
Visual Computing Group

Part 2.2

Mobile Graphics Trends:

Applications

Marco Agus, KAUST & CRS4

1

Visual Computing Group

Part 3

Graphics development for mobile

systems

Marco Agus, KAUST & CRS4

2

Mobile Graphics Tutorial – 3DV 2018

3

Mobile Graphics

OS

architecture

programming

languages

3D APIs

IDEs

Heterogeneity

Mobile Graphics Tutorial – 3DV 2018

4

Mobile Graphics

OS
programming

languages

3D APIs

IDEs

Heterogeneity

Mobile Graphics Tutorial – 3DV 2018

5

Mobile Graphics

• OS

• Programming Languages

• Architectures

• 3D APIs

• Cross-development

– X86 (x86_64): Intel / AMD

– ARM (32/64bit): ARM + (Qualcomm, Samsung, Apple,

NVIDIA,…)

– MIPS (32/64 bit): Ingenics, Imagination.

– Android

– iOS

– Windows Phone

– Firefox OS, Ubuntu Phone, Tizen…

– C++

– Obj-C / Swift

– Java

– C# / Silverlight

– Html5/JS/CSS

– OpenGL / GL ES

– D3D / ANGLE

– Metal / Mantle / Vulkan (GL Next)

– Qt

– Marmalade / Xamarin /

– Muio

– Monogame / Shiva3D / Unity / UDK4 / Cocos2d-x

Mobile Graphics Tutorial – 3DV 2018

6

Operating Systems

Mobile Graphics Tutorial – 3DV 2018

7

Operating Systems

• Linux based (Qt…)

– Ubuntu, Tizen, BBOS…

• Web based (Cloud OS)

– ChromeOS, FirefoxOS, WebOS

• Windows Phone

• iOS (~unix + COCOA)

• Android (JAVA VM)

Mobile Graphics Tutorial – 3DV 2018

Development trends

• Hard to follow the trends

– software does not follow hardware evolution

– strong market oriented field where finance has strong impact on evolution

• In general, for

– Mobile phones

• Market drive towards Android, iOS

– Tablets

• Android, iOS, Windows 10

– Embedded devices

• Heterogenous (beyond the scopes of this course)

• Here we focus on mobile phones and tablets

8

Mobile Graphics Tutorial – 3DV 2018

9

Operating Systems

• Windows 10

– Windows development – Visual Studio 2017

• Good debugging / compiler / integration

– Great integration and deployment

• Universal Windows Platform (UWP)

– API access

• C#, VB.NET, and C++

– 3D API

• D3D

• OpenGL access through ANGLE

– Advantages

• Visual Studio, interoperability with iOS

• HW is quite selected/homogeneous

– Disadvantages

• ~OpenGL wrapper just recently!

Mobile Graphics Tutorial – 3DV 2018

10

Operating Systems

• iOS

– Development under MacOS

• Xcode – good IDE/debug

• Clang compiler!

– API access

• Objective-C, swift

– Library programming

• C++ support

– Advantages:

• Homogeneous hardware (biggest issues are resolution related)

• State-of-the-art CPU/GPU (PowerVR SGX 54X/554, G6400)

• Good dev tools (Xcode + Clang)

– Inconvenients:

• Closed platform

• Requires iDevice for development/shipment (mostly)

Mobile Graphics Tutorial – 3DV 2018

11

Operating Systems

• Android

– Development in Eclipse / AndroidStudio

• Java-based – integrated debugging (non-trivial for NDK)

• GCC / clang compilers

– Advantages

• Wide variety of hardware configurations (CPU/GPU)

• Java based + C++ as dynamic library (JNI or NDK+NativeActivity)

• Open source

• Toolchain provided for Windows/Linux/MacOS (GCC + Clang)

• Faster access to new hardware / functionality!

