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1 Introduction

In the cardiovascular system, morphology and functionality
are closely related. Altered flow conditions, such as separa-
tion and flow-reversal zones, low and oscillatory shear-stress
zones, play an important role in the development of arterial
disease. In turn, all these flow conditions are modified by arte-
rial wall changes such as intimal thickening or atherosclerotic
plaques. A detailed understanding of the local hemodynamic
environment, the influence of wall modifications on flow pat-
terns and the long-term adaptions of the vascular wall after
surgical procedures can have useful clinical applications, es-
pecially in view of reconstruction and revascularization op-
erations. Some of these alterations are not well understood,
making it quite difficult to foresee short- and long-term evo-
lution of the atherosclerotic disease and to plan an aggressive
approach. Recent advances in data-acquisition technology are
now providing physicians with large amounts of quantita-
tive information on vascular geometry that, together with
the availability of sophisticated three-dimensional simulation
methods, can be used to build patient-parametrized models
able to give detailed predictions on, e.g., flow shears stresses
and zones of recirculation in the arterial wall regions.

In the past, the adoption of mathematical investigation
was discouraged because of the difficulty of devising sig-
nificant mathematical models of the cardiovascular system
and, in particular, of the flow in specific districts where
atherosclerosis arises. Several types of difficulties have so
far limited the applicability of mathematical models to sim-
ple paradigms such as flow in morphologically simple dis-
tricts (e.g. Poiseuille or Womersely solutions) or those based
on electric network analogies (see e.g. [93, 119]). The com-
plexity is due on the one hand to strong nonlinear inter-
actions among different parts of the system; on the other
hand, it arises from the wide variety of individual vascular
morphologies.

Still in the Seventies, experiments on in vitro models or
on animals were the main device for cardiovascular investiga-
tions (see e.g. [123]). In recent years, however, the develop-
ment of computational techniques in fluid dynamics (CFD),
together with the increasing performances of the hardware,

found a promising field of application in the framework of
vascular research (see e.g. [48, 74, 79, 82, 91, 111, 114]). In-
deed, CFD allows the carrying out of simulations at low costs
and in completely controlled conditions. Besides, physical
quantities that are troublesome to measure “in vivo” can be
computed using real geometries, with the support of modern
medical imaging devices (such as, e.g., the Nuclear Magnetic
Resonance, the Digital Subtraction Angiography, the Spiral
Computed Tomography) and 3D geometrical reconstruction
algorithms (see e.g. [80, 114]).

Three different issues are relevant to this subject and will
be mainly addressed in this note.

1. Definition of suitable mathematical models: due to the
complexity of the cardiovascular system, a preliminary
analysis aiming at introducing suitable simplifying as-
sumptions in the mathematical modelling process is
mandatory. Obviously, different kind of simplifications
are suitable for different vascular districts. These issues
will be discussed in Sect. 3 for blood, and Sect. 4 for the
vascular walls, with a particular emphasis on large- and
medium-sized vessels, where atherosclerosis usually de-
velops.

2. Preprocessing of clinical data: the suitable treatment of
clinical data is crucial for the definition of a real (i.e. taken
from a patient) geometrical model, which is of utmost im-
portance for the meaningfulness of numerical results. This
aspect demands geometrical reconstruction algorithms in
order to achieve simulation in real vascular morphologies.
We briefly consider this issue in Sect. 3.4.

3. Development of appropriate numerical techniques: the
geometrical complexity of the vascular districts suggests
the use of unstructured grids (in particular for Finite
Element Method (FEM)), while the strongly unsteady na-
ture of the problem demands effective time-advancing
methods. In particular, for the numerical simulation of
the flow equations in a vascular district, fractional step
methods that separate the computation of velocity from
that of pressure field seem to be adequately accurate and
computationally effective (see Sect. 5.1).



164 A. Quarteroni et al.

When the compliance of the vascular walls is taken into
account, specific techniques such as the Arbitrary La-
grangian Eulerian (ALE) method for the numerical solu-
tion of the fluid equations in moving domains have to be
used and will be considered in Sect. 5.2 and Sect. 5.3.
Finally, in Sect. 5.4 it is considered the coupling of the
equation for the fluid in ALE formulation and those for
the vessel walls, in view of the numerical simulation of the
fluid-structure interaction problems.

The virtual hemodynamic environment based on mathe-
matical models, preprocessing of clinical data and numerical
devices, as described in this note, provides the physicians
approaching this complex bio-medical field with different op-
tions, among which we mention: the understanding of the
intimate correlation between any modification of vessel mor-
phology and the associated alteration of flow patterns, with its
impact on long-term results; the basis for a sophisticated plan-
ning, before performing real procedures on the patient; the
possibility of altering vascular geometries in order to study
or foresee end-results of any vascular procedure (see also [1]
and [114]).

The numerical results addressed at the end of this work
demonstrate the potentiality of these interdisciplinary studies.

2 Physiological aspects of the cardiovascular system

In this Section we analyze some basic features of the physio-
pathology of blood flow and vessel walls.

The major functions of the cardiovascular system are to
distribute metabolites and oxygen to all body cells and to
collect waste products and carbon dioxide for excretion. The
heart provides the driving force for this system, the arteries
serve as distribution channels to the organs. The arteries have
to adapt timely to the peripheral organ demands, following
the changing conditions of pressure and flow. To fulfil this
function, the aorta and large arteries have thick walls with
high collagen and elastin contents and function primarily to
deliver and distribute blood under high pressure to the various
tissue beds. They also accommodate the stroke volume of the
heart because of their distensibility. In addition to the vessel
being distensible, the elastic recoil provides pressure to main-
tain blood flow during the diastolic phase of the cardiac cycle
(see [37]).

Small arteries and arterioles, with larger proportions of
smooth muscle, act as variable resistors, driving blood flow to
individial organs and tissue beds according to changing local

Table 1. Relationship between arterial size, number of arteries and cross-
sectional area (see [3])

Vessel Radius Number Area Wall thickness

(cm) (cm2) (cm)

Aorta 1.25 1 4.5 0.2
Arteries 0.2 159 20 0.1

Arterioles 1.5×10−3 5.7×107 400 2×10−3

Capillaries 3×10−4 1.6×1010 4500 1×10−4

Venules 1×10−3 1.3×109 4000 2×10−4

Veins 0.25 200 40 0.05
Vena cava 1.5 1 18 0.15

Table 2. Endothelial responses to shear stress as determined int vitro cell
culture studies

Phenomena Reference

cell-shape modifications [21, 55]
cell-orientation modifications [21, 55]
cytoskeletal organization [122]
mechanical stiffness modifications [110]
cell proliferation [58]
secretion of vasoactive substances [31, 59, 102]
transendothelial transport [107]
intracellular signaling [77, 102]

needs. These vessels have a relatively large lumen-to-wall-
thickness ratio, so as to minimize the pressure drop due to
resistance losses (see Table 1).

Arteries are formed by three layers: an intima, a media
and an adventitia. Each segment of the circulation has an
ideal combination of size, wall composition, wall thickness
and cross-sectional area that best fulfils its function. These
layers form a morpho-functional unity, being able to influence
each other reciprocally.

The intima consists of a thin monolayer of endothelial
cells, usually oriented along the direction of blood flow. Be-
neath the endothelium there is the basal lamina, a fibrillar
layer which binds the endothelium to the subendothelial tis-
sue. The internal elastic lamina separates the intima from the
media which is rich in elastin and smooth muscle cells. The
adventitia is separated from the media by an external elastic
lamina (see Fig. 1).

2.1 Endothelium in its environment

Endothelial cells form a monolayer that constitutes the pri-
mary interface between the bloodstream and all extravascular
tissue. It is strategically located to serve as a sensory tissue
assessing hemodynamic conditions such as blood flow and
pressure (see [130]).

Endothelial cells are subjected to forces induced by the
blood, which for the sake of convenience we divide into shear

Fig. 1. Wall of an artery in cross-section, showing the concentric arrange-
ment of tunica intima, media, and adventitia. The lumen is large, without
any narrowing by atheromatous plaque. Silver stained (40X)
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stress, pressure and circumferential stress. Once dismissed as
a passive interface between the bloodstream and the tissue,
the endothelium is increasingly being recognized as an im-
portant modulator of such different processes as blood-vessel
remodeling, regulation of vascular tone, smooth-muscle-cell
migration and atherogenesis (see [64, 65]). Given its role
as a regulator of the vascular wall, any disfunction, usually
caused by metabolic, mechanical or immunologic injuries,
may have profound effects on vascular integrity and func-
tion. It is now well known that hemodynamics influences
cell morphology, orientation, cell function, cell turnover rate
and transendothelial transport of this cellular interface (see
Table 2). The change in orientation, shape and secretion does
not occur immediately with the onset of the hemodynamic
stimulation (see [71]), rather after few minutes. Some phe-
nomena, such as elongation and proliferation, proceed at
a slower rate (see [105]).

The endothelial cell acts mostly as a wall stress sen-
sor. Hemodynamic forces play an important role in stimu-
lating vascular remodeling and the development of lesions.
In response to the hemodynamic solicitations, the endothe-
lium synthetizes and secretes biologically active substances
that control smooth-muscle-cell tone, vasal diameter and wall
composition. Experimental data show that arteries, in regions
of denuded endothelium, lose the capacity to adapt their
diameter in response to modifications of blood flow. This
implies the lack of production of important factors by the
endothelium, that allow the vessel wall to adapt timely to
modified flow patterns (see [52]).

In recent years, experiments have shown the same im-
portance of the cyclic stretch that acts on endothelial cells.
Exposure of endothelial cells to cyclic stretch elicited rapid,
however sometimes transient, modifications of their shape,
secretion and permeability (see [32, 71, 94, 104]).

New discoveries of how vascular cells transduce the
hemodynamic forces to which they respond have been re-
ported. Force-sensitive gene transcription occurs by well
characterized transcription factors that bind to both estab-

Fig. 2. Pl = plaque; Lu = lumen. In A, a plaque narrowing the arterial
lumen is shown. In B, the artery after wall disruption. The tunica media
has ruptured by the action of the balloon catheter and the tunica adventi-
tia (pink) has been stretched. Lumen integrity is always maintained by the
tunica adventitia, now alone responsible for the mechanical strength in that
part of the wall. In C, remodeling after balloon dilatation. Intimal hyperpla-
sia (red) occurs early but in this phase the lumen maintains a larger area and
a new flow pattern has established itself

lished and novel responsive elements in promoter regions
of relevant genes (see [16]). In particular, two proteins,
endothelin-1 and endothelial constitutive nitric oxide syn-
thase, seem to be mechanical-force-dependent and depend
directly on the levels of shear stress.

2.2 Smooth muscle cell in its environment

The media comprises smooth muscle cells oriented circum-
ferentially, in an elastin and collagen matrix, which may be up
to 500 μm thick. It consists of smooth muscle cells and elastin
fibers in alternating layers forming lamellar units. Each unit is
composed of a smooth muscle cell with elastin fibers on either
side. The elastin fibers permit distension of the artery while
the collagen bundles provide tensile strength, limit distension
and prevent disruption.

These overlapping musculo-elastic fascicles are usually
aligned in the direction of resultant tensile forces at any given
location and the size is closely related to the vessel-wall
curvature. This organization corresponds to the distribution
and magnitude of tensile stress (see [29]). A deviation from
this orientation may reflect a non-null axial component of
the tensile stress. In particular the tensile stress depends on
the distance from the heart, the artery diameter and pres-
sure. The thickness of the media decreases with distance from
the heart, in keeping with the decrease in radius and conse-
quently in tangential tension. Chronic high pressure levels de-
termine adaptive changes in resistance vessels that are charac-
terized by smooth-muscle-cell hypertrophy and hyperplasia,
increased extracellular matrix, increased stiffness and resis-
tance to stress (see [38]).

The contraction of smooth-muscle-cell can increase wall
stiffness. This effect may be offset by the reduction of the
arterial size and shift stress bearing from the stiff collagen
fibers to the more distensible elastin fibers. This behavior
would be at the basis of the negligible increase in overall wall
stress without any increase in the incremental elastic modulus
(see [9, 10])). Such a capacity of modulating smooth-muscle-
cell tone, while allowing acute arterial diameter reduction,
protects the artery from dramatic pressure elevations. These
changes of the blood pressure are usually associated with
changes in wall thickness. More precisely, the remodeling
is achieved by proliferation of the smooth-muscle cell with-
out altering the vessel length. Data demonstrate that wall
expansion usually associated with rapid vessel enlargement
involves hyperplasia of both endothelial cells and smooth
muscle cells: however smooth-muscle-cell proliferation does
not occur until after wall shear stress is reduced (see [115]).
The specific cellular adaptions that occur during dramatic
arterial enlargement (e.g. the creation of an arterio-venous
fistula) may depend on the level of wall shear stress and
shear-dependent modulation of endothelial growth factors
(see [109, 130]). Such an adaption usually implies a smooth-
muscle-cell activation that consists of a shift of the smooth-
muscle-cell from a contractile to a synthetic phenotype with
proliferation, migration and synthesis of extracellular matrix.
Some of these smooth-muscle-cell are resident in the intima,
but a large amount of them get to the intima from the adven-
titia (see [98, 106]).

Experimental models able to show this migration of
smooth-muscle-cell to subintimal space are balloon dilations



166 A. Quarteroni et al.

performed in endovascular surgery, in which the atheroscle-
rotic intima is ruptured and partially dehisced (Fig. 2A). This
frees the media from the restraint of the atherosclerotic in-
tima, allowing it to become overstretched with damage to
the elastic properties of its elastic collagen and muscle fibers
(see [40, 128]). The increased blood flow through the lesion
keeps the media distended as it heals by collagen deposition.
The first step after this injury is the proliferation and migra-
tion of smooth muscle cells in the subintimal space from the
adventitia where deposition of matrix fibers occurs (Fig. 2B –
see [106]).

Most of these reactions are strictly controlled and regu-
lated by the endothelium. This influence is evident during
increases of blood-flow rate, in which the artery increases
its size or in the early phases of arterial disease, in which
a wall remodeling occurs. Flow would modulate the smooth
muscle cells’ proliferative response, suggesting that arterial
healing (with the associated morphological changes) would
be affected by the wall shear stress levels (see [6]).

2.3 The adventitia in its environment

The adventitia is separated from the media, in most arter-
ies, by the external elastic lamina. The adventitia consists of
sparse fibroblasts with layers of elastin and collagen fibers,
which add further mechanical strength to the wall. This role
is particularly evident after endarterectomy (i.e. the resection
of a plaque), in which the reduction in the wall thickness (usu-
ally about one third of its original size) is not accompanied by
the expected increase in tangential stress, indicating clearly
that the components responsible for the mechanical strength
are located in the remaining outer layers of the arterial wall
(see [126]).

The adventitia is a site in which important metabolic and
proliferation processes occur. Studies performed after angio-
plasty (i.e. forced modifications of the vascular walls) have
clearly shown that the first major site of cell proliferation
within 2–3 days after angioplasty is the adventitia and not
the medial wall. Only seven days after angioplasty, cell pro-
liferation is predominant in the neointima and is reduced in
the media and adventitia. The proliferating adventitial cells
are myofibroblasts that migrate into the neointima and con-
tribute to the mass of restenosis lesion. These myofibroblasts
contribute to the problem of post-angioplasty restenosis by
proliferating, thus forming a fibrotic scar surrounding the an-
gioplastied site and migrating in the neointima (see [106]).

2.4 Intimal thickening

Arterial wall integrity, as well as atherogenesis develop-
ment, needs a normal endothelial sheet. Such an integrity de-
pends mainly on the maintenance in large arteries of normal
levels of two components: wall shear stress (approximately
15 dynes cm−2), tangential to the wall, which depends on the
blood flow, viscosity and radius of the vessel; and tensile
stress (approximately 1000–2000 dynes cm−1), normal to the
wall, which is equal to wall tension divided by the wall thick-
ness. Generally, the arterial thickness changes proportionally
to the wall tension in order to maintain the tensile stress at
a baseline level (see [29, 51]).

