top. T CRS

Visual Computing Group

Part 5

Scalable mobile visualization

Mobile platforms scenario

- Mobile hardware is continuously improving at impressive paces.
- Screen resolutions are often extremely large. (2 — 6 Mpix)
- Mobile 3D graphics hardware is powerful but still constrained
« Major limiting factors wrt desktop counterparts
— low computing powers
— low memory bandwidths
— small amounts of memory
— limited power supply.

- Try to circumnavigate these limitations
— In order to achieve scalable mobile rendering

Mobile rendering scenario

Requirements

— Hi quality interactive images
Constraints

— Limited GPU, RAM and Bandwidth

No brute force method applicable
— Need for “smart methods” to perform interactive rendering
— EXxploit at best reduced rendering power

Proposed solutions

— Render only necessary data: adaptive multiresolution

— Data not already available on device: streaming approach
— Exploit at best available bandwidth: data compression

EUPOPEAN ASSOCIATION FOP COMDUTEP GRAPHICS

Related Work on mobile visualization

* remeber previous session for details
 Remote Rendering

- Local Rendering
— Model based
 Original models
« Multiresolution models
« Simplified models
— Line rendering
— Point cloud rendering
— Image based
* Image impostors
« Environment maps
- Depth images
— Smart shading
— Volume rendering

EUPOPEAN ASSOCIATION FOP COMDUTEP GRAPHICS

Related Work on mobile visualization

* remeber previous session for details
 Remote Rendering

- Local Rendering
— Model based
 Original models
« Multiresolution models
« Simplified models
— Line rendering
— Point cloud rendering
— Image based
* Image impostors
« Environment maps
- Depth images
— Smart shading
— Volume rendering

EUROPEAN ASSOCA O FOF? COM UTER’ GRAPHICS

Scalable Mobile Visualization

- Big/complex models:

— Detailed scenes from modeling, capturing..
« Output sensitive: adaptive multiresolution
« Compression / simple decoding

« Complex rendering

— Global illumination
* Pre-computation
« Smart shading
— Volume rendering
« Compression / simple decoding

Large meshes

High quality illumination: full precomputation

High quality illumination: smart computation

Volume data

Scalable Mobile Visualization

LARGE MESHES

St. Matthew 374M Tri David 1 G Tri

Scalable Mobile Visualization

.ﬁ./‘-.‘ ‘\
4
s
) .

Phenomenal ' “
Cosmic

-

A

Scalable Mobile Visualization

Itty bitty living space!

A real-time data filtering problem!

- Models of unbounded complexity on limited computers

— Need for output-sensitive techniques (O(N), not O(K))
« We assume less data on screen (N) than in model (K —x)

View parameters

Storage

v

Projection + Visibility + Shading

Limited bandwidth
(network/disk/RAM/CPU/PCle/GPU/...)

O(K=unbounded) bytes 10-100 Hz

(triangles, points, ...) O(N=1M-100M) pixels

EUROGRAPHK:S?OW Mobile Graphics Tutorial — EuroGraphics 2017

EUPOPEAN ASSOCIATION FOR’ COMPUTER GRAPHICS

A real-time data filtering problem!

- Models of unbounded complexity on limited computers

— Need for output-sensitive techniques (O(N), not O(K))
« We assume less data on screen (N) than in model (K —x)

View parameters
Storage : Screen
Limited bandwidth '~ ¥ .
: (:

network/disk/RAM/CPU/PCIe/GPU/...) **-.

O(K=unbounded) bytes 10-100 Hz
(triangles, points, ...) O(N=1M-100M) pixels

EUPOPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Proposed approaches

« Output sensitive techniques: adaptive multiresolution
— Algorithm complexity proportional to pixel count, not to model size
* Chunk-based multiresolution structures
— Amortize selection costs over groups of primitives
— Same structure used for visibility and detail culling
« Seamless combination of chunks
— Dependencies ensure consistency at the level of chunks
- Data compression
— Fast GPU decompression or compression domain rendering
* Chunk-based external memory management
— Streaming, compressed data, caching

« Minimize CPU workload
— Move computation to GPU

« Complex rendering primitives
— GPU programming features (curvilinear patches)