– Inconvenients

• Heterogeneous device base (hard to target all configurations)

• Not so integrated IDE -- ~mixed pieces

Mobile Graphics Tutorial – 3DV 2018

12

Operating Systems (comparison)

• App development -- publishing

– WinPhone & iOS requires less effort for distribution

• Easy to reach the whole user base

– Android has a wide variety of configuration that require

tuning

• User base is typically reached in an incremental way

(supporting more configs)

• Many HW configurations (CPU/GPU) give more

options to explore ☺

– Windows has not yet the same market share

• Variety of configurations

Mobile Graphics Tutorial – 3DV 2018

13

Programming Languages

• C/C++

– Classic, performance, codebase, control

• Objective C

– Bit different style (message based), well-documented API for iOS, mainly

COCOA/iOS

• Java

– Android is VM/JIT based, ~portability (API), well-known, extended, codebase

• C#

– VM based, ~Java evolution, (Win, Android, iOS)

• Swift

– Apple new language, simplicity, performance, easy, LLVM-based compilers

• HTML5/JS

– Web technologies, extended, compatibility

• Perl, Python, Ruby, D, GO (Google), Hack (facebook), …

– More options, not so popular ?

Mobile Graphics Tutorial – 3DV 2018

14

3D APIs

Mobile Graphics Tutorial – 3DV 2018

15

3D APIs

Mantle Direct3D Metal

OpenGL Next

 5.0

Mobile Graphics Tutorial – 3DV 2018

16

• Direct 3D

– 3D API from MS for Win OS (XBOX)

– ANGLE library provides GL support on top of D3D

• Mantle

– AMD 3D API with Low-level access → D3D12 | GL_NG

• Metal

– Apple 3D API with low-level access

• OpenGL Desktop/ES/WebGL

– GL for embedded systems, now in version 3.2

• GLES3.2 ~ GL4.5

• GL Next Generation → Vulkan
– redesign to unify OpenGL and OpenGL ES into one common

API (no backward compatibility)

3D APIs

Mobile Graphics Tutorial – 3DV 2018

17

3D APIs

• Direct 3D

– Games on Windows (mostly) / XBOX

– Define 3D functionality state-of-the-art

• OpenGL typically following

• 3D graphic cards highly collaborative

• Multithread programming

– Proprietary – closed source – M$

– Tested & stable – good support + tools

• Metal

– Apple 3D API with low-level access

– Much in the way of Mantle?

• buffer & image, command buffers, sync…

– Lean & mean → simple + ~flexible

Win &

Game research

Mac/iOS future ?

Mobile Graphics Tutorial – 3DV 2018

18

3D APIs

• Mantle

– AMD effort – low level – direct access – 3D API

– Direct control of memory (CPU/GPU) – multithreading done well

• User-required synchronization

– API calls per frame <3k → 100K

– Resources: buffer & image ☺

– Simplified driver → maintenance (vendors)

• High level API/Framework/Engines will be developed ☺

– Pipeline state

• shaders + targets (depth/color…) + resources + geometry

– Command queues + synchronization

• Compute / Draw / DMA(mem. Copy)

– Bindless – shaders can refer to state resources

– OpenGL NEXT seems to move into ‘Mantle direction’

– Direct 3D 12 already pursuing low-level access

Mobile Graphics Tutorial – 3DV 2018

19

3D APIs

• OpenGL (Desktop/ES/WebGL)

– Open / research / cross-platform

– Lagging in front of D3D → Legacy support ☹

• No more FIXED PIPELINE (1992)!! -- scientific visualization…

– GLSL (2003)…GL 3.1(2009) → deprecation/no fixed pipeline

• Compatibility profile → legacy again…(till GL 4)

• Core profile

– GLSL → shader required

– VAO

» group of VBO

» we need a base VAO for using VBO!

– Simplifying → VBO + GLSL only!

Mobile Graphics Tutorial – 3DV 2018

20

3D APIs

– OpenGL ES 1.1

• Fixed pipeline – no glBegin/End – no GL_POLYGON -- VBO

– OpenGL ES 2 (OpenGL 1.5 + GLSL) ~ GL4.1

• No fixed pipeline (shaders mandatory), ETC1 texture compress..