The endothelial cell “sees” pressure (as tensile stress) di-
rectly and “rides” on its basal membrane, being cyclically
stretched by the pulsatile behavior of blood flow. However,
the endothelial cells “feel” the wall shear stress more than
the tensile stress, even if the former is of smaller magnitude.
Therefore, the endothelium would act essentially as a shear-
stress sensor, mediating both the normal response and the
variety of vascular disease. There is a wide range in the level
of wall shear stress to which the endothelial cells are exposed.
The highest levels are encountered at the region of the flow
divider of any bifurcation of large vessels; lowest values are
usually measured on the opposite side with respect to the flow
divider of bifurcations of normal vessels, (e.g. at the carotid
sinus), in which wall shear stress can be negative or oscillat-
ing both spatially and temporally (see [38, 61, 118] ).

Kamiya and Togawa first showed that arterial thickening
served essentially to restore vessel stresses to within nor-
mal levels (see [52]). Intimal thickening is a morphological
change of the arterial wall characterized by an intimal deposi-
tion of matrix fibers, myofibroblasts and smooth-muscle-cell.
Wall thickening appears to be the ultimate fate of any arterial
modification due to altered flow patterns (Fig. 3). Indeed, re-
duction of blood-flow velocity (with low wall shear stress) is
considered a stimulus for intimal thickening with consequent
lumen narrowing and normalization of wall shear stress. In-
creases in blood-flow velocity determine an increase in lumen
radius that results in an arterial enlargement until a restitution
to the baseline wall shear stress occurs. The arterial enlarge-
ment is always followed by a medial thickening in order to
compensate the increase in wall tension. Intimal thickening,
whether or not followed by medial rearrangement, occurs
preferentially at the site of low or oscillating shear stress, such
as the inlet side of branch ostia or on the opposite side with re-
spect to the flow divider in the internal carotid artery. In this
site, intimal thickening and plaque depositions tend to local-
ize in the outer wall of the carotid sinus, a region of low and
oscillating shear stress and high particle residence time. The
flow divider, characterized by axial flow and high wall shear
stress levels, is usually spared from lesions.

Another important site of deposition of intimal thickening
is the end-to-side vascular-bypass graft, in which the end of
a graft is connected to the side of a host vessel. This deposi-
tion at this site is a primary cause of short-term graft failure.

Fig. 3a,b. In a, the angioscopic view shows an intact endothelial sheet of
an autoptic specimen of carotid bifurcation. The red arrows show an inti-
mal thickening localized in the external wall of the external carotid artery.
In b, (it) shows the wall lesion in a 3D reconstruction of the same arterial
specimen seen from above; (Pl) shows a large fibrotic plaque narrowing the
lumen of the internal carotid artery
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Fig. 4. The angiogram shows the localization of advanced atherosclerotic plaques in an end-to-side vascular by-pass graft. Atherosclerotic depositions are
localized more often at the toe and at the floor of the graft, in which an altered flow pattern occurs. The picture shows the reconstruction of a parametrized
model of the same type of vascular graft. A separation zone begins in the early deceleration phase at the floor of the anastomosis A and becomes larger
involving also the toe of the graft in the diastole B

The healing process and graft mismatch are often invoked to
explain the early failure of the graft. However, the localization
of lesions at the toe and at the floor of the graft-junction sug-
gests that the hemodynamic factors are quite relevant. These
regions of intimal thickening correspond to regions of flow
oscillation and relatively low wall shear stress (Fig. 4 – see [8]
and also Sect. 6.3 and Sect. 6.4).

An interesting aspect appears to be the role of endothelial
cells and intimal thickening in the healing process after a vas-
cular procedure. Animal model studies on restenosis after
angioplasty showed that areas where the endothelial sheet
has rapidly regenerated have less marked intimal thickening
than areas in which endothelial regeneration occurs later or
was incomplete. These properties of the endothelium are very
critical for the prevention of luminal narrowing due to neoin-
timal thickening (see [6, 67]), given its ability to modulate the
healing process after any procedure. Anyway, endothelial-cell
disfunction may often occur at sites of regenerating endothe-
lium. This impairment in the endothelial-cell function may
be considered one of the major regulatory elements in the
restenotic process (see [63]).

As intimal thickening proceeds due to unresolved modifi-
cation of flow patterns, arteries tend to preserve lumen cross-
sectional area. This compensatory enlargement can prevent
narrowing of the arterial lumen, and the stenosis may be de-
layed until the lesion occupies 40% of the internal elastic
lamina (see [36, 130]).

A diseased artery, e.g. coronary artery, thus dilates and
maintains normal luminal dimensions despite changes in wall
structure as long as the intimal lesion does not exceed 40%
of the area encompassed by the internal elastic lamina. Be-
yond this point, pathological narrowing begins (Glagov phe-
nomenon)(Fig. 6 – see [47, 108]).

The internal elastic lamina represents the potential lumen
area, which is what the actual lumen area would be if there
was no plaque (Fig. 5 – see [108]). This intimal enlargement
leads to an important underestimation of stenosis up to an an-

giographically determined degree of approximately 50% area
stenosis and 30% diameter stenosis. This observation shows
that compensatory enlargement is a major source of error
in the assessment of coronary lesions by angiography. The
nature of this compensatory enlargement is not completely
clear. The limit of this enlargement may be related to the pro-
gression of the plaque density or to the rigidity of the arterial
wall. However, it could also be explained by the mechanical
behavior of the wall in order to balance the changed levels of
both wall shear stress and tensile stress (see [61]).

Fig. 5. Area occupied by the plaque is surrounded by internal elastic lam-
ina. Potential lumen area is defined as area encompassed by internal elastic
lamina (red arrows)
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Fig. 6. A: area stenosis. B: diameter stenosis. In column I, a normal artery is
shown. The angiographer and the pathologist see the same artery. In column
II, the artery shows a 50% stenosis. Because of the Glagov phenomenon,
the angiographer sees a normal lumen, but the pathologist sees 50% of the
cross-sectional area occupied by the plaque. In column III, the artery shows
a 95% stenosis. Now the angiographer sees a lumen that is 90% less in
diameter than the normal artery near it. The pathologist sees a larger plaque
that occupies 95% of the arterial cross-sectional area

2.5 Disease development

Atherosclerosis is a focal chronic inflammatory fibroprolifer-
ative disease of the arterial intima caused by the retention of
modified low-density lipoprotein and by hemodynamic stress
(see [46]). This disease is the main cause of death in Western
countries, with a tremendous medical, social and economic
impact. It is a progressive disorder that causes a gradual
and uneven narrowing of medium- and large-sized arteries
through the development of fibrous or fatty plaques within
the arterial walls (see [95]). Vascular sequelae are due either
to obstruction of blood flow or to dilation of localized seg-
ments of the arterial system. Indeed, morbidity and mortality
usually result from localized plaque deposition rather than
diffuse diseases (see [126]). The genesis and the evolution
of atherosclerotic disease involves many processes such as
the infiltration of leukocytes into the vessel wall, alterations
in lipid metabolism, cell migration through the extracellular
matrix and eventually thrombosis caused by platelet aggrega-
tion at the site of stenosis (Fig. 7). However, the fundamental
event causing the plaque to develop is the enlargement of
the intima by the infiltration and accumulation of lipoproteins
and the associated cellular and synthetic reactions (see [95]).

The localized deposition in susceptible zones of the ar-
terial tree is relatively constant and predictable. It is now
accepted that hemodynamic forces are localizing factors in
atherogenesis (see [98, 99]).

At the carotid bifurcation, the flow divider is usually
spared from lipid deposition in 85% of patients examined
in the literature (see [126]). In the neighborhood of this site
the flow is laminar, unidirectional, featuring high levels of
wall shear stress. The carotid sinus opposite the flow divider,
a preferential site of lipid deposition, is characterized by os-
cillatory levels of wall shear stress, flow-reversal zones and
increased particle residence time (up to 2–3 seconds) (Fig. 8
– see [27, 51, 57, 100, 127]).

In these zones of the arterial tree the hemodynamic en-
vironment may allow a longer cell-to-cell interaction at the

Fig. 7. In A, the angiogram shows a critical stenosis of the internal carotid
artery (red arrow), localized in the outer wall of the carotid sinus, opposite
the flow divider (CCA = common carotid artery; ICA = internal carotid
artery; ECA = external carotid artery). In B, the carotid artery shown here
has narrowing of the lumen due to build up of atherosclerotic plaque. This
microscopic cross section of the carotid shows a large overlying atheroma
(Pl). Cholesterol clefts are numerous in this atheroma. Severe narrowing
can lead to angina, ischemia, and infarction. Atheromatous emboli from this
lesion are rare (or at least, complications of them are rare)

endothelium-blood interface. It has also been guessed that
a failure of the endothelium clearance mechanisms could
occur where flow patterns are changed (see [127]).

It has been confirmed by clinical observations that
atherosclerotic lesions develop in areas of disturbed flow pat-
terns, particularly at branches and bifurcations. These types
of flow also influence the infiltration of monocytes during the
development of vascular lesions (see [13]).

Whether a stable fatty-streak develops depends largely on
mechanical forces acting on specific parts of the arterial wall.
Early atherosclerotic lesions are usually located in predictable
sites of focal adaptive intimal thickening (e.g. the carotid si-
nus).

The prediction of the localization of advanced atheroscle-
rotic lesions is very difficult and sometimes plaques can occur

Fig. 8a–c. The angiogram shows the carotid flow pattern during three differ-
ent steps of the cardiac cycle. a systole; b deceleration phase; c diastole. It
is very interesting to note the behavior of the contrast medium in the outer
part of the carotid sinus during diastole. At this level, the contrast medium
shows an increased residency time with a longer blood-endothelium inter-
action
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in parts of the vessel geometry not apparently involved in al-
tered flow patterns. This can be due to the fact that intimal
and medial thickenings and wall remodeling associated with
different responses of the artery to injury may induce asym-
metric vascular narrowings that affect the lumen configura-
tion. This situation modifies flow patterns and the distribution
of tensile and shear forces in the arterial wall, altering the
“physiological” deposition of the plaque (see [12, 24, 127]).

3 Mathematical modelling of blood flow

The complexity of the cardiovascular system features a tremen-
dous variety of districts like large arteries, vases of medium
caliber as well as capillaries. Their size ranges from few cen-
timeters in diameter down to few micrometers (see Table 1).
Except for the very tiny capillaries, the blood flow can be as-
sumed to behave as a continuum (see e.g. [17, 101]), as well
as incompressible, apart from severe pathological situations.
As such, its macroscopical behavior can be described by its
velocity and pressure fields, related by the momentum and
mass conservation laws, which we are going to illustrate.

We adopt the following notation: Ω is a three-dimensional
region denoting the portion of the district on which we focus
our attention, and x= (x1, x2, x3) is an arbitrary point of Ω;
v = v(x, t) denotes the blood velocity. For x ∈ Ω and t > 0,
the conservation of momentum and mass is described by the
following equations:⎧⎪⎨⎪⎩

ρ
Dv

Dt
−∇ ·T = ρ f x ∈ Ω, t > 0

∇ ·v = 0 x ∈ Ω, t > 0

(1)

where ρ is the density of the fluid and f = f (x, t) is a pos-
sible volume source term which is prescribed for all x ∈ Ω
and t > 0. Actually, the blood density ρ depends on the red-
cell concentration c. However, in physiological conditions,
the value of ρ is almost constant. Therefore, for the sake of
simplicity, in the remainder of this paper, ρ will be considered
constant. We remark that in the momentum equation (1)1, the
symbol:

Dv

Dt
= ∂v

∂t
+v ·∇v (2)

denotes the total (or material) derivative of v with respect to
t, while T is the stress tensor of the fluid.

In this section, we investigate the specific features and the
limits of system (1) as a mathematical model of blood. First
of all, we consider the features of the blood as a fluid. Particu-
larly, we consider the functional dependence of T on v and
the blood pressure P = P (x, t), which is the field of blood
rheology (Sect. 3.1).

Then, we analyze some relevant properties of blood flow
in specific districts such as arteries. A peculiar feature is the
flow unsteadiness, or, more precisely, the pulsatility induced
by the periodic contractive and relaxing motion of the heart.
Another feature is the absence of turbulence in almost every
vascular district. These issues will be discussed in Sect. 3.2

In view of the numerical solution of equations (1) in a spe-
cific vascular district, a suitable set of conditions has to be
prescribed at the initial time t0 and at the domain boundary Γ .

This issue is far from being trivial, especially as far as the
boundary conditions are concerned, since the assigned data
have to be mathematically correct, and, on the other hand,
they have to correspond to quantities actually measurable. We
will face this problem in Sect. 3.3.

Finally, since the vessel geometry strongly influences the
local flow patterns and henceforth the presence, localization
and development of intimal thickening and plaques, as illus-
trated in the previous section, an accurate geometrical recon-
struction of the vascular district at hand is essential for this
kind of problem. Different analytical solutions are available
for some simplified geometries which can be provided for the
system (1) correspondingly to different set of boundary con-
ditions (see e.g. [73]). Nonetheless, in order to set up a tool
for clinical purposes, it is worthwhile reconstructing the indi-
vidual vascular morphologies from medical imaging data and
then simulating the blood flow in such geometries. This issue
will be introduced briefly in Sect. 3.4 and will be substanti-
ated by the numerical results given in Sect. 6.

3.1 Blood rheology

In order to provide a brief acquaintance with the complex
field of blood rheology, let us recall some basic notions from
fluid mechanics. We denote by T the stress tensor of the fluid
and by d the strain rate tensor, defined as follows:

d = 1

2

(∇v+∇vT ) ,
which is obviously symmetric. Assessing the dependence law
of T from d is the field of rheology. This relation is called the
constitutive law and, in many cases, it can be expressed by an
equation in the following form:

T = −P I+ S, (3)

where I is the Kronecker tensor (identified by an identity ma-
trix). In this case, tensor P I is called the isotropic tensor, P is
the pressure of the fluid, while S is the so-called extra-stress
tensor.

If S is a linear function of the rate-of-strain tensor, i.e.

S= 2μd = μ
(∇v+∇vT ) , (4)

the fluid is called Newtonian. The constant μ represents the
(dynamic) viscosity of the fluid. The Newtonian law (4) is
the simplest one which can be encountered in the study
of viscous flows. Other relations between the stress tensor
and the rate-of-strain tensor are actually observed in the
experiments, identified under the general definition of non-
Newtonian fluids. Strictly speaking, blood is not Newtonian,
due to its complex nature. Therefore, in order to investigate
the specific blood rheology adequately, we will give some
introductory notions about non-Newtonian fluids. More com-
plete reviews of these topics can be found e.g. in [92, 120]
and [125].

For the sake of simplicity, let us start considering the case
of a fluid confined between two plates, as illustrated in Fig. 9.
The lower plate is fixed, while the upper one moves with
a constant velocity Vex1

(ex1
being the unit vector along the

x1-axis). The velocity field is therefore given by: v = Vex1
,

where V is a linear function of x2.
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Fig. 9. Fluid confined between two plates (see [120])

In this configuration, the only non-zero component in d is
obviously d12(= d21), whereas the one of T is T12 (the mixed
component of shear stress).

Let us consider some of the relationships between d12 and
T12 which could be experimentally observed, different from
the linear dependence (identified by the number 1, in Fig. 10)
of the Newtonian case.

Dilatant or shear thickening fluids: the strain rate-stress curve
is convex, i.e. the ratio between shear stress and strain
rate (apparent viscosity) increases when the strain rate in-
creases. In the case of a fluid confined between two plates,
we could, for example, describe this situation by the sim-
ple equation T12 = k (d12)

n with k constant and n > 1.
This is equivalent to assuming that the apparent viscosity
μ = T12/d12 has the following functional dependence on
the strain rate:

μ = k (d12)
n−1 with n > 1. (5)

In more general cases, this equation still holds, substitut-
ing an invariant of the stress tensor for the component dij
(see below).

Pseudoplastic or shear thinning fluids: the strain rate-stress
curve is concave, the apparent viscosity decreases when
the strain rate increases. The counterpart of equation (5)
is:

μ = c (d12)
n−1 with n < 1. (6)

Bingham plastic fluids: the relationship between stress and
strain rate is still linear; however, there is a threshold value
of the stress (yield stress) beyond which there is deforma-
tion.

Plastic: the thinning effects are very strong.

