
Visual Computing Group

Part 4.1

Scalable Mobile Visualization:

Introduction

Enrico Gobbetti, CRS4

1

Mobile Graphics Tutorial – 3DV 2018

Scalable mobile visualization

• Goal is high quality interactive

rendering of complex scenes…

– Large data, shading, complex illumation,

…

• … on mobile platforms …

– Mostly smartphones or tablets

– Similar considerations can apply to other

settings (e.g., embedded systems)

• Wide variety of applications

– Gaming, visualization, cultural heritage…

2

Mobile Graphics Tutorial – 3DV 2018

Mobile platforms scenario

• Typical scalable rendering

problem, but with some specific

constraints wrt standard (desktop

settings)

• … screen resolutions are often

extremely large (2 – 6 Mpix)

– Lots of pixels to generate!

• … mobile 3D graphics hardware is

powerful but still constrained

– Reduced computing powers, memory

bandwidths, and amounts of memory wrt

desktop graphics systems

– Limited power supply!

3

Mobile Graphics Tutorial – 3DV 2018

Mobile rendering scenario

• No brute force method applicable

– Need for “smart methods” to perform

interactive rendering

– Exploit at best reduced rendering power

• Proposed solutions

– Render only necessary data: adaptive

multiresolution

– Limit required CPU/GPU work: full or

partial precomputation

– Limit data requirements: streaming

approaches

– Exploit at best available bandwidth:

data compression

4

Mobile Graphics Tutorial – 3DV 2018

Related Work on mobile visualization

• (See previous session for details)

• Remote Rendering

– …..

• Local Rendering

– Model based

• Original models

• Multiresolution models

• Simplified models

– Line rendering

– Point cloud rendering

– Image based

• Image impostors

• Environment maps

• Depth images

– Smart shading

– Volume rendering

 5

Mobile Graphics Tutorial – 3DV 2018

Related Work on mobile visualization

• (See previous session for details)

• Remote Rendering

– …..

• Local Rendering

– Model based

• Original models

• Multiresolution models

• Simplified models

– Line rendering

– Point cloud rendering

– Image based

• Image impostors

• Environment maps

• Depth images

– Smart shading

– Volume rendering

 6

Mobile Graphics Tutorial – 3DV 2018

Scalable Mobile Visualization

• Big/complex models:

– Detailed scenes from modeling, capturing..

• Output sensitive: adaptive multiresolution

• Compression / simple decoding

• Complex rendering

– Global illumination

• Pre-computation

• Smart shading

– Volume rendering

• Compression / simple decoding

7

Mobile Graphics Tutorial – 3DV 2018

Scalable Mobile Visualization. Outline

 Large meshes

 High quality illumination: full precomputation

 High quality illumination: smart computation

 Volume data

8

Visual Computing Group

Part 4.2

Scalable Mobile Visualization:

Large Meshes

Fabio Marton, CRS4

9

Mobile Graphics Tutorial – 3DV 2018

Scalable Mobile Visualization

10

Extremely

Massive

3D Models

1 G Tri

Mobile Graphics Tutorial – 3DV 2018

Scalable Mobile Visualization

11

Itty bitty living space!

Mobile Graphics Tutorial – 3DV 2018

A real-time data filtering problem!

• Models of unbounded complexity on limited computers

– Need for output-sensitive techniques (O(N), not O(K))

• We assume less data on screen (N) than in model (K )

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(triangles, points, …)

Limited bandwidth
(network/disk/RAM/CPU/PCIe/GPU/…)

View parameters

Projection + Visibility + Shading

12

Mobile Graphics Tutorial – 3DV 2018

A real-time data filtering problem!

• Models of unbounded complexity on limited computers

– Need for output-sensitive techniques (O(N), not O(K))

• We assume less data on screen (N) than in model (K )

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(triangles, points, …)

Limited bandwidth
(network/disk/RAM/CPU/PCIe/GPU/…)

View parameters

Projection + Visibility + Shading

Small
Working Set

13

Mobile Graphics Tutorial – 3DV 2018

Output-sensitive techniques

• At preprocessing time: build MR structure

– Data prefiltering!