EUDOPEAN ASSOCIATION FOR’ COMDUTEP GRAPHICS

Mobile mandatory requirements

« Output sensitive techniques: adaptive multiresolution
— Algorithm complexity proportional to pixel count, not to model size
 Chunk-based multiresolution structures
— Amortize selection costs over groups of primitives
— Same structure used for visibility and detail culling
« Seamless combination of chunks
— Dependencies ensure consistency at the level of chunks
- Data compression
— Fast GPU decompression or compression domain rendering
* Chunk-based external memory management
— Streaming, compressed data, caching

« Minimize CPU workload
— Move computation to GPU

« Complex rendering primitives
— GPU programming features (curvilinear patches)

Chunked multiresolution structures

- Two surface representation approaches
integrated in a common framework with

— Compression, Streaming, Rendering

— Fixed coarse subdivision
« Multiresolution inside patch

— Adaptive coarse subdivision
* Global multiresolution 4

Generic approach for simple 3D models

- Predefined structure with fixed number of quad patches
- Multiresolution structure per patch

« Compressed data loaded incrementally on demand
 Reuse components: compressed images.png

- Adaptive rendering handled almost totally in GPU

+ Works both on Mobile and WebGL

- Works with topologically simple clean manifold meshes

EUR’OPEAN ASSOCIATION FOR’ COMPUTER GRAPHICS

Ada ptive Quad Patches:

simplified streaming & rendering for mobile & web

Models partitioned into fixed number of quad patches

— Geometry encoded as detail with respect to the 4 corners interpolation
For each quad: 3 multiresolution pyramids
— Detail geometry

— Normals

— Colors

Data encoded as images

— Exploit .png (lossless compression)

Ensure connectivity
— Duplicated boundary information

< - EUROGRAPHICS201/ Mobile Graphics Tutorial - EuroGraphics 2017

e t o e
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Adaptive rendering

« 1. CPU LOD Selection
— Find edge LODs
— Quad LOD = max edge LODs

— If data available use it, otherwise
— Query data for next frames
— Use best available representation 1,1

— Send VBO with regular grid (1 for each LOD)

2. GPU: Vertex Shader
— Snap vertices on edges (match neighbors) 0.0 uv
— Base position = corner interpolation (u,v)

— Displace VBO vertices
— normal + displacement (dequantized)

Shared Boundary
Representation

« 3. GPU: Fragment Shader
— Texturing & Shading Po

EUROGRAPHICS

cccccccccccccc

38t
EUQOPE/\N ASSOLI/\TION FOR (.OMDUTEFE GRAPHICS

Results

St. Matthew 374 M Tri

Avg bps (geo + col + norm) 24.3 (6.3 + 9.5 + 8.5)
Pixel Accuracy 1

FPS avg 37

FPS min 13

ADSL 8Mbps refine time 2s for model from scratch

t)

(@

Conclusions: Adaptive Quad Patches

- Effective creation and distribution system
— Fully automatic
— Compact, streamable and renderable 3D model representations
— Low CPU overhead - GPU adaptive rendering
— Mobile, WebGL

* Limitations
— Closed objects with large components (i.e,3D scanned objs)

* Next ? More general method

a EUROPEAN ASSOCIATION FOR’ COMPUTER’ GRAPHICS

Compact Adaptive Tetra Puzzles
Efficient distribution and rendering for mobile

- Built on Adaptive TetraPuzzles [CRS4+ISTI CNR, SIGGRAPH’04]
* More general models
— Regular conformal hierarchy of tetrahedra

— Spatially partition input mesh
« Mesh fragments at different resolutions
« Associated to implicit diamonds

- Objective
— Mobile
Limited resources / performance

— Compact GPU representation
« (Good compression ratio (maximize resource usage)
« Low decoding complexity (maximize decoding/rendering performance)

th annual conference o e
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Overview

« Construction
— Start with hires triangle soup
— Partition model

— Construct non-leaf cells by bottom-up
recombination and simplification of lower
level cells

— Assign model space errors to cells

° [ws |
Renderlng ”/__.k@
— Refine graph [|,.. a_g\]
— Render selected precomputed cells \E‘J\ // :"/;d'a;t'i;e """