In some cases, the rheological properties of the fluid could
depend on the time-history of its stress. In simple cases, we
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Fig. 10. Representation of different kinds of non-Newtonian time-independent
fluids. Shear stress vs. Rate-of-strain diagram (see [120])

have an apparent viscosity depending on time; in particular,
we could have (see Fig. 11):

Rheopectic fluids, with apparent viscosity increasing in time
(at constant strain rate);

Thixotropic fluids, with apparent viscosity decreasing in time
(at constant strain rate).

In general, whenever S is a tensor-valued function in the
form:

S= f
(
d,

Dd
Dt

,
D2d
Dt2

, . . . ,
Dkd
Dtk

)
the fluid is said to be of differential type (with grade k).
The constitutive laws considered so far belong to this class.
However, in more complex cases, these models could be un-
suitable (see e.g. [92]). This is the case of fluids exhibiting
a viscoelastic behavior. In particular, when a constant stress
is imposed on a continuum (solid or fluid), induced defor-
mations can increase in time (creep). In some cases, such
deformation does not vanish even when the stress is sud-
denly switched to zero. Conversely, when a constant strain
is imposed on a fluid, it could happen that the stress needed
to maintain the constant strain will decrease continuously in
time (stress relaxation). In all these cases, the suitable consti-
tutive laws relating S and d are in the form:

D jS
Dt j = f

(
S,

DS
Dt

, . . . ,
D j−1S
Dt j−1

; d, Dd
Dt

, . . . ,
Dkd
Dtk

)
.

The fluid is then called of rate type.
As an example, we quote the Maxwell linear viscoelas-

tic constitutive law, given by the direct sum of an elastic and
a viscous term. Among the nonlinear models, the Oldroyd-B
one is defined by the constitutive law (see [92]):

S+λ1

[
DS
Dt

−∇vS− S (∇v)T
]

=

μd+λ2

[
Dd
Dt

−∇vd−d (∇v)T
]

, (7)

where λ1 and λ2 are characteristic constants (viscoelastic con-
stants) and μ is a constant.

For the sake of completeness, we should also mention
a third kind of fluid, called of integral type, accounting for
memory effects as well (see [125]).
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Fig. 11. Representation of some different kinds of non-Newtonian time-
dependent fluids (see [120])
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Blood is a suspension of different particles (red cells,
white cells, platelets) in an aqueous solution (plasma). In
particular, red cells influence the blood rheology to a much
larger extent than white cells and platelets, due to their dif-
ferent concentration. Red cells are deformable, with physical
and chemical features which vary in time, and are able to
aggregate. Besides, in some districts red cells flow in pipes
whose size is comparable with their own (microcirculation).
Altogether, these circumstances explain the rheological fea-
tures of blood, which can be summarized as follows (see,
e.g., [17, 68, 125]):

– shear thinning behavior (see Fig. 12),
– nonlinear viscoelastic nature,
– microcirculation effects.

In particular, the shear thinning behavior can be justified by
the experimentally observed formation of macroaggregates,
called roleaux, when the strain rate is low. Roleaux forma-
tion results in an increment of apparent viscosity when the
strain rate decreases. On the other hand, when the strain rate
increases, roleaux break down and the role of the deformabil-
ity of red cells becomes more relevant for the shear thinning
behavior of blood (see [17]).

The following models have been empirically introduced
in order to describe this pseudo-plastic behavior. We denote

by c the red-cell concentration, by DII =∑3
i, j=1 dijdij the

second invariant of the strain rate tensor, and by γ̇ = 2
√

DII
the shear rate (in a simple shear fluid – see [83]); finally, k0,
k1, m and μ0 and μ∞ are functions depending on c, the tem-
perature as well as other specific features of the fluid.

i) Casson’s law (see, e.g. [83]):

μ(γ̇ ) = 1

γ̇

(
k0 + k1

√
γ̇
)2 ; (8)

ii) Power law (see, e.g. [42, 124]):

μ(γ̇ ) = m | γ̇ |n−1; (9)

iii) Bird–Carreau law (or Modified–Cross law – see, e.g. [81]):

μ(γ̇ ) = μ∞ + μ0(c)−μ∞(c)[
1 + (λγ̇ )b]a . (10)
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Fig. 12. Viscosity–Shear Rate curves corresponding to different values of
red-cell concentration ([68])

Several other models describing fluids of differential type
have been proposed in the literature: for an overview see
e.g. [17, 125]. All these models are potentially able to de-
scribe the shear thinning behavior of blood, although for
a limited range of shear rates. However, they cannot account
for the viscoelasticity of blood. For this reason, blood has
been investigated as a nonlinear fluid of rate type. In particu-
lar, the Oldroyd-B model (7) has recently been generalized,
in order to account for both viscoleasticity and shear thinning
phenomena. Roughly speaking, the model adopted in [125] is
a modification of (7), where μ(d) is this time a function of d
accounting for the shear thinning nature of blood over a wide
range of shear rate values.

The rheological properties of blood, however, may depend
dramatically on the vessel size. For instance, when the ves-
sel diameter reduces to a size comparable with one of the
red cells (below 12 μm), blood could no longer be considered
a continuum. However, as the vascular bed size decreases
below 500 μm, a further reduction of apparent viscosity is ob-
served (Fahraeus–Lindqvist effect) due to the physiological
decreasing of red-cell concentration in capillaries.

In the framework of large and medium vessels, it is gen-
erally agreed that, under physiological conditions, the Newto-
nian model for blood rheology can be considered acceptable
at a first level of approximation (see [68, 83, 124]). For this
reason, in the sequel, we will consider blood as a Newtonian
fluid, even if we are aware that a more precise accounting of
the rheological properties of blood could bring a meaningful
improvement to the investigation of specific clinical cases.

3.2 Features of blood flow in arteries

As pointed out in Sect. 1, the motion of blood in arteries is in-
duced by the periodic contraction of the heart muscles which
pump the fluid down to the arterial system from the aorta up
to the capillaries. More precisely, a heart beat consists of two
phases. During the first one, called systole, the left ventricular
pressure becomes higher than the aortic one, due to an iso-
volumic contraction of the muscolar fibers; the aortic valve
opens and the blood is pumped into the aorta. In physiologi-
cal cases, this phase occupies about one third of the whole
beat. During the second phase, called diastole, the ventricular
pressure is balanced by the aortic pressure, the valve closes,
the ventricular pressure falls quickly, while the aortic pressure
decreases slowly and the blood flows to the peripheral sites.

Therefore, one of the most evident features of blood flow
in arteries is the periodic unsteadiness, or, more precisely, the
pulsatility (see [68]). This term refers properly to the feature
of a first rapid increase and decrease of the flow rate, followed
by a longer phase, when the flow rate becomes small and al-
most constant. Figure 13, for instance, illustrates the flow rate
during a heart beat at the entrance of the carotid bifurcation.

The periodic pulsatility influences in a decisive way the
actual velocity profiles of blood in the arteries. A way to
confirm this fact is to compare the different velocity profiles
whenever steady and unsteady periodic conditions are applied
to some district. Indeed, when the morphology of the fluid
domain is simple, analytical solutions of equations (1) are
available either for the steady and the unsteady flows. More
precisely, let us consider equations (1) for a Newtonian fluid.
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Fig. 13. Waveforms of the flow rate at the entrance of the carotid (see [82])

In this case, they read:⎧⎪⎨⎪⎩
∂v

∂t
+ (v ·∇) v− νΔv+∇ p = f

∇ ·v = 0

, (11)

for x ∈ Ω and t > 0. In (11), we set p = P/ρ and ν = μ/ρ
(the so-called kinematic viscosity). In the sequel, with a little
abuse of language, p will simply be called pressure. Suppose,
moreover, that Ω is an infinite cylindrical pipe, and denote
by u, v,w respectively the longitudinal, the radial and the cir-
cumferential components of the velocity. z is the longitudinal
coordinate, r the radial and θ the circumferential one. The
walls of the pipe are supposed to be rigid and the velocity zero
on them (non-slip conditions, see Sect. 3.3).

Let us consider two cases:

1. Hagen–Poiseuille flow (see e.g. [120]): if the gradient of p
in (11) is a vector with radial and circumferential compo-
nents zero and the longitudinal one constant and equal to
−C, i.e.:

∂ p
∂z

= −C,
∂ p
∂r

= 0,
∂ p
∂θ

= 0,

then the velocity profile is given by:

u = C
4ν

(
r2

0 − r2
)
, v = 0, w = 0 (12)

(see e.g. [120]);
2. Womersley flow: in the case of a longitudinal pressure gra-

dient changing periodically in time according to the law:

∂ p
∂z

= A cos(ωt),
∂ p
∂r

= 0,
∂ p
∂θ

= 0, (13)

then the velocity profile is ([121]):

u = R

⎛⎝ A
iω

⎧⎨⎩1 −
J0

(
i

3
2
√

ω
ν r
)

J0

(
i

3
2
√

ω
ν r0

)
⎫⎬⎭ eiωt

⎞⎠ , v = 0, w = 0.

(14)

In (14), J0 denotes the Bessel function of order 0 with
complex argument (i is the imaginary unit, R(·) is the real
part). In this framework, the Womersley parameter α:

α = r0

√
ω

ν
, (15)

summarizes the information about the time periodic
regime of the fluid and its viscosity. Obviously, it changes
in the arterial system on the basis of the vessel dimension.
In men (about 70 heart beats per minute), α is equal to 20
in the aorta, 5 in the femoral artery, and decreases quickly
in the capillaries.

Figure 14 illustrates the presence of flow-reversal zones in
the Womersley 2D solution (see [116, 117]).

The Womersley flow can be considered the unsteady
counterpart of the Poiseuille solution; it is indeed a fully de-
veloped unsteady flow in the case of a cylindrical right pipe.
For blood flow, the time-dependence of the pressure gradi-
ent is not expressed by a simple sinusoidal law (see Fig. 13).
Nonetheless, the Womersley solution may still be useful: in-
deed, since in the Womersley solution (as well as in the
Poiseuille solution), the nonlinear term of equations (11) ac-
tually vanishes, the problem at hand is linear. Therefore, it
is possible to extract the different frequency components of
the flow-rate waveform on the inflow boundary and corre-
spondingly sum up the contribution at each frequency of the
Womersley profiles associated (see [48, 111, 114]).

Another feature of blood flow in arteries is the presence
in some specific districts and in some instants of the beat of
turbulence phenomena, i.e. of irregular eddying motion, in
which random, even chaotic, perturbations in time and space
of the velocity and pressure fields occur about their mean
values; the components of perturbation extend over a continu-
ous hierarchy of scales or frequencies so that they must be
characterized by statistical means (see [68]). In particular, the
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Fig. 14. Velocity 2D profiles of Womersley unsteady flow at different in-
stants (see [116]). Along the x-axis the transversal (in 3D radial) coordinate
is shown, on the y-axis the velocity. Observe the flow-reversal (i.e. negative
velocity) zones in the second, third and fourth pictures
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experimental evidence, at least in the human vascular system,
shows the presence of disturbances in the ascending aorta (in
the immediate neighbourhood of the aortic valve) and in the
pulmonary artery; the phenomena are limited in the final part
of the systolic phase, after the systolic peak (see [68]). For
a discussion about the reasons for and the consequences of
these phenomena, see for instance [73]. However, apart from
the exceptions pointed out, blood flow can be assumed to be
laminar. Indeed, in physiological conditions, the values of
speed involved are low enough (see [68]). Moreover, gener-
ally, the periodicity of the flow, accompanied by the shortness
of vascular districts, does not give rise to fully developed tur-
bulence. The disturbances, whenever present, are typically
very spotty and localized, both in time and space and they do
not have the statistical properties that are featured by turbu-
lent flows.

On the basis of the arguments developed so far, we will
hereafter assume equations (11) for an incompressible New-
tonian laminar fluid as an acceptable model to describe the
blood flow in a specific arterial district.

Remark 1. An important indicator of the flow behaviour is
the so-called Reynolds number, Re = ρ LU

μ
= LU

ν
, where U is

a characteristic velocity of the problem at hand, L a length
scale (i.e. a linear dimension of the computational domain
Ω). In large and medium human vessels, the Reynolds num-
ber corresponding to the systolic peak ranges from 400 (com-
mon iliac arteries) up to 10 000 (proximal ascending aorta –
see [68]).

3.3 Boundary treatment

In order to compute (analytically or numerically) the velocity
and pressure fields of blood in a district Ω, equations (11)
must be provided with initial conditions v = v0 at time t0 and
suitable boundary conditions. The initial condition must es-
sentially specify the velocity field at a given (arbitrary) start-
ing time t0; in the sequel, such an initial velocity field will be
denoted by v0. For the latter, on the one hand the prescribed
data should correspond to physical data which are actually
measurable in practice. On the other hand, typical measures
for boundary data do not provide enough information to make
the associated mathematical problems well posed. Therefore,
it is necessary to assess a specific treatment to supply the un-
available data with the further boundary conditions needed to
obtain the well-posedness.

To begin with, let us consider a typical domain which
can be encountered in blood-flow problems, as illustrated in
Fig. 15.

Three parts can essentially be distinguished on the bound-
ary Γ of Ω. The first one, Γw, is the wall of the vessel. If
it is supposed to be rigid, we impose homogeneous Dirichlet
boundary conditions, v = 0 for all x ∈ Γw. Otherwise, when
the compliance of the vascular tissue is accounted for, we will
prescribe the continuity of the velocity field (see Sect. 4). In
this section, we consider a rigid-wall problem.

Then, we identify two parts of Γ , Γu p and Γdw, which can
be composed of one or more simply connected sections (in
Fig. 15, there are three sections Γdw and one section Γu p). We

Fig. 15. An example of a vascular district of a typical bifurcation (e.g.
carotid) with an upstream section and three downstream sections

will denote by Γu p the upstream or proximal boundary. Then

T∫
0

∫
Γu p

v ·ndωdt < 0, (16)

T being the heartbeat duration and n the normal outward unit
vector. Generally speaking, due to the presence of recircula-
tion zones, it is not possible to suppose that v ·n< 0 across
a whole upstream section and for all t ∈ (0, T ]. Similarly, the
downstream or distal section is the one that satisfies the rela-
tion:

T∫
0

∫
Γdw

v ·ndωdt > 0. (17)

Again, since in principle it is not true that v ·n > 0, for
all x ∈ Γdw and for all t ∈ (0, T ], strictly speaking Γdw is
not an outflow boundary. Remark that both Γu p and Γdw do
not correspond to real boundaries, as they are introduced
with the purpose of bounding the district at hand. Boundary
conditions that are mathematically admissible for artificial
sections have been extensively investigated (see [35, 45, 76],
Sect. 10.1 in [90] and references therein). A choice often
adopted in numerical computations consists of using the fol-
lowing set of equations:{

v = g on Γu p

−pn+ ν∇v ·n= dn on Γdw,
(18)

for all t > 0, where g is an assigned velocity profile. The
downstream conditions in (18) amount to prescribing the
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normal component of the stress tensor T ·n (Neumann
conditions).

Conditions (18) provide a mathematically complete set
of boundary data, in the sense that, prescribing three scalar
conditions in a 3D problem (or two conditions in a 2D prob-
lem) at every point of the boundary, the associated differential
problem can be well posed. It is possible to prove (see [45,
117]) that the solution of the problem (1) with the bound-
ary conditions (18) and the initial condition v = v0 for t = 0
(in two or three dimensions) exists for all t ≥ 0 provided that
the forcing term f and the boundary datum g are smooth
enough and ∇v0 is sufficiently small with respect to ν. More-
over, if these quantities are sufficiently small, the solution is
unique. Actually, the smallness of data is not a mandatory
restriction for a 2D problem, provided that the downstream
sections correspond exactly to the pointwise outflow sections
(i.e. v ·n > 0 on every point of the downstream sections –
see [117]). Unfortunately, as we have already pointed out,
the presence of flow reversal zones in the vascular system
makes this hypothesis seldom applicable in hemodynamics.
Moreover, from the practical viewpoint, the prescription of
pointwise conditions can be troublesome. Indeed, measures
of the velocity field on the whole upstream section are sel-
dom available. For this reason, different strategies have been
adopted.