– Visibility + simplification

– Compression

• At run-time: selective view-dependent

refinement from out-of-core data

– Must be output sensitive

– Access to prefiltered data under real-time constraints

– Visibility + LOD

Occluded / Out-of-view

Inaccurate

Accurate

FRONT

14

Mobile Graphics Tutorial – 3DV 2018

Related work

• Long history, starting with general solutions

– View dependent LOD and progressive streaming [Hoppe 1997]

• Compute view dependent triangulation each frame -> CPU bound

– Surface patches [CRS4+ISTI CNR, SIGGRAPH’04]

• Effective in terms of speed

• Require non-trivial data structures and techniques for decompression

– General solutions available for Desktop environments [Cignoni et al, 2005, Yoon et al. 2008]

• Mesh compression – MPEG-4 [Jovanova et al. 2008]

• Light 3D model rendering [MeshPad, PCL]

• Gigantic point clouds on mobile devices [Balsa et al. 2012]

• … and much more

15

Mobile Graphics Tutorial – 3DV 2018

Our Contributions: chunked multiresolution structures

• Efficient view-dependent meshes
– Approximate original surface

– Seamless

• Mix and match chunks

– Amortize CPU work!

• Two approaches

– Fixed coarse subdivision

• Adaptive QuadPatches

– Adaptive coarse subdivision

• Compact Adaptive TetraPuzzles

16

Mobile Graphics Tutorial – 3DV 2018

Adaptive Quad Patches
Simplified Streaming and Rendering for Mobile & Web

• Represent models as fixed number of

multiresolution quad patches

– Image representation allows component reuse!

– Natural multiresolution model inside each patch

– Adaptive rendering handled totally within shaders!

• Works with topologically simple models

Javascript!

17

Mobile Graphics Tutorial – 3DV 2018

Related work Adaptive Quad Patches

• Geometry images [Gu et al. 2002]

– Exploit current GPU capabilities / optimized libraries for compression and streaming of images

• Quad remeshing

– Single-disk parametrization [Floater and Hormann 2005]

– Base mesh to parametrize the model [Petroni et al. 2010]

• Detail rendering

– GPU raycasting [Oliveira et al. 2000]

– Displacement mapping in GPU [Shiue et al. 2005]

18

Mobile Graphics Tutorial – 3DV 2018

AQP Approach

• Models partitioned into fixed

number of quad patches

– Geometry encoded as detail with respect

to the 4 corners interpolation

• For each quad: 3 multiresolution

pyramids

– Detail geometry

– Normals

– Colors

• Data encoded as images

– Exploit .png (lossless compression)

• Ensure connectivity

– Duplicated boundary information

19

Mobile Graphics Tutorial – 3DV 2018

Pre-processing (Reparameterization)

• Generate clean manifold triangle mesh

–Poisson reconstruction [Kazhdan et al. 2006]

–Remove topological noise

•Discard connected components with too few triangles

• Parameterize the mesh on a quad-based

domain

–Isometric triangle mesh parameterization

•Abstract domains [Pietroni et al. 2010]

–Remap into a collection of 2D square regions

• Resample each quad from original

geometry

–Associates to each quad a regular grid of samples

(position, color and normal)

20

Mobile Graphics Tutorial – 3DV 2018

Pre-processing (Multiresolution)

• Collection of variable resolution quad patches

– Coarse representation of the original model

• Multiresolution pyramids

– Detail geometry

– Color

– Normals

• Shared border information

– Ensure connectivity

21

Mobile Graphics Tutorial – 3DV 2018

Adaptive rendering
• 1. CPU LOD Selection

– Find edge LODs

– Quad LOD = max edge LODs

– If data available use it, otherwise

• Query data for next frames

• Use best available representation

– Send VBO with regular grid (1 for each LOD)

• 2. GPU: Vertex Shader

– Snap vertices on edges (match neighbors)

– Base position = corner interpolation (u,v)

– Displace VBO vertices

• normal + displacement (dequantized)

• 3. GPU: Fragment Shader

– Texturing & Shading

22

0,0 u,v

1,1

P0

P1

P2

P3

Shared Boundary

Representation

Inner Vertex

22

Mobile Graphics Tutorial – 3DV 2018

Rendering example

 Patches Levels Shading

23

Mobile Graphics Tutorial – 3DV 2018

Results

24

Mobile Graphics Tutorial – 3DV 2018

Adaptive Quad Patches Conclusions

• Effective creation and distribution

system

–Fully automatic

–Compact, streamable and renderable 3D

model representations

–Low CPU overhead

–WebGL

•Desktop

•Mobile

• Next: More general solution based

on full multiresolution structure

• Limitations

–Closed objects with large components

–Visual approximation (lossy)

• Extensions

–Explore more aggressive compression

techniques

–Occlusion culling

–More sophisticated shading/shadowing

techniques

25

Mobile Graphics Tutorial – 3DV 2018

Compact Adaptive TetraPuzzles
Adaptive multiresolution solution with compression-domain rendering