LN]
Y 9 L4
O . —) %3 1
« rendering LS
Secccccccccccccssscssccssoce
On-line

Ensure continuity = Shared information on borders

EUPOPEAN ASSOCIATION FOR‘ COMPUTER GRAPHICS

Our approach

- Geometry clipped against containing tetrahedra

- Vertices: tetrahedra barycentric coordinates

I:)barycentric

- Seamless local quantization
— Inner vertices (I): 4 corners
— Face vertices (F): 3 corners
— Edge vertices (E): 2 corners

P1

- GPU friendly compact data representation
— 8 bytes = position (3 bytes) + color (3 bytes)+ normal(2 bytes)
— Normals encoded with the octahedron approach [Meyer et al. 2012]

« Further compression with entropy coding
— exploiting local data coherence

Rendering process

EUROGRAPH|C52017 Mobile Graphics Tutorial — EuroGraphics 2017

EUPOPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Extract view dependent diamond cut (CPU)

Request required patches to server
— Asynchronous multithread client
— Apache 2 based server (data repository, no processing) D\D

CPU entropy decoding of each patch C"E“ts%)i

For each node (GPU Vertex Shader):
— VBO with barycentric coordinates, normals and colors (64 bpv)
— Decode position : P=MV * [CO C1 C2 C3] * [VDb]
* Vb is the vector with the 4 barycentric coords
C0..C3 are tetrahedra corners

— Decode normal from 2 bytes encoding [Meyers et al. 2012]
— Use color coded in RGB24

EUROGRAPHICS

38th annual conference
EUQOPE/\N ASSOLI/\TION FOR (.OMDUTEFE GRAPHICS

Results

Input Models
St. Matthew 374 MTri
David 1GTri

Compression:
40 to 50 bits/vertex

Streaming full screen view
30s on wireless,
45s on 3G
David 14.5MB (1.1 Mtri)
St. Matthew 19.9MB (1.8 Mtri)

Rendering iPad 3° gen iPhone 4
Pixel tolerance 3 3
Triangle throughput 30 Mtri/s 2.8 Mtri/s
FPS avg 35 10

FPS refined views 15 2.8
Triangle Budget 2M 1M

t)

(@

EUPOPEAN ASSOCIATION FOP COMDUTER GRAPHICS

Conclusions: Compact ATP

- Generic gigantic 3D triangle meshes on common handheld devices

— Compact, GPU friendly, adaptive data structure
« Exploiting the properties of conformal hierarchies of tetrahedra
« Seamless local quantization using barycentric coordinates

— Two-stage CPU and GPU compression
 Integrated into a multiresolution data representation

* Limitations
— Requires coding non-trivial data structures
— Hard to implement on scripting environments

Conclusions: large meshes

- Various solutions for large meshes

- Constrained solution: Adaptive Quad Patches
— Simple and fast
— Good compression
— Works on topologically simple models

- General solution: Compact Adaptive Tetra Puzzles
— Compact data representation
— More complex code

Complex scenes

* We have seen how to deal with complex models O(Gtri)

- How to deal with real time mobile complex illumination?

- Two options:
— Full precomputation
— Smart computation

EUROGRAPH|C52017 Mobile Graphics Tutorial — EuroGraphics 2017

EUR’OPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Scalable Mobile Visualization

COMPLEX LIGHTING:
FULL PRECOMPUTATION

Mf?i\lﬂﬂ
gLl .Fiﬂﬁi’wii_ i ' {1 AV{HHH p

1

EUROGRAPHK:S/() |/ Mobile Graphics Tutorial — EuroGraphics 2017

a EUROPEAN ASSOCIATION FOR COMPUTER’ GRAPHICS

Ublqwtous exploration of scenes with
complex illumination

* Real-time requirement: ~30Hz
— Difficulties handling complex illumination on mobile/web platforms with current methods

* Image-based techniques
— Constraining camera movement to a set of fixed camera positions
— Enable pre-computed photorealistic visualization

- Explore-Maps: technique for

— Scene representation as set of probes and arcs
— Precomputed rendering for probes and transitions

[f\l”‘” /

« =ty EUROGRAPHICS2017

e th annual conference of the
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Mobile Graphics Tutorial — EuroGraphics 2017

Scene Discovery

- ExploreMaps: Automatic method for generating
— Set of probes providing full model coverage
* Probe = 360° panoramic point of view
— Set of arcs connecting probes
« Enable full scene navigation Gobbetti et al. Eurographics 2014