A possibility consists of approximating the unavailable
velocity inlet field g with a Poiseuille profile (12) in steady
problems or a Womersley profile (14) in unsteady cases, as-
suming that the upstream vascular morphology could be ap-
proximately considered as being cylindrical (see e.g. [48, 82,
114]). This is a reasonable approximation in order to fill in the
gaps in information at the inlet, even if the complex vascular
morphology seldom exhibits a cylindrical geometry, which
allows for a fully developed flow (as Poiseuille and Wom-
ersely profiles are).

As far as the downstream conditions are concerned,
a value of d can be assigned on the basis of a priori consider-
ations about the flow structure, as for the Dirichlet conditions
(typically d = 0). In any case, failing to fix the right value for
a Neumann condition is by far less critical than for Dirich-
let’s. In principle, other boundary conditions than (18) can be
considered if measurements are available. In this respect, on
the usptream/downstream sections, it is possible, for instance,
to measure the blood flux; this means that on every section we
prescribe the condition:∫
Γi

v ·ndγ = Fi(t) (19)

i = 1, . . . , n, where n denotes the number of upstream/down-
stream sections. Indeed, different techniques can be set up
in order to measure Fi(t) (for an overview, see e.g. [50]
and [68], Chap. 6). Among others, one of the most common
is based on the measurement at different sites of the concen-
tration of a tracer material injected into the vasculature. If
the injected concentration is known, it is possible to deduce
the flow rate from the concentration measured downstream.
Other methods are based on Ultrasound Techniques (whose
performances can be in turn supported by numerical compu-
tations – see [72]).

On the other hand, when dealing with a particular vascu-
lar district, it should be considered that it is a part of a global,

complex system, including the arterial and venous networks.
This system is closed, i.e. it features a feedback mechanism
such that the downstream state can influence the upstream
one. For instance, a stenosis at the level of a carotid bifurca-
tion could influence the blood distribution in the whole vessel
system leading to the head. Mathematical descriptions of the
whole system, accounting for these mechanisms, are usually
based on electrical/hydraulic network analogies (see e.g. [18,
43, 93, 119]), which associate the voltage drop with the pres-
sure drop and the current with the flow rate. Nevertheless,
these “lumped” models are not able to provide an accurate de-
scription of the hemodynamics in local districts, in particular
with respect to the pathogenesis, since they are only able to
predict mean values across vascular sections. A strategy for
local hemodynamics also accounting for the feedback mecha-
nisms consists of coupling lumped parameter models (based
on ordinary differential equations) with distributed parameter
models (using partial differential equations), as illustrated in
Fig. 16. A delicate point is the exchange mechanism between
the two subsystems. A possible strategy consists of prescrib-
ing the mean pressure drop computed by the lumped model as
a boundary condition for the partial differential equations of
the local distributed model and, on the other hand, providing
the flow rate computed by the Navier–Stokes equations to the
network.

Therefore, a boundary problem arising from these coup-
ling models could be the one prescribing the mean values
of the pressure on the upstream/downstream sections, that
means that the condition:

1

|Si |
∫
Γi

pdγ = p̄i(t) (20)

is prescribed on every connected upstream/downstream
boundary Γi ; p̄i is indeed computed by the lumped model
(mean value) and |Si | is the area of the section.

Both the above conditions (19) and (20) prescribe “mean”
quantities on the upstream and downstream sections. Unfortu-
nately, from the mathematical viewpoint, they are not enough
to ensure the well-posedness of the associated boundary value
problem. Therefore, we must introduce further conditions,
which do not correspond to physical data. Henceforth, they
will very likely perturb the real problem. It is thus interesting

Fig. 16. Coupling of lumped and distributed models
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to use those conditions that are able to keep such perturba-
tions low. To this end, a mathematical device is the one based
on the so-called do-nothing principle, investigated in [45].
The basic idea is to translate the original problems into a
weak or variational formulation, which turns out to be the
right formulation for carrying out the mathematical analysis
of the problem (see e.g. [54, 113]) and provides the ground
for the design of the numerical approximation of these equa-
tions based on Galerkin methods such as Finite Element or
Spectral methods (see Sect. 5 and e.g. [33, 90]). In this way,
the choice of the lacking boundary conditions is reduced to
the choice of a suitable variational form. Indeed, the natural
boundary conditions associated with the selected form will
turn out to be the boundary conditions needed to make the
problem well posed. Since the natural (Neumann) boundary
conditions are better conditioned than essential ones (Dirich-
let), this choice ensures good performances in terms of low
perturbations introduced (see [45]).

As an example, let us investigate the case of the mean
pressure conditions (20) (considered in [4, 45] and, in the
case of vascular problems, in [117], Chap. 3 and [116], to-
gether with (19) and other conditions based on the prescrip-
tion of “mean” values). For the sake of simplicity, suppose
that the Dirichlet boundary data prescribed on ΓD are zero.
Let us denote, as usual, the functional space L2(Ω) of the
functions with integrable square in Ω, and H1(Ω) the sub-
space of L2(Ω) functions whose first derivative belongs to
L2(Ω) too. The corresponding spaces for vector functions
will be denoted in bold face. In particular, H1

ΓD
(Ω) denotes

the subspace of H1 (Ω) of functions vanishing (in the sense
of traces) on ΓD. Then, the variational formulation of the
Navier–Stokes problem reads as follows: for all t > 0 find
v (t, x) ∈ H1

ΓD
(Ω) such that:⎧⎪⎪⎨⎪⎪⎩

(
∂v

∂t
,ϕ

)
+a (v,ϕ)+b (v, v,ϕ)

+g (ϕ, p) = ( f ,ϕ)+ c (d,ϕ)

g (v, ψ) = 0

(21)

for all ϕ ∈ H1
ΓD

(Ω), and ψ ∈ L2(Ω), with v|t=0
= v0, where

g (ϕ, ψ) = − (∇ ·ϕ, ψ), f is a forcing term (e.g. gravity
force). The forcing term f is supposed to be smooth enough
to ensure that the written relations are meaningful.

In (21) (ψ,w) = ∫
Ω
ψ ·wdω denotes the scalar prod-

uct in L2 (Ω); a (·, ·) denotes a continuous bilinear form on[
H1 (Ω)

]2
, b (·, ·, ·) denotes a continuous trilinear form on[

H1 (Ω)
]3

, treating the non-linearity of Navier–Stokes equa-
tions; finally, c (·, ·) is a term depending on the conditions on
ΓN at hand. Formulation (21) is abstract, accounting for dif-
ferent boundary problems (as (19) and (20)) with different
suitable choices of a (·, ·), b (·, ·, ·) and c (·, ·). In particular,
for problem (20), take

a (v,ϕ) = ν (∇v,∇ϕ) ,

b (v, v,ϕ) = ((v ·∇) v,ϕ) ,

c( p̄i,ϕ) = −
∫
Γi

p̄in ·ϕdγ. (22)

The latter is satisfied for every boundary section Γi , whose
union gives ΓN . It is possible to prove (see [45]) that if v and

p are smooth enough solutions of the Navier–Stokes equa-
tions (11) with the associated initial condition and the follow-
ing conditions:

v = 0 on ΓD, pn− ν
∂v

∂n
= p̄in on Γi (23)

for all i varying on upstream/downstream, then v and p are
also solutions of the problem specified by system (21), (22).
Conversely, if v and p are solutions of the system (21), with
the choice (22), then v and p satisfy equations (23), in the
weak or variational sense (i.e. in the sense of distribution).

In particular, if we consider a cylindrical pipe with axis
orthogonal to the Γi sections, it is possible to verify that
choosing (22) amounts precisely to satisfying the mean pres-
sure problem (see [45]); therefore, the “do nothing” implicit
conditions actually prescribed by the variational formulation
are obtained taking the second condition in (23) in the direc-
tions orthogonal to n, i.e.

ν
∂v

∂n
·τ i = 0 on Γi, (24)

{τ i} being the set of unit vectors in the plane tangential to the
boundary (i = 1 in 2D, i = 1, 2 in 3D).

As a benchmark case, it is shown in [45] that the
Poiseuille flow in an infinite straight circular cylinder can
be correctly computed by the numerical solution of a steady
mean pressure problem (i.e. p̄i is constant both in space and
time). Similarly, in [116] and [117] Chap. 3, it is shown that
the Womersley flow in an infinite straight cylinder is also cor-
rectly computed as a mean pressure problem with a pressure
drop linearly depending on the longitudinal coordinate and
with a sinusoidal dependence on time. The Womersley pro-
files of Fig. 14 are indeed computed as numerical solutions
of (21), with (22), having set pu p = 0 and pdw = A l cos(ωt)
where l is the tube length (see (13)) and A is a constant.

In more complicated geometries, the fulfilment of the
mean pressure conditions is no longer ensured by the choice
(22). Nevertheless, the adoption of this choice turns out to
be satisfactory in the applications as an approximate way of
assigning the mean pressure (see [45]).

3.4 Some specific features of blood flow in real geometries

In the previous sections, we have pointed out that the vas-
cular morphology features a relevant complexity, especially
in some districts. For instance, when the aortic arch is con-
sidered, a really complicated structure has to be taken into
account ([14]). Even the carotid bifurcation, which has been
often modelled as a 2D planar domain (see e.g. [82, 118]), is
actually a non-planar structure (see [12]). This geometrical
complexity strongly influences the local features of hemody-
namics and the mechanical actions of the blood flow on the
wall. For these reasons, the vascular geometry plays a rele-
vant role in the onset and development of the atheroscle-
rotic pathologies. As an example, it is observed in [80] that
the presence and the position of the recirculation zones in
the carotid bifurcation is strongly influenced by the bifurca-
tion angle (i.e. the angle between the internal and the ex-
ternal carotid branches at the bifurcation). Another typical
case is given by the anastomosis downstream from a coronary
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bypass: a different anastomosis angle induces recirculation
zones that are quite different as far as importance and position
are concerned (see e.g. [28]), determining the success or the
failure of the bypass itself (see also Sect. 6.3 and Sect. 6.4).

All these observations make the adoption of suitable tech-
niques for the reconstruction of geometrical individual mor-
phologies mandatory, in order to obtain results meaningful for
clinical purposes.

In this section, we will briefly consider this issue, giv-
ing just some ideas of the reconstruction starting from Com-
puter Tomographies (CT). Specific techniques for different
data-measurement devices can be considered as well (see
e.g. [117], Chap. 5, for the case of Digital Subtraction An-
giographies).

3.4.1 Reconstruction of vascular geometries from Computed
Tomographies. The images given by a CT are analogous to
images obtained by freezing the body, slicing it into thick
sections (from 1 to 10 mm) perpendicular to its long axis,
and forming an X-ray image of the slice producing a radio-
graph with an X-ray source perpendicular to the plane of
the section. The significance of these images relies on the
possibility of seeing the sections without superimposition:
nothing is “hidden behind” or obscures overlying structures
of a thin section. The tomographic images are clear, unam-
biguous 2D views into the body. A tomographic section is
computed from a set of one-dimensional profiles obtained
by passing an X-ray beam through the body from multiple
coplanar angles of view (see [44]); the intensity of the X-
rays passing through the body depends on the density of the
different organs crossed. The intensity profiles obtained at
different angles are suitably elaborated in order to compute
the 2D slices. Then, a “stack” of an adequate number of par-
allel, sufficiently thin tomographic images (typically 40–80
slices separated by one mm) can make a three-dimensional re-
construction possible. This stack of images is called a volume
image.

Let us analyze the different steps that are needed for
the construction of a volume image suitable for the nu-
merical simulation of blood-flow problems, once the 2D

Fig. 17. Typical interpolant curves for sections distal (left) and proximal (right) with respect to the carotid bifurcation

slices are available. At first, the vascular domain of in-
terest must be identified on every image (segmentation),
then codified by a suitable set of functions and parame-
ters (slice interpolation). Finally, the slices are linked to
one another and specific points are identified as “nodes” for
the numerical simulation (stacking and meshing), i.e. points
where the velocity and pressure fields will be computed (see
Sect. 6).

Segmentation: The CT slice image typically includes differ-
ent parts or organs besides the vascular section which we
are interested in. The zone of the image of some interest,
and in particular the inner contour of the vascular section,
has to be identified on each image (on the basis e.g. of
the grey level). This step is called segmentation: the re-
sult of the segmentation, therefore, is a set of points on the
image, or pixels for every slice, identifying the contour of
every section.

Slice Interpolation: A suitable interpolation of these points
(pixels) is now operated in order to have a set of equations
for the domain contour. In the case of CT, where the pixels
identified are in most cases a good approximation of the
real vascular boundary, the curve fitting is achieved by
Bezier splines (see [20] for more details). In some cases,
when the original image is particularly unclear, the spe-
cialist can indicate directly some specific point for the
interpolation.

Stacking: On the interpolating curves, it is possible to iden-
tify some significant points for the final meshing. These
points can also be used for the connection of the different
slices. Once the connection is obtained, we have the 3D
reconstruction of the vascular district.
The connection of the slices in a 3D stack is simple
in the case of a single vessel, but it can be very dif-
ficult for complex morphologies, like e.g. a carotid bi-
furcation. In this case, indeed, we have a modification
of the topology when two downstream sections col-
lapse in the common upstream one. Usually, the data
set features a contour with a typical “8” form, which
is the last one before the bifurcation, and then two
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Fig. 18. Simplified reconstruction of the sections at the level of the carotid
bifurcation

separated contours, referring to the two branches (see
Fig. 18).
The treatment of such morphological difficulties can be
faced according different strategies. A specific solution
developed for vascular geometries can be found in [22]
(see also [117], Chap. 5).

Meshing: On the basis of the previous steps, we have a set
of contours connected by nodes, which implicitely de-
fine a set of points, or nodes (mesh) of the surface (apart
from the upstream and downstream sections, that, how-
ever, could be meshed with a 2D grid generator). Starting
from this skin-mesh, with a 3D grid-generator, we obtain
the complete 3D mesh for the vascular domain suitable for
a numerical simulation.

The sequence of images Figs. 19, 20, 21 aims only to give
an idea of the results obtained so far.

Fig. 19. Morphology of an internal carotid artery
with 50% of stenosis

4 Mathematical models of Vessel walls and
fluid-structure coupled problem

Blood and vascular tissue interact in different ways. There is
a biochemical interaction: substances soluted in blood are ab-
sorbed through the endothelium layer and, in some cases, this
process could lead to thickening. Biochemical interaction has
been numerically considered in [75, 96], where the Navier–
Stokes equations are supplemented by linear advection dif-
fusion equations describing the concentration of soluted in
blood. The boundary conditions for the latter equation model
the filtration process through the walls, as a function of the
shear stress induced by the blood on the vessel.

Another interaction between the blood and the fluid,
which will be considered in the present section, is the me-
chanical one. The pulsatile character of blood flow is respon-
sible for the strong interaction between the flow motion and
the vascular wall movement. According to the Windkessel
model (see [68]), during the systolic phase (blood ejection),
the wall deformation accumulates part of the mechanical en-
ergy as elastic energy, which will afterwards be returned back
to the fluid during the diastolic phase. Such a mechanism
actually guarantees almost uniform velocity and pressure at
capillary level.

The correct understanding of this interaction, besides be-
ing of primary interest for the analysis of the flow field, may
help to simulate tissue-tearing phenomena or atherogenesis
which eventually lead to aneurisms or stenoses. From the
mathematical and numerical viewpoint, the problems arising
from this mechanical interaction are very challenging due to
their strongly nonlinear nature. In this section, we will inves-
tigate some issues concerned with these problems.

A global approach should describe the whole “continu-
um”, made of the entire vessel including the innermost (fluid)
region and the outer (wall) region, as a unitary interconnected
model. The complexity of this approach would generally go
beyond the realistic possibility offered by present-day com-
puter simulations. An approach aimed at this description is
the Immersed Boundary Method developed by C. Peskin (see
e.g. [78]); the Navier Stokes equations are assumed to hold
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Fig. 20. 3D reconstruction of the carotid bifurcation of Fig. 19

Fig. 21. Mesh of the carotid bifurcation of Fig. 19

everywhere within the heart, and describe a fluid containing
an immersed system of contractile fibers.

