate a set of samples of positions/vectors around the pixel to shade.

b. Get the geometry shape (position/normal…)

c. Calculate AO factor by analyzing shape…

3. Blur the AO texture to remove noise artifacts

4. Final compositing

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• Optimizations.

– G-Buffer storage (less precision)

• 8 not enough

• 16 and 32 similar quality

– Normal storage (RGB vs RG)

• RGB normals are faster

– Samples generation (offline)

• Poisson disc (2D) and 8-point cosine-

weighted hemisphere (3D)

– Geometry recovery

• Similar triangles instead of inverse tf

– Geometry storage

• Store depth instead of 3D positions

– Trades bandwidth for memory

• Optimizations (cont)

– Banding and noise

• Reduce noise using bilateral (separable)

filter instead of Gaussian

– Progressive improvement

• Amortize AO through multiple frames

Frame i - 1 Frame i

Mobile Graphics Tutorial – 3DV 2018

Ambient Occlusion in mobile

• Optimizations

– Naïve improvement: Reduce the

calculation to a portion of the screen

• Mobile devices have a high PPI resolution

• Reduction improves timings dramatically

while keeping high quality

– Typical reduction:

• Offscreen render to 1/4th of the screen

• Scale-up to fill the screen

• Results

Visual Computing Group

Part 4.5

Scalable Mobile Visualization:

Volumetric Data

Pere-Pau Vázquez, UPC

35

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Introduction

• Challenges

• Architectures

• GPU-based ray casting on mobile

• Conclusions

36

Mobile Graphics Tutorial – 3DV 2018

 Capturing Rendering

Rendering Volumetric Datasets

37

3D texture

GPU- based

ray casting

Output

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Introduction

– Volume datasets

• Sizes continuously growing (e.g. >10243)

– Complex data (e.g. 4D)

– Rendering algorithms

• GPU intensive

• State-of-the-art is ray casting on the fragment shader

– Interaction

• Edition, inspection, analysis, require a set of complex manipulation techniques

38

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Desktop vs mobile

– Desktop rendering

• Large models on the fly

• Huge models with the aid of compression/multiresolution schemes

– Mobile rendering

• Standard sizes (e.g. 5123) still too much for the mobile GPUs

• Rendering algorithms GPU intensive

– State-of-the-art is GPU-based ray casting

• Interaction is difficult on a small screen

– Changing TF, inspecting the model…

39

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Challenges on mobile:

– Memory:

• Model does not fit into memory

– Use client server approach / compress data

– GPU capabilities:

• Cannot use state of the art algorithm (e.g. no 3D textures)

– Texture arrays

– GPU horsepower:

• GPU unable to perform interactively

– Progressive rendering methods

– Small screen

• Not enough details, difficult interaction

40

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Mobile architectures

– Server-based rendering

– Hybrid approaches

– Pure mobile rendering

– Server-based and hybrid rely on high bandwidth communication

41

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Pure mobile rendering

– Move all the work to the mobile

– Nowadays feasible

• Direct Volume Rendering on mobile. Algorithms

– Slices

– 2D texture arrays

– 3D textures

42

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• 2D texture arrays + texture atlas [Noguera et al. 2012]

– Simulate a 3D texture using an array of 2D textures

– Implement GPU-based ray casting

• High quality

• Relatively large models

• Costly

• Cannot use hardware trilinear interpolation

44

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

45

• 2D texture arrays + texture atlas

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• 3D textures [Balsa & Vázquez, 2012]

– Allow either 3D slices or GPU-based ray casting

– Initially, only a bunch of GPUs sporting 3D textures (Qualcomm’s Adreno series >= 200)

– Performance limitations (data: 2563 – screen resol. 480x800)

• 1.63 for 3D slices

• 0.77 fps for ray casting

51

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

52

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• 2D slices vs 3D slices vs raycasting

54

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Using Metal on an iOS device [Schiewe et al., 2015]

55

Taken from [Schiewe et al., 2015]

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• Using Metal on an iOS device [Schiewe et al., 2015]

– Standard GPU-based ray casting

– Provides low level control

– Improved framerate (2x, to a maximum of 5-7 fps) over slice-based rendering

– Models noticeably smaller than available memory (max. size was 2562x942)

56

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• Progressive Ray Casting for Volumetric Models on Mobile Devices [Díaz et

al., 2018]

– Two algorithms for progressive ray casting adapted to smartphones

– Tested on Android

– Using OpenGL

57

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• Overview

– Common core: Progressive ray-casting

• Low-level resolution

– Two methods for progressive refinement

• FBSlabs: Refine front to back

– Budget-based rendering (slab sizes)

– Requires lower level OpenGL ES/WebGL (3.0 [or lower], no compute shaders)

– Progressive refinement more noticeable

• STiles: Refine tile-based

– Budget-based rendering (number/size of tiles)

– Less visible update changes

– Requires higher level OpenGL (3.1 or higher, compute shaders to sort tiles)

58

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• FBSlabs

59

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• FBSlabs

60

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• STiles

61

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• STiles

62

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• Results. Completion time

63

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• Results. Framerate

64

Mobile Graphics Tutorial – 3DV 2018

Volume data. GPU ray casting on mobile

• Results. Perceptual differences vs previous frame

65

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Challenges: Transfer Function edition

66

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

Finger

67

• Challenges: Transfer Function edition

Mobile Graphics Tutorial – 3DV 2018

Rendering Volumetric Datasets

• Conclusion

– Volume rendering on mobile devices possible but limited

• Can use daptive rendering (half resolution when interacting)

– 3D textures in core GLES 3.0

• Requires progressive raytracing for not so large models

– Interaction still difficult

– Client-server architecture still alive

• Can overcome data privacy/safety & storage issues

• Better 4G-5G connections

• …

68

Mobile Graphics Tutorial – 3DV 2018

MOBILE METRIC CAPTURE AND
RECONSTRUCTION

Next Session

69