ExploreMaps: Efficient Construction and
Ubiquitous Exploration of Panoramic View
Graphs of Complex 3D Environments.

v
LTI
i s 5

& 020008 N

117 i
I

‘ m:(“"’ /

W\

v

Dataset Creation (rendering)

* Input: Explore Map
« Probes with full scene coverage
- Transitions between “reachable” probes

* Pre-processing
« Photorealistic rendering (using Blender 2.68a)
» panoramic views both for probes and transition arcs
« 102472 probe panoramas
« 256”2 transition video panoramas

« 32 8-core PCs,
* Rendering times ranging from 40 minutes to 7 hours/model

FOR CO

« Zce EUROGRAPHICS201/

The 38th annual conference of
EUROPEAN ASSOCIATION

the
MPUTER GRAPHICS

Mobile Graphics Tutorial — EuroGraphics 2017

Explore Maps - Processing Results

Museum

Sponza

Sibenik

Lighthouse

Lost Empire

Medieval Town

German Cottage

Neptune

Input

#tri 1,468,140 262,267 69.853 48,940 157,136 14,865 79.400 2,227,359
Output

#probes 70 36 92 57 74 78 140 79
#clusters 17 10 21 17 25 30 23 19
#paths 127 29 58 81 206 222 102 93
Time (s)

Exploration 154 23 63 15 41 34 163 38
Clustering 17 3 27 8 13 14 118 14
Synthesis 144 35 449 453 284 395 427 279
Path 7 1 31 12 22 80 23 13
Path smoothing 3,012 122 81 89 482 199 185 150
Thumbn. 11 3 7 5 8 10 7 6
Thumbn. pos 2 2 1 1 4 4 2 1
Total 3,347 189 659 583 854 736 925 501
Storage (MB)

Probes 59 28 72 59 86 103 79 43
Paths 248 146 113 159 371 376 390 120

eeeeeeeeeeeeeeeeeeeeeeeeeee
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

EUROGRAPHK:S/()1/ Mobile Graphics Tutorial - EuroGraphics 2017

Interactive Exploration

« Ul for Explore Maps
* WebGL implementation + JPEG + MP4
Panoramic images: probes + transition path

» Closest probe selection
- Path alignment with current view

« Thumbnail goto
* Non-fixed orientation

"\

Currentiprobe view

1eq 8qoid

Conclusion: Interactive Exploration

» Interactive exploration of complex scenes
— Web/mobile enabled

— Pre-computed rendering
- state-of-the-art Global lllumination

— Graph-based navigation = guided exploration

- Limitations
— Constrained navigation
« Fixed set of camera positions
— Limited interaction
« Exploit panoramic views on paths - less constrained navigation
* Next part of the talk:
— A dynamic solution for complex illumination with smart computation

EUROGRAPH|C52017 Mobile Graphics Tutorial — EuroGraphics 2017

eeeeeeeeeeeeeeeeeeeeeeeeeee
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Scalable Mobile Visualization

COMPLEX LIGHTING: SMART
COMPUTATION

High quality illumination

Consistent illumination for AR
Soft shadows

Deferred shading

Ambient Occlusion

Consistent illumination for AR

- High-Quality Consistent lllumination in Mobile
Augmented Reality by Radiance Convolution on the GPU
[Kan, Unterguggenberger & Kaufmann, 2015]

- Goal

— Achieve realistic (and consistent) illumination for synthetic objects in
Augmented Reality environments

\

Consistent illumination for AR

« Qverview
— Capture the environment with the mobile
— Create an HDR environment map
— Convolve the HDR with the BRDF’s of the materials
— Calculate radiance in realtime
— Add AO from an offline rendering as lightmaps
— Multiply with the AO from the synthetic object

Consistent illumination for AR

- Capture the environment with the mobile
— Rotational motion of the mobile
* In yaw and pitch angles to cover all sphere directions
— Images accumulated to a spherical environment map

- HDR environment map constructed while scanning
— Projecting each camera image
« According to the orientation and inertial measurement of the mobile
— Low dynamic range imaging is transformed to HDR

- Camera uses auto-exposure
— Two overlapping images will have slightly different exposure