A coupled approach is instead based on interacting two
different models, one for fluids, the other for structures,
through suitable matching conditions which play the role
of boundary conditions for the submodels. As previously
pointed out, the fluid model adopted here is based on Navier–
Stokes equations, in particular (but not necessarily) for
a Newtonian fluid. The model for the description of vascular-
wall dynamics is presented in Sect. 4.1. This approach en-
ables the splitting of the global computation into a sequence
of separate computations for the fluid and the vascular wall,
therefore yielding a considerable reduction of the computa-
tional complexity. On the other hand, maintaining physical
and numerical consistency in the splitting approach may not
be easy. Indeed, several issues have to be addressed in this
regard, noticeably:

1. the matching conditions between fluid and structure must
be physically consistent on the one hand; on the other
hand, they should provide either model with boundary

conditions that are mathematically admissible for its well
posedness;

2. although each sub-model, with the provided boundary
condition, yields a stable problem, it is by no means guar-
anteed that the global problem is stable too;

3. the flow model is naturally written in Eulerian coordi-
nates, whilst the wall model is expressed in Lagrangian
coordinates. The interaction between these two heteroge-
neous frames demands a suitable approach, in order to
set up a numerical device for the analysis of the coupled
“moving boundary” problem.

In Sect. 4.2, we focus on some issues relevant to point 1 and
2. The third issue is faced in Sect. 5.2.

4.1 Mechanical models of vessel walls

As pointed out in Sect. 2, the soft tissues of the vessel walls
consist of different materials with different mechanical fea-
tures such as collagen fibers, elastin, smooth muscle and wa-
ter. Due to this complex structure, it is difficult to provide
a synthetic mathematical description of the mechanical be-
havior of vessel walls. The investigations of the structural and
biochemical properties of human soft tissues and their strict
correlations, e.g. in view of the production of biocompatible
tissues for vascular prosthesis, have been defined as “tissue
engineering” (see e.g. [66]). Here, we limit ourselves to re-
calling the most relevant structural features and the simplest
mathematical models for arterial tissues.

To start with, we point out that arteries are inelastic and
anisotropic (cf. [11, 25]). They are inelastic since they ex-
hibit different stress-strain curves in loading and unloading.
A convenient approach, which falls under the name of pseu-
doelasticity, treats the two phases in a separate manner, since
the actual behavior of the arterial tissue, under periodic load-
ing and unloading, does not depend on the strain rate (see [25]
and Fig. 22). When the deformations around an interesting
point are really small, it is possible to linearize the prob-
lem suitably around such an equilibrium point (incremental
elasticity). In the pseudoelastic approach, the description of
the mechanical behavior of the tissues in the two (loading
and unloading) phases can be described in terms of a Strain
Energy Density Function (SEDF), that links stresses and
deformations for the two different phases, via a differentia-

tion. Namely, we have: Σij = ∂(SEDF)

∂Eij
, where Σij is the stress

Ratio

Tension

Loading

Unloading

Longitudinal Extension 

Fig. 22. Typical loading–unloading curves of carotid arteries ([25])
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tensor, while Eij denotes the Green (quadratic) strain ten-
sor (see [25]). Obviously, a quadratic SEDF corresponds to
Hooke’s law of linear elasticity. On the other hand, the form
of SEDF that seems to be more suitable for the arteries is an
exponential one (see [25]);

Arteries are anisotropic since the fiber structure of the tis-
sue yields a different behavior for different loading directions.
More precisely, arteries are orthotropically cylindrical: their
behavior is described along the cylindrical components (ra-
dial, longitudinal and circumferential). Moreover, experimen-
tal evidence suggests that radial deformation is much smaller
than deformations along the other directions (see [11]).

Neglecting their anisotropic behavior and the circumfer-
ential deformations, we can model vascular walls as mem-
brane by means of the Navier equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρwh
∂2 Dr

∂t2
= kGh

∂2 Dr

∂z2
− Eh

1 − ζ2

(
ζ

R0

∂ Dz

∂z
+ Dr

R2
0

)
+Φ1

ρwh
∂2 Dz

∂t2
= Eh

1 − ζ2

(
ζ

R0

∂ Dr

∂z
+ ∂2 Dz

∂z2

)
+Φ2

(25)

The unknown variables Dr and Dz represent radial and lon-
gitudinal vessel displacement in the local frame of reference
(r, z, θ); h is the wall thickness; R0(z) is the arterial reference
radius at rest; k is the so called Timoshenko shear correc-
tion factor, G the shear modulus, E the Young modulus, ζ
the Poisson ratio (which is equal to 1/2 for an incompres-
sible material); ρw the arterial wall volumetric mass. Finally,
Φ= [Φ1 Φ2]T is the forcing term due to the external forces,
including the stress induced by the fluid: indeed, they depend
on the velocity v and the pressure p of the blood.

Remark that this model (as well as its simplifications that
we are going to introduce) is based on a Lagrangian descrip-
tion of motion of the wall motion as it is referred to a material
domain Γ 0

w, which the spatial coordinates belong to, corres-
ponding to the (say) “rest position” Dr = Dz = 0.

We could introduce further useful simplifications of
Navier equations (25). Assuming that the effects of the for-
cing term Φ due to the fluid can be reduced only to the
pressure of blood, and that the longitudinal displacements and
deformations are very small, the second equation in (25) can
be disregarded and the first yields the simplified relationship:

ρw

∂2η

∂t2
+ E

(1 − ζ2)R0

η = Φ

h
(26)

having set η = Dr , Φ = Φ1 = pw − p0 (which is usually
called transmural pressure); pw is the pressure on the wall
essentially due to the fluid, while p0 is a reference value of ex-
ternal pressure (at rest, when pwall = p0, we have η = 0, i.e.
r = R0). If we assume a cylindrical vessel of length L at rest,
then η = η(z, θ, t), where z and θ are, respectively, the longi-
tudinal and angular directions, so that 0 ≤ z ≤ L, 0 ≤ θ ≤ 2π
(see Fig. 23).

The scalar model (26) is an ordinary differential equa-
tion of second order in time for η; η depends on z and θ . It
is known as the independent-rings model (see [41, 79]) as it
assumes that the vessel is made of independent-rings which
are rigidly linked to one another and can only deform along
the radial direction. Despite its intrinsic limitations, the ex-
treme simplicity of model (26) makes it still very popular
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Fig. 23. Geometrical models and notations for the wall motion: 3D model

(see e.g. [41, 60, 79, 86]). More complicated models are based
on shell equations, the coupling of two-dimensional domains,
both for the fluid and the structure (see e.g. [56]), and axial-
symmetric models ([62]).

When the coupling between a 2D fluid and a 1D struc-
ture is considered (see Fig. 24), another model of intermediate
complexity between (26) and (25), which has been developed
to account for longitudinal inner actions as well, is encom-
passed by the following initial boundary value problems:

ρwh
∂2η

∂t2
= −a

∂4η

∂z4
+b

∂2η

∂z2
+ c

∂3η

∂t∂z2
− eη+Φ. (27)

Again η(z) describes the “radial” displacement with respect
to the rest configuration

Γ 0
w ≡ {

(z, y) ∈R2|z ∈ (0, L), y ∈ (−R, R)
}
.

Φ = Φ1 is the external force (in the radial direction), while
a, b, c, e are positive constants depending on the physical fea-
tures of the wall tissue. More precisely, with respect to the
independent-rings model, equation (27) takes inner longitu-
dinal actions into account: a accounts for the inner action of
bending in the tissue, b for the tension; c is a term accounting
for the viscoelasticity of the tissue. Equation (27) is supposed
to hold for each branch (Γ +

wall and Γ −
wall) of Γwall, and needs

therefore boundary conditions on η at the endpoints of Γ +
wall

and Γ −
wall.

In the case a = b = c = 0, we recover the 2D independent-
rings equation. On the other hand, in the case of zero longitu-
dinal displacements, the equation considered in [62] reduces
to (27) with a = 0. In the case b = c = e = 0, the law for
the wall motion reduces to the very classical equation of the
vibrating rod, and we will, therefore, call equation (27) a
“generalized rod” model.

L
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0 0 L
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wallΓ

ΓΓ wallwall

Γwall
+

- -

+

Ω Ω0

Fig. 24. Geometrical models and notations for the wall motion: 2D model
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4.2 The coupled problem

To consider the problem arising when coupling fluid and
structure models, let us restrict our analysis to a domain Ω as
the one illustrated in Fig. 24. The boundary Γ is composed of
a portion ΓC ≡ Γ +

wall ∪Γ −
wall , which is assumed to be compli-

ant, and a part ΓF ≡ Γu p ∪Γdw, which is assumed to be fixed.
As a model for the blood flow, we adopt the Navier–Stokes
equations (11). The fluid problem is therefore described by
the system:

fluid :

⎧⎪⎨⎪⎩
∂v

∂t
+ (v ·∇) v− νΔv+∇ p = f x ∈ Ω(t)

∇ ·v = 0 x ∈ Ω(t)
(28)

together with initial condition at t = 0 for v and suitable
boundary conditions. For the sake of simplicity, we consider
the boundary conditions (18) with d = 0 on ΓF , while the
conditions on ΓC will be specified below, as matching rela-
tions between the fluid and the structure.

About the wall, let us consider the “generalized rod mod-
el” described in a Lagrangian framework by equation (27)
(i.e. for (y, z) ∈ Γ 0 ≡ (−R, R)× (0, L)). If we denote by α,
β, γ and σ positive constants, depending on a, b, c, e, ρw and
h, the structure model is therefore specified by:

structure : ∂2η

∂t2
= −α

∂4η

∂z4
+β

∂2η

∂z2
+γ

∂3η

∂t∂z2
−ση+ Φ̂

z ∈ (0, L) (29)

together with initial conditions prescribing η and
∂η

∂t at the ini-
tial time t0 and boundary conditions which, for the sake of
simplicity (see, however, Remark 4), are given by:

η = 0 and
∂η

∂z
= 0 for z = 0, L. (30)

The forcing term Φ̂ depends on the fluid and will be specified
below.

Let us consider the interface conditions between the fluid
and the structure. The first condition ensures the continuity of
the velocity field, and reads:

v = ∂η

∂t
ey x ∈ ΓC (31)

The second interface condition refers to the continuity of the
stresses, which in a 2D-fluid/1D-structure problem means
that the forcing term on the structure is due to the stresses ex-
erted by the fluid (and, possibly, by external terms due, for
instance, to surrounding organs; we neglect these terms in our
analysis). The physical stress exerted on the wall by the fluid
is given by:

Φ =
(

−Pn+μ
∂v

∂n

)
· ey = ρ

(
−pn+ ν

∂v

∂n

)
· ey on ΓC.

(32)

and consequently, in (29), the forcing term Φ̂ is given by:

Φ̂ = Φ

ρwh
.

Remark 2. If we do not neglect the thickness of the wall
and consider the vessel as a 3D continuum in a 3D problem,
the fluid stresses are a surface force and should therefore be
treated as a (Neumann) boundary data for the structure prob-
lem (29). See e.g. [56] (although in a different context). �

The fluid-structure interaction problem we deal with is
therefore specified by (28), (29), (31) and (32) together with
(18) and (30). In view of its numerical solution, the coupled
problem ought to be split at each time step into two sub-
problems, one in Ω, the other on ΓC , communicating to one
another through the matching conditions (31) and (32). In
particular, the structure problem provides the boundary data
for the fluid problem; vice-versa, the fluid problem provides
the forcing term for the structure. A typical strategy for the
analysis of this problem is therefore to study the two subprob-
lems separately and then reformulate the coupling as a global
“fixed-point” problem (see e.g. [84, 85]). In this perspective,
the first step consists of ensuring the well posedness of each
subproblem. This aspect has to be addressed carefully, and
might require a further investigation on the submodels, since,
generally speaking, the smoothness of the interface data en-
sured by a subproblem could not be sufficient for the other
one. In particular, it is possible to prove that if Γ ≡ ∂Ω is
smooth enough, the trace of a H1 (Ω) function on Γ , i.e.
the restriction of the function on Γ , belongs to a subspace
of L2(Γ ), called H1/2(Γ ) (trace Theorem). Therefore, since
the theory of Navier–Stokes equations requires that the vel-
ocity field v belongs to H1 (Ω), the boundary trace on ΓC ,

and therefore, in particular,
∂η

∂t , must belong to H1/2(ΓC). The
latter requirement is fulfilled provided that the viscoelastic-
ity of the wall is accounted for. Indeed, if c > 0, multiplying

equation (29) by
∂η

∂t , and integrating for z ∈ (0, L), we obtain:

1

2

d
dt

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0)

+ α

2

d
dt

∥∥∥∥∂2η

∂z2

∥∥∥∥2

L2(Γ 0)

+ β

2

d
dt

∥∥∥∥∂η

∂z

∥∥∥∥2

L2(Γ 0)

+γ

∥∥∥∥ ∂

∂z
∂η

∂t

∥∥∥∥2

L2(Γ 0)

+ σ

2

d
dt

‖η‖2
L2(Γ 0)

=
(

Φ̂,
∂η

∂t

)
L2(Γ 0)

≤
∥∥∥Φ̂∥∥∥2

L2(Γ 0)
+
∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0)

. (33)

By the Gronwall Lemma (see e.g. [90]), it follows that:

γ

∥∥∥∥ ∂

∂z
∂η

∂t

∥∥∥∥2

L2(Γ 0
C)

≤ C (34)

where C is a constant. This inequality ensures that the trace

theorem is applicable and moreover
∂η

∂t belongs to H1(Γ 0),
i.e. the trace is smooth enough.

Let us now consider the stability of the coupled problem.
When one deals with a Navier–Stokes problem in a time-
dependent domain, the situation is complicated by the fact
that time derivation and space integration are not interchange-
able. Indeed, when the domain Ω is a function of time, we
have the following Reynolds transport formula (see e.g. [2]):
for any differentiable function ψ defined in a time dependent
domain Ω(t):
d
dt

∫
Ω(t)

ψdω =
∫

Ω(t)

∂ψ

∂t
dω+

∫
Γ(t)

w ·nψdγ. (35)
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where w is the velocity of the moving boundary. In our case,
w is zero on ΓF and is equal to v on ΓC . Let us multiply the
first equation of (31) by v and integrate in Ω(t). Using the
Green formula, and taking into account the matching condi-
tions, we have:

1

2

∫
Ω(t)

∂ |v|2
∂t

dω+ ν

∫
Ω(t)

∇v : ∇vdω+ 1

2

∫
Γ(t)

|v|2 v ·ndγ =
∫

Ω(t)

f ·vdω−
∫
Γ

[
pn ·v− ν

∂v

∂n

]
·vdγ (36)

If we apply the Reynolds transport formula (35) to the first
term and use the boundary conditions for v, we obtain:

1

2

d
dt

∫
Ω(t)

|v|2 dω− 1

2

∫
ΓC(t)

|v|2 v ·ndγ + ν

∫
Ω(t)

∇v : ∇vdω

+ 1

2

∫
ΓC(t)∪Γdw

|v|2 v ·ndγ =
∫

Ω(t)

f ·vdω

−
∫
ΓC

[
pn ·v− ν

∂v

∂n

]
·vdγ. (37)

which, bearing in mind (32), reduces to:

1

2

d
dt

‖v‖2
L2(Ω)

+ ν ‖v‖2
H1(Ω)

+ 1

2

∫
Γdw

|v|2 v ·ndγ = ( f , v)

−
∫

ΓC(t)

Φ

ρ
· ∂η

∂t
eydγ. (38)

Let us introduce the parameter

ω = ρwh
ρ

so that ωΦ̂ = Φ/ρ. Summing equations (33) multiplied by ω
and (38) (where integration on ΓC(t) is referred to Γ 0

C), we are
left with the equation:

1

2

d
dt

[
‖v(t)‖2

L2(Ω)
+ω

∥∥∥∥∂η

∂t
(t)
∥∥∥∥2

L2(Γ 0
C )

+αω

∥∥∥∥∂2η(t)
∂z2

∥∥∥∥2

L2(Γ 0
C )

+βω

∥∥∥∥∂η

∂z
(t)
∥∥∥∥2

L2(Γ 0
C)

+σω ‖η(t)‖2

L2(Γ 0
C )