– OpenGL ES 3 ~ GL4.3

• Occlusion queries + geometry instancing

• 32bit integer/float in GLSL

• Core 3D textures, depth textures, ETC2/EAC, many formats…

• Uniform Buffer Objects (packed shader parameters)

– OpenGL ES 3.2 ~ GL4.5

• Compute shaders (atomics, load/store)

• Separate shader objects (reuse)

• Indirect draw (shader culling…)

• NO geometry/tessellation

Mobile Graphics Tutorial – 3DV 2018

21

3D APIs

• Vulkan

– derived from and built upon components of AMD's Mantle API

– with respect to OpenGL

• lower level API, more balanced CPU/GPU usage, parallel tasking, work

distribution across multiple CPU cores

Mobile Graphics Tutorial – 3DV 2018

22

3D APIs

• GPGPU

– OpenCL

• On Android it is not much loved

– Use GPU vendor SDK provided libs ☺

• On iOS is only accepted for system apps

– Use old-school GPGPU (fragment shader -> FrameBuffer)

– Compute shaders

• GLES 3.2!!! General solution!!

– DirectCompute on D3D

Mobile Graphics Tutorial – 3DV 2018

23

Cross-development

http://www.appian.com/blog/enterprise-mobility-2/are-mobile-platform-choices-limiting-enterprise-process-innovation

Mobile Graphics Tutorial – 3DV 2018

Cross platform

• Unity Mobile (for gaming and VR)

– iOS/Android, integration with Tango

• Unreal Engine 4 (for gaming and VR)

– iOS/Android

– former Unreal Development Kit

– free usage, payment only for shipping

• Corona SDK

– iOS /Android

– uses integrated Lua layered on top of C++/OpenGL to build graphic application

– audio and graphics, cryptography, networking, device information and user input

24

Mobile Graphics Tutorial – 3DV 2018

Cross platform

• Marmalade

– iOS/Android/Windows

– two main layers

• low level C API for memory management, file access, timers, networking, input methods (e.g.

accelerometer, keyboard, touch screen) and sound and video output.

• C++ API for higher level functionality for 2D (e.g. bitmap handling, fonts) 3D graphics rendering (e.g.

3D mesh rendering, boned animation), resource management system and HTTP networking.

– Very successful but dismissing by March 2017

• EdgeLib

– iOS/Android/Windows

– high performance graphics engine in C++

– support for 2D graphics, 3D graphics (OpenGL ES), input and sound

25

Mobile Graphics Tutorial – 3DV 2018

Cross platform

• JMonkey Engine

– Android

– written in Java and using shader technology extensively

– uses LWJGL as its default renderer (another renderer based on JOGL is available, supporting

OpenGL 4)

• PowerVR

– iOS/Android/Windows

– a cross-platform OS and API abstraction layer, a library of helper tools for maths and resource

loading

– optimized for PowerVR GPUs, with Vulkan support

• ARM Developer Center

– Plenty of tools (computer vision and machine learning, OpenGL ES emulator, texture

compression)

26

Mobile Graphics Tutorial – 3DV 2018

27

Cross-development

• C++ use case: QtCreator

– Qt (~supports android, iOS, windows phone, linux, windows, mac)

– Provides API abstraction for UI, in-app purchases, ~touch input

– HOWTO (i.e. android):

• Android SDK

• Android NDK (native C++ support, toolchain, libraries, GL, CL…)

• Point environment variables ANDROID_SDK, ANDROID_NDK to folders

• Create new android project

• Play!

– Notes:

• Go for Qt > 5.4 (touch events were tricky in previous versions)

• Use QOpenGLWidget instead of QGLWidget

• Enable touch events on each widget:

– QWidget::setAttribute(Qt::WA_AcceptTouchEvents);

Mobile Graphics Tutorial – 3DV 2018

Mobile Graphics – Development

• Conclusions

– 1) Native + platform UI …

• C++ [any language] → LLVM compiler → target platform

• Platform Framework front-end → 1 for each platform

• Performance + flexibility

• Call native code from platform code (JNI, Object C, …)

– 2) Native through framework …

• Qt | Marmalade …

• C++ code uses framework API

– Framework API abstracts platform API [N platforms]

– BUT less flexible integration ?

– 3) Go web → HTML5/JS …

• JS code + WebGL

• ~Free portability (chrome / firefox / IE … ?)

• BUT performance is 0.5X at most with asm.js

28

Mobile Graphics Tutorial – 3DV 2018

SCALABLE MOBILE VISUALIZATION

Next Session

29