— Alignment correction based on feature matching
— Allin the device

Consistent illumination for AR

- Convolve the HDR with the BRDF’s of the materials

Use MRT to support several convolutions at once
Assume distant light

One single light reflection on the surface

Scene materials assumed non-emissive

Use a simplified rendering equation

- Weight with AO (obtained offline)

Built for real and synthetic objects

Nee the geometry of the scene
« Use a proxy geometry for the objects of the real world
« Cannot be simply done on the fly

Consistent illumination for AR

 Results

Without AO With AO

Taken from [Kan et al., 2015]

Consistent illumination for AR

- Performance

3D model # triangles

Reflective cup 25.6K 29 fps
Teapot 15.7K 30 fps
Dragon 229K 13 fps

« Limitations
— Materials represented by Phong BRDF
— AO and most shading (e.g. reflection maps) is baked

Soft shadows using cubemaps

- Efficient Soft Shadows Based on Static Local Cubemap
[Bala & Lopez Mendez, 2016]

- Goal
— Soft shadows in realtime

ARMMALI

Taken from https://community.arm.com/graphics/b/blog/posts/dynamic-soft-shadows-based-on-local-cubemap

Soft shadows using cubemaps

- Qverview

— Create a local cube map
 Offline recommended
 Stores color and transparency of the environment
 Position and bounding box
— Approximates the geometry
 Local correction
— Using proxy geometry

— Apply shadows in the fragment shader

Soft shadows using cubemaps

- Generating shadows

— Fetch texel from cubemap
« Using the fragment-to-light vector
» Correct the vector before fetching
— Using the scene geometry (bbox) and cubemap creation position
» To provide the equivalent shadow rays

— Apply shadow based on the alpha value

— Soften shadow
« Using mipmapping and addressing according to the distance

Soft shadows using cubemaps

- Conclusions
— Does not need to render to texture
« Cubemaps must be pre-calculated
— Requires reading multiple times from textures

— Stable
« Because cubemap does not change

« Limitations
— Static, since info is precomputed

Physically-based Deferred Rendering

- Physically Based Deferred Shading on Mobile [Vaughan
Smith & Einig, 2016]

- Goal:
— Adapt deferred shading pipeline to mobile
— Bandwidth friendly

— Using Framebuffer Fetch extension
« Avoids copying to main memory in OpenGL ES

Physically-based Deferred Rendering

« Overview
— Typical deferred shading pipeline

G-Buffer Pass | p Lighting Pass | P Tone mapping Postprocessing

Physically-based Deferred Rendering

- Main idea: group G-buffer, lighting & tone mapping into
one step

— Further improve by using Pixel Local Storage extension
» G-buffer data is not written to main memory
» Usable when multiple shader invocations cover the same pixel

— Resulting pipeline reduces bandwidth

G-Buffer Pass

v

Lighting Pass

t

Tone mapping Postprocessing

t

Physically-based Deferred Rendering

- Two G-buffer layouts proposed

— Specular G-buffer setup (160 bits)
* Rgbl10a2 highp vec4 light accumulation
« R32f highp float depth
« 3 x rgha8 highp vec4: normal, base color & specular color

— Metallicness G-buffer setup (128 bits, more bandwidth efficient)
* Rgbl10a2 highp vec4 light accumulation
» R32f highp float depth

« 2 x rgba8 highp vec4: normal & roughness, albedo or reflectance
metallicness

Physically-based Deferred Rendering

« Lighting
— Use precomputed HDR lightmaps to represent static diffuse lighting
« Shadows & radiosity

— Can be compressed with ASTC (supports HDR data)
« PVRTC, RGBM can also be used for non HDR formats

— Geometry pass calculates diffuse lighting
— Specular is calculated using Schlick’s approximation of Fresnel factor

Physically-based Deferred Rendering

* Results (PowerVR SDK)

— Fewer rendering tasks

* meaning that the G-buffer generation, lighting, and tonemapping stages
are properly merged into one task.