]
+ ν ‖v‖2

H1(Ω)
+ 1

2

∫
Γdw(t)

|v|2 v ·ndγ +γω

∥∥∥∥ ∂

∂z
∂η

∂t
(t)
∥∥∥∥2

L2(Γ 0
C)

= ( f , v) (39)

Applying the Cauchy-Schwarz inequality to the right-hand
side and integrating in the time interval (0, t), for any t ∈
(0, T), and then using to the Gronwall Lemma (see e.g. [90]),

we obtain the inequality:

1

2
‖v‖2

L2(Ω)
(t)+ω

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0
C )

(t)+αω

∥∥∥∥∂2η

∂z2

∥∥∥∥2

L2(Γ 0
C )

(t)

+βω

∥∥∥∥∂η

∂z

∥∥∥∥2

L2(Γ 0
C )

(t)+σω ‖η‖2

L2(Γ 0
C )

(t)+ ν

t∫
0

‖v‖2
H1(Ω)

dt

+ 1

2

t∫
0

∫
Γdw(t)

|v|2 v ·ndγdt +
t∫

0

γω

∥∥∥∥ ∂

∂z
∂η

∂t

∥∥∥∥2

L2(Γ 0
C )

dt ≤ k

(40)

k being a constant depending on the forcing term and the ini-
tial data. Should the integral on Γdw be positive, the following
a-priori estimate would be obtained:

1

2
‖v‖2

L2(Ω)
(t)+ω

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0
C )

(t)+αω

∥∥∥∥∂2η

∂z2

∥∥∥∥2

L2(Γ 0
C )

(t)

+βω

∥∥∥∥∂η

∂z

∥∥∥∥2

L2(Γ 0
C )

(t)+σω ‖η‖2

L2(Γ 0
C )

(t)

+ ν

t∫
0

‖v‖2
H1(Ω)

dt +
t∫

0

γω

∥∥∥∥ ∂

∂z
∂η

∂t

∥∥∥∥2

L2(Γ 0
C )

dt ≤ k. (41)

This is the case if the downstream sections are actually out-
flow sections, i.e. the condition v ·n ≥ 0 is satisfied for all
x ∈ Γdw. Unfortunately, this is true only if the recirculation
zones are far away from the downstream sections, as we al-
ready pointed out in Sect. 3.3. However, it is possible to show
(see [117]) that the same stability estimate (41) could also be
obtained without assuming that downstream sections are out-
flow, provided that the linear Neumann boundary conditions
on the downstream sections are replaced by the nonlinear
conditions:

−
(

P + 1

2
ρ |v|2

)
n+μ

∂v

∂n
= 0. (42)

Remark 3. As already pointed out in [23] and [34], the con-
vective non-linear term of the momentum conservation law is
crucial in the deduction of the energy estimate, since it com-
pensates the term arising from the Reynolds transport formula
(35). Therefore, the coupled fluid-structure problem with the
fluid described by the Stokes equations (where the nonlinear
convective term (v ·∇) v is neglected) fails to be well posed.

�

Remark 4. We have introduced homogeneous boundary con-
ditions for the structure for the sake of simplicity only. In-
deed, different conditions can be considered as well. More
precisely, since the end points z = 0, L are typically “artificial
boundaries”, exactly like Γu p and Γdw, suitable boundary con-
ditions have to be chosen in order not to perturb the numerical
results. In particular, “non-reflective” conditions must be se-
lected in order to avoid at the end points spurious reflections
in the wave propagation phenomena described by equation
(29) (see Sect. 6.2). We remark also that, if α = γ = 0, no

boundary condition on
∂η

∂z is required.
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Remark 5. On the independent-rings model For the indepen-
dent-rings model, clearly no boundary conditions on the
derivatives of η are needed. In this case, the counterpart of
(40) reads:

1

2
‖v‖2

L2(Ω)
(t)+ω

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0
C)

(t)+σω ‖η‖2

L2(Γ 0
C )

(t)

+ ν

t∫
0

‖v‖2
H1(Ω)

dt +
t∫

0

∫
Γdw(t)

|v|2 v ·ndγdt

+
t∫

0

∫
ΓC(t)

ν
∂v

∂n
ndγdt ≤ k (43)

Observe, in particular, that, with respect to (40), neglecting
the viscous stresses on the walls introduces a boundary in-
tegral which is not necessarily positive and this inhibits the
deduction of a stability inequality. Conversely, if the viscous
stresses are not neglected, we are led to the following inequal-
ity:

1

2
‖v‖2

L2(Ω)
(t)+ω

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0
C)

(t)+σω ‖η‖2

L2(Γ 0
C )

(t)

+ ν

t∫
0

‖v‖2
H1(Ω)

dt +
t∫

0

∫
Γdw(t)

|v|2 v ·ndγdt ≤ k, (44)

which, in the case of coincidence of outflow and downstream
sections (or if the non-linear Neumann flux is prescribed),
provides the estimate:

1

2
‖v‖2

L2(Ω)
(t)+ω

∥∥∥∥∂η

∂t

∥∥∥∥2

L2(Γ 0
C)

(t)+σω ‖η‖2

L2(Γ 0
C )

(t)

+ ν

t∫
0

‖v‖2
H1(Ω)

dt ≤ k. (45)

�

5 Numerical methods

Although many (reasonable) simplifications have been adopt-
ed for the definition of the coupled problem (28,29,18,31,32),
it is impossible to obtain an analytical solution, especially
when real human vascular morphologies are considered.
Therefore, we need to approximate conveniently the prob-
lems at hand in order to obtain a numerical solution. This
means that we have to discretize both space and time deriva-
tives, replacing the differential operators with algebraic ones.

As already pointed out, a distinctive feature of the fluid-
structure problem at hand is the coupling of two different
subproblems, the first referring to the fluid (whose solution
is characterized by velocity and pressure of the blood), the
second to the structure (whose unknown variable is the dis-
placement of the vascular wall). In the previous section, we
remarked that the coupled problem is non-linear, since fluid
and structure influence themselves according to the matching

relations (31) and (32). The approach we adopt for the nu-
merical study of this problem consists of solving the two sub-
problems separately, accounting for the reciprocal influence
through a suitable approximation of the matching relations.
Hence, in the following sections, we consider the approxi-
mation of the fluid and the structure problems separately and
then we illustrate a simple (explicit) algorithm for the coup-
ling of the two solvers.

5.1 Numerical study of the fluid problem

The space discretization of the Navier–Stokes equations (11)
can be performed according to many approaches (see e.g. [89,
90, 103]). In the problem at hand, a relevant feature refers to
the complex morphologies characterizing the domain where
the blood flows. The space discretization method which is
probably the most suitable for problems involving such com-
plex geometries is the Finite Element Method (FEM). The ba-
sic idea is to subdivide the domain into many regions (elem-
ents) which are typically tetrahedral or prismatic and then
approximate the solution with a piecewise polynomial (with
respect to the space variables), i.e. with a function which is
a polynomial on each element. The interesting feature of this
method is that the subdivision (usually called mesh) can be
unstructured, i.e. it does not necessarily follow preferential
directions (as the Cartesian ones) as it is required, for in-
stance, by a finite difference discretization. For this reason, it
turns out really suitable for treating complex domains.

Recalling (21) and (22), the problem obtained after the
finite element discretization reads as follows.

For every t > 0, find vh(t) ∈ Vh and ph(t) ∈ Qh s.t.⎧⎪⎪⎨⎪⎪⎩
d
dt
(
vh(t),ϕh

)+a
(
vh(t),ϕh

)+b
(
vh(t), vh(t),ϕh

)
+g

(
ϕh, ph(t)

)= (
f (t),ϕh

) ∀ϕh ∈ Vh .

g (vh(t), ψh) = 0 ∀ψh ∈ Qh

(46)

where Vh is a suitable piecewise polynomial function sub-
space of H1

ΓD
(Ω), with dimension 3× Nu (in a 3D problem)

and Qh is a suitable piecewise polynomial function subspace
of L2(Ω), with dimension Np. We recall that, in order to have
a stable solution for the pressure, the choice of Vh and Qh
is not completely free, but should undergo the following inf-
sup condition (see [5]): there exists a β > 0 such that for all
qh ∈ Qh, there exists ψh ∈ Vh, ψh �= 0 s.t. (qh, ψh)≥ β ‖ψh‖1‖qh‖0 where ‖·‖1 is the norm in H1(Ω) and ‖·‖0 the norm
in L2(Ω). This means, for instance, that the same piecewise
linear approximation for both velocity and pressure cannot be
adopted.

Once the problem has been discretized with respect to
the space variables, we have to perform the time discretiza-
tion of (46). Different strategies are possible. An approach
widely adopted relies on a finite difference discretization (see
e.g. [90]). In particular, let us adopt a backward Euler time
discretization, coupled with a Newton linearization of the
convective term. Let Vn+1 = [

Vn+1
i

]
and Pn+1 = [

Pn+1
i

]
de-

note the vectors of nodal values of vh(tn+1) and ph(
n+1) re-

spectively.
Denote by

{
ϕi
}

i=1,... ,Nu
a set of basis functions for the

space Vh and by {ψi}i=1,... ,Np the set of basis functions for
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Qh . Finally, set:

M = [mij] =
⎡⎣∫

Ω

(
ϕi,ϕj

)
dω

⎤⎦ (the mass matrix),

K = [kij] = [
a
(
ϕi ,ϕj

)]
(the stiffness matrix),

B1(W) = [b1,ij(W)] =
⎡⎣ Nu∑

k=1

Wk

∫
Ω

(
ϕk ·∇ϕj

) ·ϕidω

⎤⎦ ,

B2(W) = [b2,ij(W)] =
⎡⎣ Nu∑

k=1

Wk

∫
Ω

(
ϕj ·∇ϕk

) ·ϕidω

⎤⎦ ,

D = [dij] = [g (ϕi, ψj
)],

F= [ fi] = [( f ,ϕi
)] and U0 = [U0i] = [(u0,ϕi

)].
For instance, in the case of a fully Dirichlet homogeneous

problem, the combined Euler–Newton/Finite Element discre-
tization yields at each time level tn+1 in a system of equations
of the form

Ayn+1 = bn+1 (47)

where

A =
⎡⎣C DT

D 0

⎤⎦ , yn+1 =
⎡⎣Vn+1

Pn+1

⎤⎦ , bn+1 =
⎡⎣bn+1

1

bn+1
2

⎤⎦ .

(48)

C = 1

Δt
M + K + B1(Vn)+ B2(Vn)

bn+1
1 = Fn+1 + 1

Δt
MVn + B1(Vn)Vn, bn+1

2 = 0.

(49)

In particular, the first (block) row of (48) arises from the dis-
cretization of the momentum equation, the second from the
mass conservation.

It is possible to prove that if the “inf-sup” condition is ver-
ified, then the matrix A is certainly non-singular (see e.g. [5],
[90], Chap. 9). In the sequel, we assume this hypothesis to
hold.

The solution of system (47) can require a great compu-
tational effort, especially in 3D problems. For this reason,
many studies have been devoted to the set-up of fractional
step methods that aim at solving the whole system as a se-
quence of smaller problems. The most natural splitting is
obviously the separate computation of velocity and pressure
fields. A very widespread technique in this perspective refers
to the so-called projection schemes, which we are going to
introduce.

The theoretical framework for projection schemes is pro-
vided by the Helmholtz decomposition principle (sometimes
referred to as Ladyzhenskaja Theorem), according to which
any vector function u ∈ L2 (Ω) can be uniquely represented
as u= w+∇ψ with w ∈ L2 (Ω), ∇ ·w = 0, w ·n= 0 on ∂Ω
and ψ ∈ H1 (Ω).

Based on this decomposition, the ancestor of projec-
tion schemes, formulated by Chorin ([15]) and Temam

([112]), suitably splits problem (46) into the sequence of an
advection-diffusion problem computing an intermediate vel-
ocity (corresponding to u), a Poisson problem computing the
pressure (corresponding to ψ) and then the projection of the
intermediate velocity on the divergence-free functional space,
according to the Helmholtz principle.

An alternative strategy of splitting relies on the following
considerations, completely based on the properties of the al-
gebraic system (47). Observe that matrix A in (48) can be fac-
tored according to the following block LU-decomposition:

A =
⎡⎣C 0

D −D C−1G

⎤⎦⎡⎣I C−1 G

0 I

⎤⎦ . (50)

If the original system (48) is now solved through the se-
quence of steps:

L-step :⎧⎨⎩CŨn+1 = bn+1
1

DŨn+1 − DC−1G P̃n+1 = bn+1
2

U-step :⎧⎨⎩U
n+1 +C−1GPn+1 = Ũn+1

Pn+1 = P̃n+1

⇓⎧⎪⎪⎪⎨⎪⎪⎪⎩
CŨn+1 = bn+1

1

−DC−1GPn+1 = bn+1
2 − DŨn+1

CUn+1 + GPn+1 = CŨn+1 − GPn+1

,

(51)

we have formally reduced the original problem to a sequence
of subproblems computing separately velocity and pressure
unknowns. Unfortunately, the computational effort is still
large, due to the presence of the matrix C−1 in the (2, 2) block
of L and in the (2, 1) block of U . However, C−1 can be suit-
ably approximated in the L and U factors. Should the error
introduced by this approximation be of the same order of ac-
curacy (with respect to Δt) of the unsplit scheme, the corres-
ponding “inexact” LU−splitting would yield a method that
treats the velocity and pressure unknowns separately with-
out loss of accuracy. An analysis of this inexact factorization
approach can be found in [87]. Here, we limit ourselves to il-
lustrating a particular choice for the approximation of C−1.
Let us substitute the matrix DC−1G of the (2,2) block in the
L factor with the matrix ΔtDM−1G. This choice is formally
based on the following approximation, admissible for a Δt
sufficiently small:

C−1 =
(

1

Δt
M + S

)−1

= Δt
(
I +ΔtM−1S

)−1 M−1

= Δt
∞∑

i=0

(−1)i (ΔtM−1S
)i M−1 ≈ ΔtM−1, (52)
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and yields the following Yosida scheme:⎧⎨⎩CŨn+1 = bn+1
1

−ΔtDM−1GPn+1 = bn+1
2 − DŨn+1

CUn+1 = CŨn+1 − GPn+1

. (53)

The approximation introduced is effective, since the mass ma-
trix M is easier to invert with respect to C, especially when
the so-called mass lumping (i.e. a suitable numerical diago-
nalization of M) is adopted. Moreover, this scheme turns out
to be suitable for the treatment of complex boundary con-
ditions, which is often the case in vascular problems, as we
have pointed out. An analysis of this scheme can be found
in [87, 88].

5.2 The Arbitrary Lagrangian Eulerian (ALE) formulation
of fluid motion in moving domains

Since the fluid domain is moving, the nodes where the solu-
tion is evaluated change their position at every time instant on
the boundary and consequently in the inner domain. A spe-
cific treatment of this problem is therefore required. A pos-
sible strategy is given by the Arbitrary Lagrangian Eulerian
method (ALE), which is often used as an alternative to the
more classical Lagrangian and Eulerian approaches. In the
particular case where the moving domain encompasses the
coupling of two heterogeneous media, such as a fluid and
solid structure, this formulation becomes especially attrac-
tive, as it allows the simultaneous use of the Eulerian frame in
the fluid domain and the Lagrangian one in the wall structural.
Let us illustrate it briefly.

Assume that a continuum occupies at time t ≥ 0 a re-
gion Ω(t) of the space Rn that varies along the time, and let
Ω0
X = Ω(0) be the region occupied at the initial time. A ma-

terial point of the continuum occupies in Ω0
X the position

P0 whose coordinates are X0 = (X0
i ), i = 1, . . . , n, while at

time t > 0 it occupies a point P of coordinates x(t) = (xi),
i = 1, . . . , n (see Fig. 25). The motion of this point is de-
scribed by the map:

G : Ω0
X× (0, T) →Rn , (X0, t) → x(t) = G(X0, t),

(54)

which is assumed to be continuous and bijective, so that its Ja-
cobian J(t) = | ∂xi/∂X0

j | is different from zero for all t ≥ 0.
The vector

ψ(t) = x(t)− X0 (55)

represents the deformation from Ω0
X to Ω(t). Denoting by ei ,

i = 1, . . . , n the Cartesian frame of Rn , ψ can be represented
with respect to ei either in terms of the Lagrangian coordi-
nates (X0

i ):

ψ(t) =
n∑

i=1

Ψi(X0, t)ei X0 ∈ Ω0
X (56)

or in terms of the Eulerian coordinates (xi):

ψ(t) =
n∑

i=1

ψi(x(t), t)ei x(t) ∈ Ω(t) (57)
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Fig. 25. The ALE perspective: domains, transformations and the corres-
ponding points

The former is called the Lagrangian representation and Ω0
X is

usually called the material domain, while the latter is called
the Eulerian representation and Ω(t) is usually called the spa-
tial domain.