• Multiresolution structure with variable

number surface patches embedded in a

hierarchy of tetrahedra

– Fully adaptive and seamless 3D mesh

– Geometry clipped against containing tetrahedra

– Local quantization with barycentric coordinates

– GPU friendly compact data representation

• Works with general surface models

26

Mobile Graphics Tutorial – 3DV 2018

Compact Adaptive Tetra Puzzles

27

Triangle

soup

Partitioning

Database

Merging &

Simplification

Tetrahedra

hierarchy

Encoding &

Compression

Simplified representations

Tetrahedra

hierarchy

Partitioned input model

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiZ4rfv1dTXAhXCuRQKHeIlAekQjRwIBw&url=https://www.istockphoto.com/photos/smart-phone&psig=AOvVaw12RkDZpRq7xQ2WSEqep6fN&ust=1511524479263366

Mobile Graphics Tutorial – 3DV 2018

Related work (Compression)

• Topology coding

– Theoretical minimum [Rossignac 2001]

• 1.62 bits/triangle, 3.24 bits/vertex

– 8 bpt/16 bpv [Chhugani et al. 2007]

• HW-implementation

– 5 bpt/10 bpv [Meyer et al. 2012]

• CUDA implementation

• Attribute quantization

– Global position quantization [Lee et al. 2009]

– Local quantization techniques [Lee et al. 2010]

– Normal compression using octahedral parametrization [Meyer et al. 2010]

• Our goal is to balance compression rate and decoding+rendering

performance by using a GPU-friendly compact representation

 28

Mobile Graphics Tutorial – 3DV 2018

Data Pre-processing

• Start with hires triangle soup

• Partition model using a conformal

hierarchy of tetrahedra

– Subdivide tetrahedra along longest edge until

containing less than N O(103) triangles

• Construct non-leaf cells by lower level

cells

– bottom-up recombination

– simplification

29

P
a
rtitio

n
in

g

C
o
n
st

ra
in

e
d
 S

im
p
lif

ic
a
ti
o
n

Ensure continuity  Shared information on borders

Mobile Graphics Tutorial – 3DV 2018

P2

P1

P3

P4

Data Encoding

• Geometry clipped against containing tetrahedra

• Vertices: tetrahedra barycentric coordinates

– Pbarycentric = λ1*P1+λ2*P2+λ3*P3+λ4*P4

• Seamless local quantization

– Inner vertices (I): 4 corners

– Face vertices (F): 3 corners

– Edge vertices (E): 2 corners

• GPU friendly compact data representation

– 8 bytes = position (3 bytes) + color (3 bytes)+ normal(2 bytes)

– Normals encoded with the octahedron approach [Meyer et al. 2012]

• Further compression with entropy coding

– exploiting local data coherence

–

–

30

Mobile Graphics Tutorial – 3DV 2018

Rendering process

• Extract view dependent diamond cut (CPU)

• Request required patches to server

– Asynchronous multithread client

– Apache 2 based server (data repository, no processing)

• CPU entropy decoding of each patch

• For each node (GPU Vertex Shader):

– VBO with barycentric coordinates, normals and colors (64 bpv)

– Decode position : P = MV * [C0 C1 C2 C3] * [Vb]

• Vb is the vector with the 4 barycentric coords

• C0..C3 are tetrahedra corners

– Decode normal from 2 bytes encoding [Meyers et al. 2012]

– Use color coded in RGB24

31

FRONT

Apache 2

Mobile Graphics Tutorial – 3DV 2018

Results
• Input Models

– St. Matthew 374 MTri

– David 1GTri

• Compression:

– 40 to 50 bits/vertex

• Streaming full screen view

– 30s on wireless,

– 45s on 3G

– David 14.5MB (1.1 Mtri)

– St. Matthew 19.9MB (1.8 Mtri)

32

Mobile Graphics Tutorial – 3DV 2018

Conclusions: Compact ATP

• Generic gigantic 3D triangle meshes

on common handheld devices

– Compact, GPU friendly, adaptive data

structure

• Exploiting the properties of conformal

hierarchies of tetrahedra

• Seamless local quantization using barycentric

coordinates

– Two-stage CPU and GPU compression

• Integrated into a multiresolution data

representation

• Limitations

– Requires coding non-trivial data structures

– Hard to implement on scripting environments

33

Mobile Graphics Tutorial – 3DV 2018

Conclusions: large meshes

• Various solutions for large meshes

• Constrained solution: Adaptive Quad Patches

– Simple and fast

– Good compression

– Works on topologically simple models

• General solution: Compact Adaptive Tetra Puzzles

– Compact data representation

– More complex code

34

Mobile Graphics Tutorial – 3DV 2018

15 MINUTES BREAK!

Next Session: Part 4.4

35

SCALABLE MOBILE VISUALIZATION:
INTRODUCTION TO COMPLEX LIGHTING

Visual Computing Group

Part 4.3

Scalable Mobile Visualization:

Introduction to complex lighting

Enrico Gobbetti, CRS4

36

Mobile Graphics Tutorial – 3DV 2018

Complex scenes

• We have seen how to deal with complex meshes O(Gtri)

– Similar solutions for point clouds…

• Problem tackled was size

– Solution proposed: adaptive multiresolution chunk-based approaches

– Various optimized solutions to select chunks, compose them, …

• Rendering was simple, though

– One pass streaming, direct illumination

• How to deal with more complex illumination and shading?

37

Mobile Graphics Tutorial – 3DV 2018

Complex scenes

• Complex illumination/shading introduce data and computation problems

– Non-local effects (global illumination, shadows, …) require scattered information

– Illumination/shading is costly (CPU/GPU time) and requires data-intensive algorithms

• Proposed solutions in the mobile world

– Full precomputation

• Images computed off-line

• Removes real-time timing constraints, but introduces other problems (which images to compute? How

to navigate in an image-based scene?)

– Smart computation

• Partial precomputation of some intermediate results, approximation tricks

• Not general solution but improves quality!

• Next session illustrates examples of full/smart computation in mobile

graphics

38

Visual Computing Group

Part 4.4

Scalable Mobile Visualization:

Full precomputation of complex lighting

Fabio Marton, CRS4

39

Mobile Graphics Tutorial – 3DV 2018

Ubiquitous exploration of scenes with complex
illumination
• Real-time requirement: ~30Hz

– Difficulties handling complex illumination

on mobile/web platforms with current

methods

• Image-based techniques

– Constraining camera movement to a set

of fixed camera positions

– Enable pre-computed photorealistic

visualization

• Explore-Maps: technique for

– Scene representation as set of probes

and arcs

– Precomputed rendering for probes and

transitions

40

Mobile Graphics Tutorial – 3DV 2018

Scene Discovery

• ExploreMaps: Automatic best

view/best path methods for

generating

– Set of probes providing full model

coverage

• Probe = 360° panoramic point of view

– Set of arcs connecting probes

• Enable full scene navigation

41

Di Bendeetto et al. Eurographics 2014

ExploreMaps: Efficient Construction and
Ubiquitous Exploration of Panoramic View
Graphs of Complex 3D Environments.

Explore Map

Mobile Graphics Tutorial – 3DV 2018

Best viewpoints computation

• Position set of probes inside the

scene

– Probes provide a 360 degree view

– Greedy algorithm that places probes at

the barycenter of newly seen geometry

until all the scene is visible

– Final clustering pass reduces number of

probes

42

Mobile Graphics Tutorial – 3DV 2018

Best path computation

• Connect probes which have a

common visible region

– Creates a graph of probes

• For each pair of mutually visible

probe

– Create first path going through the closest

point in the mutually visible region

– Optimize and smooth the path using a

mass-spring system

43

Mobile Graphics Tutorial – 3DV 2018

Precomputation of probe images

• Compute panoramic views for probes and

frames of transition arcs

– Photorealistic rendering (using Blender 2.68a)

• panoramic views both for probes and transition arcs

– 1024^2 probe panoramas

– 256^2 transition video panoramas

– 32 8-core PCs,

– Rendering times ranging from 40 minutes to 7

hours/model

44

Explore Map

Mobile Graphics Tutorial – 3DV 2018

Explore Maps – Processing Results

45

Mobile Graphics Tutorial – 3DV 2018

Interactive Exploration

• UI for Explore Maps

– WebGL implementation + JPEG + MP4

– Panoramic images: probes + transition path

• Closest probe selection
• Path alignment with current view

• Thumbnail goto

– Non-fixed orientation

46

Mobile Graphics Tutorial – 3DV 2018

Conclusion: Interactive Exploration

• Interactive exploration of complex scenes

– Web/mobile enabled

– Pre-computed rendering

• state-of-the-art Global Illumination

– Graph-based navigation  guided exploration

• Limitations

– Constrained navigation

• Fixed set of camera positions

– Limited interaction

• Exploit panoramic views on paths  less constrained navigation

• Next part of the talk:

– A dynamic solution for complex illumination with smart computation

47