* reduction in memory bandwidth
— 53% decrease in reads and a 54% decrease in writes

« Limitations
— Still not big frame rates

Ambient Occlusion in mobile

« Optimized Screen-Space Ambient Occlusion in Mobile
Devices [Sunet & Vazquez, Web3D 2016]

- Goal: Study feasibility of real time AO in mobile

— Analyze most popular AO algorithms: Crytek’s, Alchemy’s, Nvidia’s
Horizon-Based AO (HBAO), and Starcratft Il (SC2)

— Evaluate their AO pipelines step by step
— Design architectural improvements
— Implement and compare

Ambient Occlusion in mobile

 Ambient Occlusion. Simplification of rendering equation
— The surface is a perfect diffuse surface (BRDF constant)

— Light potentially reaches a point p equally in all directions
« But takes into account point’s visibility

ight reaches
I_tiesurface \
1
Lo(p,wo) = — Qp(d(p, w;)) cos 6; dw;

f(d) € [0,1] d < threshold
p(d) = {0(yelodl .
otherwise

Light does not

reach the surface

Ambient Occlusion in mobile

« AO typical implementations
— Precomputed AO: Fast & high quality, but static, memory hungry
— Ray-based: High quality, but costly, visible patterns...

— Geometry-based: Fast w/ proxy structures, but lower quality,
artifacts/noise...

— Volume-based: High quality, view independent, but costly

— Screen-space:
« Extremely fast
* View-dependent
» [mostly] requires blurring for noise reduction
* Very popular in video games (e.g. Crysis, Starcraft 2, Battlefield 3...)

EUPOPEAN ASSOCIATION FOR’ COMDUTEP GRAPHICS

Ambient Occlusion in mobile

- Screen-space AO:
— Approximation to AO implemented as a screen-space post-
processing
« ND-buffer provides coarse approximation of scene's geometry

- Sample ND-buffer to approximate (estimate) ambient occlusion instead of
ShOOting I’ayS Assassin’s Creed Unity

eye
/\ image plane

Z-Buffer

Ambient Occlusion in mobile

« SSAOQ pipeline
1. Generate ND (normal + depth, OpenGL ES 2) or G-Buffer (ND +
RGB..., OpenGL ES 3.+)
2. Calculate AO factor for visible pixels
a. Generate a set of samples of positions/vectors around the pixel to shade.
b. Getthe geometry shape (position/normal...)
c. Calculate AO factor by analyzing shape...

3. Blur the AO texture to remove noise artifacts

4. Final compositing

EUPOPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Ambient Occlusion in mobile

- Optimizations. G-Buffer storage

— G-Buffer with less precision (32, 16, 8)
* 8 not enough
« 16 and 32 similar quality

— Normal storage (RGB vs RG)
 RGB normals are faster

Region Time Region Time
Depth Precision Performance .
40 &/ o
b
35 —_—
1
30 = —— .
£ e g o
o ® mie = | e . - —_
E/ 20 m 32- ——r =
@ R o 8 !
IE 15 g
10 i __E__ ——f
5 I Gbuffer Du:pul SSIAO Bl‘ur Gfb‘mfer Oullpul SSIAO
HHHHH Regio:
0

G-buffer SSAO Blur Frame Time RGB normaIS. RG normaIS.

Ambient Occlusion in mobile

« Optimizations. Sampling
— AO samples generation (disc and hemisphere)
« Desktops use up to 32
« With mobile, 8 is the affordable amount
— Pseudo-random samples produces noticeable patterns

— Our proposed solution
« Compute sampling patterns offline
— 2D: 8-point Poisson disc

— 3D: 8-point cosine-weighted hemisphere (Malley’s approach, as in
[Pharr and Humprheys, 2010])

« Scaling and rotating the resulting pattern ([Chapman, 2011])
» Predictable, reproducible, robust

Ambient Occlusion in mobile

- Optimizations. Getting geometry positions

— Transform samples to 3D
 Inverse transform vs similar triangles
— Precision for speed
« Similar triangles are faster

— Storing depth vs storing 3D positions in G-Buffer
« Trades bandwidth for memory
« Depth slightly better
« Better profile for the application

Frame Time

0.06 J—
0.05

0.04

j w0
0.03
®
0.02
1
0.01
0 T

Alchemy Crytek HBAO SC2

B Depth
M Position

Time (ms)
Time (ms)

Ambient Occlusion in mobile

« Optimizations. Banding & Noise
— Fixed sampling pattern produces banding (left)
— Random sampling reduces banding but adds noise (middle)