The Lagrangian coordinate may be thought to be associ-
ated to the fluid particle, and the Lagrangian approach follows
the material points of the continuum along their displacement
in time. At the opposite, in the Eulerian approach, the spatial
region at the time t is considered as fixed and the fluid flows
across it (see e.g. [49]).

In particular, for the numerical discretization, in the Eule-
rian approach the frame of reference is related to the spatial
domain, that means that the computational grid is kept fixed,
whereas in the Lagrangian approach it changes at the same
velocity of the fluid. On the other hand, the fluid velocity is

v(t) = DG(X0, t)
Dt

= ∂x
∂t |X0

= ∂ψ

∂t |X0

(58)

where the symbol ∂ x
∂t |X0

means partial differentiation of x
with respect to t with X0 being fixed, and D

Dt denotes material
derivative.

The ALE approach generalizes both Eulerian and La-
grangian approaches, in that the focus is posed neither on
material points nor on a fixed spatial region. Rather, atten-
tion is directed at special points or coordinates, say Y ∈ ΩY at
time t = 0, that are called ALE coordinates, which will evolve
with the continuum, although independently of the motion of
material points; the domain ΩY is usually called reference do-
main.

A choice of remarkable computational interest corres-
ponds to the situation where Y are the grid coordinates. With
this new perspective, the point Q in the spatial domain Ω(t),
corresponding in ΩY to a point Q0 of coordinates Y, has co-
ordinates y(t) = Φ(Y, t) at time t > 0; y(t) will still indicate
mesh coordinates at time t, and

ψ∗(t) = y(t)−Y (59)

the mesh displacement. Correspondingly,

w(t) = ∂x
∂t |Y

= ∂ψ∗

∂t |Y
(60)



Computational vascular fluid dynamics: problems, models and methods 185

is the mesh velocity, which provides the speed of motion
of the reference points (the mesh nodes). For a certain time
t > 0, a given point x ∈ Ω(t) can therefore be regarded as
being the image of two different points under two different
maps, namely

x(t) = G(X0, t) = Φ(Y, t) = y(t). (61)

Since the two points X0 and Y have different motion laws,
the identity (61) holds only at that particular time t.

As previously pointed out, both Lagrangian and Eulerian
frames can be recovered as special cases of the ALE ap-
proach. Indeed, taking ΩY = Ω0

X and Φ = G, one has the
Lagrangian formulation, where ψ = ψ∗. Otherwise, taking
ΩY = Ω(t) and Φ equal to the identity map, one recovers the
Eulerian approach, according to which ψ∗ = 0 and w = 0.
Equivalently, we claim that, in the ALE approach, the com-
putational grid is regarded as being an independent frame,
moving with velocity w. If w = 0 we reobtain the Eulerian ap-
proach, whereas if w coincides with the velocity of the fluid
v, we recover the Lagrangian formulation. If w is neither zero
nor equal to v, we have a truly new formulation.

The arbitrary velocity w is chosen in order to enjoy some
properties useful in numerical computations. Typically, it is
a lifting of the boundary velocities, in order to follow the
motion of the boundary domain Γ(t). At each inner node, it
could for instance be chosen to minimize the mesh distortion,
defined by means of a suitable functional, as in [19]. An-
other approach, based on elliptic regularization, is presented
in Sect. 5.4.

5.2.1 The ALE formulation of conservation laws. In this sec-
tion, we consider the ALE framework described previously,
with the understanding that Y denotes the grid coordinates
(or ALE coordinates). The reference domain Ω0

Y will be re-
garded as the initial domain, and will be denoted by Ω(0).
For any scalar function g(y, t), the coordinate transformation
y(t) = Φ(Y, t) yields:

∂g
∂t |Y

= ∂g
∂t | y

+ ∂ y
∂t |Y

·∇yg

the gradient ∇y being made with respect to the y coordinates.
Using (60), and noticing that in the current assumption w is
the grid velocity, we obtain (dropping the suffix for the gradi-
ent)

∂g
∂t | y

= ∂g
∂t |Y

−w ·∇g. (62)

This identity highlights the relation between the partial

derivative
∂g
∂t | y of g with respect to t and the so called ALE

derivative ∂g
∂t |Y of g.

We can express (62) in the alternative form

∂g
∂t | y

= ∂g
∂t |Y

−∇ · (wg)+ g(∇ ·w), (63)

which is more suitable when dealing with conservation laws.
As a matter of fact, considering the following, scalar, conser-

vation law (unless otherwise specified,
∂g
∂t is used instead of

∂g
∂t | y in the remainder of this section):

∂g
∂t

+∇ · F(g) = 0 (64)

where F is the associated flux. Using (63), we obtain

∂g
∂t |Y

+∇ · (F(g)−wg) = −g(∇ ·w), (65)

or, equivalently

∂g
∂t |Y

+∇ · FAL E(g) = s(w), (66)

where FAL E(g) = F(g)−wg is the ALE flux, and s (w) =
−g (∇ ·w) is a source term (both depend on the grid velocity
w).

The generalization to the vector case is in order. Indeed,
consider instead of (64):

∂gk

∂t
+

n∑
i=1

∂

∂yi
[hi(gk)] = 0 k = 1, . . . , q (q ≥ 2). (67)

Proceeding as above, we obtain:

∂gk

∂t |Y
+

n∑
i=1

∂

∂yi
[hi(gk)−wigk] = −gk(∇ ·w),

k = 1, . . . , q, (68)

In compact form, (67) reads:

∂gT

∂t
+∇ ·F (g) = 0, (69)

where gT is the row vector (g1, . . . , gq) , (∇·) denotes the

row vector ( ∂
∂y

1
, . . . , ∂

∂yn
) and F (g) the n ×q matrix of elem-

ents fi(gk), 1 ≤ i ≤ n, 1 ≤ k ≤ q, while (68) reads

∂gT

∂t |Y
+∇ ·FAL E(g) = ST (g) , (70)

where the modified flux FAL E(v) is now the n × q ma-
trix of elements fi(uk)−wi gk and ST (v) the row vector
(−g1(∇ ·w), . . . ,−gq(∇ ·w)).

If the differential equation is not in conservative form, the
identity (62) is often more suitable than (63). For instance,
considering the momentum equations in the Navier–Stokes
system (1), proceeding as above, its ALE version becomes:

∂vk

∂t |Y
− νΔvk + ∂ p

∂yk
+ (v−w) ·∇vk = fk k = 1, . . . , n.

(71)

In vector form, this is equivalent to:

∂v

∂t |Y
− νΔv+∇ p+ (v−w) ·∇v = f , (72)

which amounts to changing the original convective velocity v
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in the new one (relative to the grid velocity) v−w.
The integral form of the conservation law (66), which is

at the base of any finite volume approximation, is easily de-
rived using the Reynolds transport formula (35) with ψ = g
and using from (64):

d
dt

∫
Ω(t)

gdω =
∫

Ω(t)

[∇ · (wg − F(g))]dω

= −
∫

Ω(t)

[∇ · FAL E(g)]dω. (73)

Then, by the Gauss theorem, it follows that:

d
dt

∫
Ω(t)

gdω+
∫

∂Ω(t)

FAL E(g) ·ndγ = 0. (74)

Observe that it is possible to obtain the ALE formulation from
the Eulerian one simply by substituting for the real flux F, the
ALE flux FAL E . This is the driving mechanism for the fur-
ther deduction of ALE formulations. In particular, in view of
finite element approximations, an integral variational formu-
lation of (64) has to be derivied. On a fixed domain Ω = Ω0,
this would simply be:

d
dt

∫
Ω

ûgdω+
∫
Ω

û∇ · F(g)dω = 0, (75)

for all test function û = û(y) defined on Ω, belonging to

a suitable function space Û . The corresponding function
space in Ω(t) is identified through the ALE map:

U(t) =
{

u(y, t)
∣∣u(y(Y, t), t) = û(Y),Y ∈ Ω̂

}
=
{

u
∣∣u ◦Φ = û, û ∈ Û

}
. (76)

As û is (obviously) independent of time, using (62) with û
instead of g, we obtain:

0 = ∂ û
∂t | y

+w ·∇û. (77)

Consider now the variational formulation in Ω(t) using the
test functions u ∈ U(t):∫
Ω(t)

u
∂g
∂t

dω+
∫

Ω(t)

u∇ · F(g)dω = 0 (78)

Using the chain rule and (77), we have:

u
∂g
∂t | y

= ∂ug
∂t | y

− g
∂u
∂t | y

= ∂ug
∂t | y

+ g (w ·∇u) . (79)

The latter relationship, used in equation (78), yields:∫
Ω(t)

∂ug
∂t |X

dω+
∫

Ω(t)

g (w ·∇u)+u∇ · F(g)dω = 0.

Using the Reynolds transport formula (35) with ψ = gv, we
finally obtain:

d
dt

∫
Ω(t)

ugdω+
∫

Ω(t)

u∇ · FAL E(g)dω = 0 ∀u ∈ U(t) (80)

which can therefore be regarded as the ALE variational for-
mulation of the conservation law (66). Note that, formally, the
integral form (73) is a special case of (80) when taking the
test function u equal to unity. Upon integrating in time from
0 to t, we derive from (80):∫
Ω(t)

u(t)g(t)dω−
∫
Ω0

ûg(0)dω

+
t∫

0

∫
Ω(τ)

u(τ)∇ · FAL E(g)(τ)dωdτ = 0, (81)

for all u(τ) ∈ U(τ).
In the vector case, the counterpart of (79) reads:

∂g
∂t

·ϕ= ∂ (g ·ϕ)

∂t
+ (w ·∇)ϕ · g. (82)

Using (82) and proceeding as above, we obtain the counter-
part of (80) for the Navier–Stokes momentum equation:

d
dt

∫
Ω(t)

v ·ϕdω+
∫

Ω(t)

[(v−w) ∇·] v ·ϕdω

−
∫

Ω(t)

∇ ·wv ·ϕdω+ ν

∫
Ω(t)

∇v ·∇ϕdω

−
∫

Ω(t)

p∇ ·ϕdω =
∫

Γwall

[−pn+ ν∇v ·n] ·ϕ ∀ϕ ∈ V(t)

(83)

which is then integrated in time as in (81).

Remark 6. In the frame of the temporal discretization approx-

imation of the conservation law (65), the domains Ω̂ and Ω(t)
will typically be replaced by Ω(tn) and Ω(tn+1), respectively,
tn = nΔt being the nth time level and Δt the temporal step
size. �

5.2.2 Geometric conservation laws and finite element discre-
tization. A requirement that is often made for the ALE de-
scription is that a uniform flow field should be maintained
as such all along the time evolution. This request yields con-
straints on geometrical quantities (and of course on both the
temporal and spatial discretization schemes which are being
used), but not on the solution g of the conservation law at
hand. This reason motivates the name geometric conservation
laws given to these relationships. For a detailed introduction
and analysis, see e.g. [30, 53, 129], where this issue is ad-
dressed in the framework of finite volume approximations.
For variational formulations of conservation laws, we simply
report here the results found in [26].
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If g must represent a uniform constant state, then F= 0,
and from (80) we deduce that:

d
dt

∫
Ω(t)

udω−
∫

Ω(t)

u∇ ·wdω = 0 ∀u ∈ U(t). (84)

or, equivalently,

∫
Ω(t)

udω−
∫
Ω0

ûdω =
t∫

0

∫
Ω(τ)

u(τ)∇ ·wdωdτ ∀û ∈ Û (85)

Observe that (84) (or (85)) would not change if the conserva-
tion law contained diffusion or propagation terms (as in the
Navier–Stokes equations). Indeed, both terms vanish in the
case of a constant state solution.

The same kind of equation must hold for the discretized
problem. When using finite elements for spatial approxima-

tions, the test-function space Û is approximated by a finite
element subspace of the form:

Ûh =
{

ûh ∈ Û : û| ∈ Pk(S), ∀S ∈ Th

}
(86)

where Th is the finite element triangulation and S a finite
element and k ≥ 1 is the piecewise polynomial degree. In
particular, if we denote by

{
uh j
}
, j = 1, . . . , Nh , the shape

functions which form a basis of Ûh , equation (85) is equiva-
lent to requiring that:

∫
Ω(t)

uh j(t)dω−
∫
Ω0

ûh jdω =
t∫

0

∫
Ω(τ)

uh j(τ)∇ ·w(τ)dωdτ (87)

∀ j = 1, . . . , Nh

where uh j(t) are such that uh j ◦Φ = ûh j . If isoparametric
elements are used to represent the mesh displacement, then:

Φ ∈ Û, therefore

y(t) = Φ(Y, t) =
Nh∑
j=1

ûh j(Y)yh j(t). (88)

For each j , the node coordinate yh j(t) is assumed to be
a polynomial of degree k with respect to t, for t varying in
each time step [tn, tn+1], in order that the motion of each finite
element S be described through the motion of all its nodes
(see Fig. 26).

T
TTT

(t)
(t)

k =1 k = 2
Fig. 26. Isoparametric transformations
in time of finite elements (linear and
quadratic case)

Consequently, the mesh velocity (60) is given by:

w(t) =
Nh∑
j=1

ûh j(Y)
∂ yh j

∂t
(t) (89)

and is therefore a piecewise Pk in space and Pk−1 in time
on each time step [tn, tn+1]. After passing to the reference
domain Ω0, we can verify that the function under the time
integral on the right-hand side of (87) is a polynomial of de-
gree k ×d −1 with respect to the variable t ∈ [tn, tn+1], for
each n ≥ 0, d being the dimension of the domain Ω. In other
words, (87) on the time interval [tn, tn+1] can be written:

∫
Ω(tn+1)

un+1
h j dω−

∫
Ω(tn)

ûh jdω =
tn+1∫
tn

∫
Ω(τ)

uh j(τ)∇ ·w(τ)dτ

≡
tn+1∫
tn

H(τ)dτ (90)

where H(t) is a polynomial for t ∈ [tk, tk+1] with degree k ×
d −1. Then, we can summarize the previous remarks in the
following proposition.

Proposition 1. For the time integral in
[
tn, tn+1

]
, we need to

use an integration formula whose degree of exactness must
be at least k ×d −1 in order to guarantee that the time inte-
gration be carried out exactly and the geometric conservation
laws (90) be satisfied at the discrete level.

In particular, for d = 2 and k = 1 (piecewise linear elem-
ents), the quadrature formula should have degree of exactness
≥ 1. Both the mid-point rule and the trapezoidal rule enjoy
this property. The former would give:∫
Ω(tn+1)

un+1
h j dω−

∫
Ω(tn−1)

ûh jdω = 2ΔtH(tn) (91)

(with Ω(tn−1) playing the role of reference domain) and the
latter:∫
Ω(tn+1)

un+1
h j dω−

∫
Ω(tn)

ûh jdω = Δt
2

[H(tn+1)+ H(tn)] (92)

(this time, it is Ω(tn) which plays the role of reference do-
main). Instead, both forward and backward Euler schemes
would not guarantee the fulfilment of (90).
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For k greater than one, the integration formula should be
upgraded accordingly (e.g., if k = 2 Simpson’s rule would be
adequate).

Remark 7. In particular cases, the accuracy requirement spe-
cified in Prop. 1 could be relaxed. Indeed, suppose that the
Ω is a d continuum, so that the boundary Γ is a d −1 sur-
face. Suppose that every point of Γ cannot move in the all
d−dimensional space, but there is a restriction to the bound-
ary motion to a s-dimensional variety, being s ≤ d −1. Then,
it is possible to prove that the degree of exactness required by
the GCL reduces to k × s −1. In particular, when a 2D fluid
is coupled with a 1D structure, and the structure moves only
transversally, this means that the degree of exactness is not
2k −1, but k −1. Therefore, with linear finite elements, the
Euler formula is also adequate (see [70]).

5.3 Numerical study of the structure problem

For the sake of completeness, we give a sketch of the numeri-
cal solution of structure model (29) in the case when α = 0,
i.e.:

∂2η

∂t2
= β

∂2η

∂z2
+γ

∂3η

∂t∂z2
+ση+ Φ̂, (93)

that holds for every part of the compliant wall for z ∈ [0, L],
with the associated boundary conditions η|z=0

= η|z=L = 0.
We adopt a discretization by means of piecewise linear finite
elements (see Fig. 27).

The space-discretized continuous-in-time formulation of
the problem is the following:

find ηh ∈ Wh ≡ {
μh ∈ C0 [0, L] : μh |[zi−1 ,zi]

∈ P1,

μh (z0) = μh (zN ) = 0
}
s.t. :

d2

dt2
(ηh, ξh)+βA (ηh, ξh)+γ

d
dt

A (ηh, ξh)+σ (ηh, ξh)

= 〈Φ̂, ξh〉. (94)

for all ξh ∈ Wh .

In (94), we have set A (ξ, ψ) ≡
(

∂ξ

∂z ,
∂ψ

∂z

)
= ∫ L

0
∂ξ

∂z
∂ψ

∂z dz.

Let us consider a second-order time discretization scheme:(
ηn+1

h , ξh
)−2

(
ηn

h, ξh
)+ (ηn−1

h , ξh
)

Δt2

+γ
A
(
ηn+1

h , ξh
)−A

(
ηn−1

h , ξh
)

2Δt

+βA
(
ηn

h, ξh
)+σ

(
ηn

h, ξh
)= Φn

i (95)

i

z
z1 z2

iz

ii-1 i+1

ϕ

Fig. 27. Space discretization of the structure problem with a piecewise lin-
ear basis (on the right)

Since the bilinear form A (·, ·) is symmetric and coercive in
Wh , if N is the dimension of Wh , there exists a set of values
0 ≤ λ1,h ≤ λ2,h ≤ . . . ≤ λN,h and a basis φi,h ∈ Wh orthogonal
in Wh and orthonormal in L2(ΓC) such that:

A
(
φi,h, vh

)= λi,h
(
φi,h, vh

) ∀vh ∈ Vh. (96)

Considering the basis
{
φi,h

}
as test functions, for i =

1, 2, . . . , N we have the equations:(
1 +γ

Δt
2

λi,h

)
ηn+1

i + (Δt2
(
βλi,h +σ

)−2
)
ηn

i

+
(

1 −γ
Δt
2

λi,h

)
ηn−1

i = f n
i . (97)

where ηi ≡ (
ηh , φi,h

)
and Φi ≡ (

Φ,φi,h
)
.

For the stability of the system, it is sufficient that the roots
of the equation:(

1 +γ
Δt
2

λi,h

)
ρ2 + (Δt2

(
βλi,h +σ

)−2
)
ρ

+
(

1 −γ
Δt
2

λi,h

)
= 0 (98)

are such that |ρ| < 1. A simple algebraic calculation shows
that this condition holds if and only if ∀i:(

1 +γ
Δtλi,h

2

)
>

(
1 −γ

Δtλi,h

2

)
and

−2 < Δt2
(
βλi,h +σ

)−2 < 2. (99)

The first inequality is obviously verified since γ > 0, which is
true by hypothesis. The remaining condition reads:

0 < Δt2
(
βλi,h +σ

)
< 4. (100)

since by hypothesis β and σ are positive Δt2
(
βλi,h +σ

)
> 0

always. Therefore, the condition for the stability is:

Δt2 <
4

βλi,h +σ
. (101)

In the case of a Finite Element discretization of a 1D
structure, λi,h are the eigenvalues of the matrix M−1

S KS,
where MS is the mass matrix of the structure and KS is the
corresponding stiffness matrix. In this case, denoting some
positive constants by Ci (i = 1, 2, 3), we have (see e.g. [90],
Theorem 2.5.1 and Prop. 6.3.2)

∣∣λi,h
∣∣< C1h−2, so the stabil-

ity condition becomes:

Δt <
C2h√

C3 +h2
. (102)

5.4 Numerical study of the coupled fluid-structure problem

So far, we have illustrated the features of the schemes used
for the fluid and the structure problems separately. To match
the two solvers, we can be proceed in many different ways
(see [34] for an overview of the strategies that can be fol-
lowed in this respect). Similarly, different strategies can be
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considered for the computation of the grid velocity in the
ALE perspective. In this section, we illustrate, in particular,
an explicit algorithm for the coupling of fluid and structure.
Different, more complex strategies of coupling have been car-
ried out in [69] (see Sect. 6.2).

The original coupled problem (28), (29), (31), (32), (18)
and (30) is split at each time into a structure problem and
in a fluid problem, communicating with one another through
a forcing term on the wall due to the fluid, and a boundary
term for the fluid, given by the velocity of the wall. Fig-
ure 28 illustrates the basic steps of the algorithm which we
are going to illustrate for advancing from time level n to time
level n +1. We will suppose that the pressure nodes of the
fluid grid coincide with the nodes of the 1D grid of the struc-
ture. In the case of different nodes (non-conforming case –

see Fig. 29), the continuity between
∂η

∂t ey and v is enforced
only weakly, through suitable projection operators. Thanks to
our hypothesis, we do not face this issue here: an analysis of
the non-conforming case is given in [34].

The unknowns referring to the velocity and pressure will
be denoted by V and P respectively as usual, while the ones
relative to the structure are denoted by H .

1. Solving the structure problem (vessel wall): As a first step,
we compute the wall configuration by means of the fol-

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

Fluid solver

BloodVessel wall

w

  projection scheme)

Φ(u, p)

  leap-frog scheme)

η

Structure solver

(F.E.M. + (ALE + FEM +

2

4

31

on the structure

Boundary velocity

      for the fluid solver

Grid velocity

New domain configuration

Forcing terms

Fig. 28. Representation of the splitting in two subproblems for our approach

Fig. 29. Domain configuration when structure nodes (×) and boundary
nodes for the fluid (•) are coincident (top) or are different (bottom)

lowing equation:

1

Δt2
MsH

n+1 +γ
1

2Δt
KsH

n+1 = 2

Δt2
MsH

n

+βKsH
n −σMsH

n − 1

Δt2
MsH

n−1

+γ
1

2Δt
KsH

n−1 +Φ (Vn, Pn) , (103)

where Ks and Ms are the stiffness and mass matrix for the
structure respectively, and Φ is the discrete counterpart of
the matching relation (32).
At the first time level, the scheme is suitably modified,
taking into account the initial data on the position and the
velocity at time t = 0.

2. Updating domain configuration and boundary conditions
for the fluid solver: Once Hn+1 is known, we can compute
the domain deformations and the movement of the nodes
of the grid for the fluid. The new position of the boundary
is computed through the relations:

xn+1
i = x0

i , yn+1
i = y0

i +ηn+1
i . (104)

The displacement of the nodes of the grid for the fluid is
obtained as a lifting into the fluid domain of the boundary
displacement. More precisely, we introduce the unknowns
ln+1 which denote the displacements of the nodes at time
n +1 and solve the problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δln+1 = 0 in Ω

ln+1 =
[

0

ηn+1 −ηn

]
on ΓC

ln+1 = 0 on ΓF .

(105)

Then, we update the position x of the nodes of the mesh:

xn+1 = xn + ln+1 in Ω. (106)

We compute the mesh velocity w by the equation:

wn+1 = 1

Δt
(
xn+1 − xn) . (107)

The idea underlying this approach is to take advantage of
the regularization due to the inversion of the Laplace op-
erator in order to have an acceptable mesh. From time to
time, however, it could be necessary to remesh the whole
domain, if the grid is too distorted after a certain number
of steps (see also [69]).
Another strategy consists of computing the boundary vel-
ocity by the equations (u1 is the velocity component along
x, u2 is the one along y):⎧⎪⎨⎪⎩

u1 = 0

u2 = ηn+1 −ηn

Δt

on ΓC. (108)

Then, the mesh velocity is the solution of the problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δwn+1 = 0 in Ω

wn+1 = un+1 on ΓC

wn+1 = 0 on ΓF.

(109)
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Fig. 30. Updating of the mesh

Finally, the mesh update is obtained by:

xn+1 = xn +Δtwn+1. (110)

For a comparison of the two strategies, see [69].
3. Solving the blood flow problem

The ALE formulation of the Navier–Stokes equations (1)
is solved by projection schemes or other methods based
on inexact factorizations. Remember that the choice of the
time-advancing method has to satisfy the Geometric Con-
servation Laws (90).

4. Computing pressure and forcing terms for the structure
model.
Finally, we need to update the right-hand side of (103), i.e.
we compute the integrals:

I (ξh) =
∫

Γwall

Φ
(
vn+1

h , pn+1
h
) · eyξhdγ (111)

for all ξh ∈ Wh , Φ being the discrete counterpart of the
matching term (32).

This algorithm performs an explicit coupling between the
fluid and the structure problems; therefore, it should generally
undergo stability limitations on the time step. These limita-
tions could turn out to be restrictive in practical computations.
In such cases, different implicit strategies for the coupling
have to be investigated (see e.g. [69] and Sect. 6.2).

6 Numerical results

In this conclusive section, we illustrate some numerical re-
sults obtained so far after application of the techniques dis-
cussed in the previous sections. The aim here is to show the
potential of the numerical modelling to reproduce realistic
flow fields relevant for medical investigations. A thorough
quantitative validation of these results is carried out else-
where.

6.1 3D carotid model

The stenosed carotid bifurcation of Fig. 19, reconstructed in
Fig. 20 and 21, has been considered for a numerical simu-
lation with the fluid density ρ = 1 g cm−3 and the dynamic
viscosity μ = 0.04 g s cm−1. An inflow parabolic profile is
prescribed on the upstream section, while, on the downstream
sections, Neumann conditions (18)2 with d = 0 are assigned.
The peak Reynolds number is equal to 800.

The computations have been carried out using piecewise
quadratic finite elements for velocity components, piecewise

Fig. 31. Computed flow patterns in the carotid bifurcation of Fig. 19 during
systole

Fig. 32. Computed flow patterns in the carotid bifurcation of Fig. 19 during
diastole

linear for pressure, coupled with a Chorin–Temam projection
method for the time advancement.

Figures 31 and 32 show the local flow patterns (particle
traces) during the systolic and diastolic phase respectively.
The presence of flow reversal zones downstream from the
plaque, possible responsible for a further development of the
stenosis, is rather evident.

6.2 2D compliant pipe

The numerical results in this subsection were obtained by F.
Nobile in [69]. A simple case of a 2D compliant pipe with
1 cm diameter and 6 cm length was considered as an ap-
plication of the techniques described in Sect. 4 and 5. The
fluid is described by the Navier–Stokes equations (with μ =
0.035 g cm−1 s−1), and the walls are modelled by the “gener-
alized rod” equation (27), with a = 0, b = 2.5 ×104 g s−2, c =
10−2 g s−1, e = 4 ×105 g cm−2s−1 and ρwall = 0.11 g cm−2.
Homogeneous Dirichlet boundary conditions are assigned.

The fluid equations are solved using an ALE approach,
with a piecewiese linear finite element space discretization.
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More precisely, in order to fulfil the in f − su p condition,
the pressure is piecewise linear on triangular elements and
the velocity is linear over each of the four subtriangles ob-
tained by joining the midpoints of the edges of each pres-
sure triangle (this is the so-called P1isoP2, P1 discretization
(see [7])).

For the time discretization, the Yosida scheme was
adopted. The equation (27) was solved using a P1 finite elem-
ent space discretization (see Fig. 27), with nodes coincident
with the ones of the fluid discretization (see Fig. 29 top).
When the time advancement for the structure problem is car-
ried out by means of scheme (95), and the fluid and structure
solvers are coupled through the simple explicit algorithm de-
scribed in Sect. 5.4, the stability requirement on the time-step
size becomes too restrictive. For this reason, more complex
time-advancing schemes for the structure solver and coup-
ling algorithms are mandatory. In the numerical results of
this subsection, a Newmark implicit time-advancing method
(see e.g. [97]) and an implicit algorithm for the coupling of
the two solvers were considered: more details can be found
in [69].

Figure 33 and 34 illustrate different instants (t = 0, 0.006,
0.018, 0.02 s respectively) of the displacement and the vel-
ocity of the upper wall and the pressure field in the pipe. The
initial conditions prescribe the Hagen-Poiseuille parabolic
flow, with a constant pressure gradient. The boundary condi-
tions prescribe a mean pressure drop of −6 ×10−4 mm Hg
between the upstream and the downstream sections according
to the “do-nothing” principle, as described in Sect. 3.3. Even
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Fig. 33. Wall displacement, wall velocity and pressure in a 2D compliant pipe. t = 0 s (left) and t = 0.006 s (right)

though the displacements are pretty small, it is evident that
the compliance of the walls induces the presence of a pres-
sure wave travelling downstream, i.e. advecting the usptream
value of the pressure towards the downstream section. Due to
the presence of “reflective” boundary conditions (see Remark
4), there is a spurious reflection of the pressure wave when
it reaches the downstream artificial section (Fig. 34). The set-
up of suitable absorbing boundary conditions at the artificial
sections for the coupled fluid/structure problem is a field of
research in this context.

6.3 2D anastomosis models

The simulations of the present subsection aim to illustrate
the presence of recirculation zones in a simple 2D anas-
tomosis. We consider the middle plane of a 3D glass mo-
del provided by the Vascular Surgery Skejby Sygheus of
the Aahrus University Hospital in Denmark (see Sect. 6.4
and [39]). The junction angle is 15 degrees. The normal
section of the occluded branch (below) is 1 cm, and the
one of the by-pass (above) is 0.96 cm (see Fig. 35). The
simulations were carried out setting the dynamic viscos-
ity μ = 0.04 g cm−1 s−1 and the density ρ = 1 g cm−3. The
boundary conditions prescribe zero velocity on the walls
and on the upstream section of the stenosed branch; on
the upstream section of the bypass, an axial parabolic pro-
file is prescribed, modulated by a waveform similar to
the one illustrated in Fig. 13, yielding a peak velocity of
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Fig. 34. Wall displacement, wall velocity and pressure in a 2D compliant pipe. t = 0.012 s (top, left), t = 0.016 s (top, right), t = 0.018 s (bottom, left) and
t = 0.02 s (bottom, right)
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Fig. 35. Vector field for a 2D simple anastomosis morphology; different instants of the heart beat: peak flow (top, left) and initial deceleration phase (top
right), middle deceleration (bottom left) and end of deceleration (bottom, right) phases

Fig. 36. Three-dimensional anastomosis reconstructed by a glass model. See
[39]
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Fig. 37. Shear stress computed in the anastomosis of Fig. 36. The red ar-
rows show the low shear stress zones
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56 cm s−1, corresponding to a flow rate of 1320 ml min−1

(“high flow rate” situation in [39]); on the downstream
section, the Neumann condition (18)2 with d = 0 is as-
signed.

The computations were carried out using a finite elem-
ent discretization. The Yosida splitting was adopted for the
time advancement. Figure 35 clearly illustrates the appear-
ance and the evolution of the flow reversal zones during dif-
ferent phases of the heart beat.

A 3D numerical study aiming to identify the “optimal
design” of the anastomosis morphology, based on the real sur-
gical practice, can be found in [75].

6.4 3D anastomosis model

The glass anastomosis model introduced in the previous sub-
section was reconstructed starting with a set of Computed
Tomographies (see Fig. 36) and then adopted for a numeri-
cal simulation, in order to compare measured and computed
velocity and pressure data. The results of this comparison are
reported in [39]. Here, we limit ourselves to illustrating the
magnitude of the shear stress computed on the model during
the diastolic phase (see Fig. 35). The low shear stress zones
(red arrows) at the toe of the junction are indeed associated
with the flow reversal zones, and, as pointed out in Sect. 2,
with reocclusion and failure of the bypass.
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