— SSAOQO output is typically blurred to remove noise (right)
« But blurs edges

EUPOPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Ambient Occlusion in mobile

* Optimizations. Banding & Noise

— User bilateral filter instead
« Works better
» Improve timings with separable filter

Blur Time Frame Time
14 40 1
; . BFI1l, = v= > Go(llp = all) o, (Ils —) I
Z10 Ejz P qges
| 2
15 Gcr — -
. I . (x = exp (202)

Bilateral Separable Bilateral Separable

EUROGRAPH|C52017 Mobile Graphics Tutorial — EuroGraphics 2017

eeeeeeeeeeeeeeeeeeeeeeeeeee
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Ambient Occlusion in mobile

« Optimizations. Progressive AO
— Amortize AO throughout many frames

Framei-1 Framei

Partial AO Partial AO

*Subset of *Subset of
samples samples

Final AO Final AO

Ambient Occlusion in mobile

« Optimizations
— Naive improvement: Reduce the calculation to a portion of the screen

» Mobile devices have a high PPI resolution
« Reduction improves timings dramatically while keeping high quality

— Typical reduction:
« Offscreen render to 1/4t" of the screen
« Scale-up to fill the screen

Ambient Occlusion in mobile

Results

Algorithm Optimized (not Optimized +
progressive) progressive

Starcraft 2

HBAO
Crytek
Alchemy

17.8%
25.6%
23.4%
24.8%

38.5%
39.2%
35.0%
38.2%

Ambient Occlusion in mobile

« Conclusions

— Developed an optimized pipeline for mobile AO
* Analyzed the most popular AO techniques
— Improved several important steps of the pipeline
— Proposed some extra contributions (e.g. progressive AO)
« Achieved realtime framerates with high quality
« Developed techniques can be used in WebGL

— Future Work
« Further improvement of the pipeline
» Developing “Homebrew” method
— With all known improvements
— Some extra tricks
— Not ready for prime time yet

Scalable Mobile Visualization

VOLUMETRIC DATA

Rendering Volumetric Datasets

* Introduction

- Challenges

« Architectures

« GPU-based ray casting on mobile
- Conclusions

Rendering Volumetric Datasets

Capturing Rendering

3D texture

GPU- based
ray casting

Rendering Volumetric Datasets

* [Introduction

— Volume datasets
- Sizes continuously growing (e.g. >10243)
— Complex data (e.g. 4D)
— Rendering algorithms
« GPU intensive
- State-of-the-art is ray casting on the fragment shader
— Interaction

 Edition, inspection, analysis, require a set of complex manipulation
techniques

Rendering Volumetric Datasets

* Desktop vs mobile

— Desktop rendering
- Large models on the fly
* Huge models with the aid of compression/multiresolution schemes

— Mobile rendering
- Standard sizes (e.g. 5123) still too much for the mobile GPUs
« Rendering algorithms GPU intensive
— State-of-the-art is GPU-based ray casting
* Interaction is difficult on a small screen
— Changing TF, inspecting the model...

Rendering Volumetric Datasets

- Challenges on mobile:
— Memory:
* Model does not fit into memory
— Use client server approach / compress data
— GPU capabillities:
« Cannot use state of the art algorithm (e.g. no 3D textures)
— Texture arrays
— GPU horsepower:
« GPU unable to perform interactively
— Progressive rendering methods
— Small screen
* Not enough details, difficult interaction

Rendering Volumetric Datasets

- Mobile architectures
— Server-based rendering
— Hybrid approaches
— Pure mobile rendering

— Server-based and hybrid rely on high bandwidth communication

Rendering Volumetric Datasets

* Pure mobile rendering
— Move all the work to the mobile
— Nowadays feasible

- Direct Volume Rendering on mobile. Algorithms
— Slices
— 2D texture arrays
— 3D textures

EUROGRAPH|C52017 Mobile Graphics Tutorial — EuroGraphics 2017

eeeeeeeeeeeeeeeeeeeeeeeeeee
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Rendering Volumetric Datasets
. Slices Axis-alignhed

— Typical old days volume rendering
« Several quality limitations
« Subsampling & view change

— Improvement: Oblique slices [Kruger 2010]

View-alighed

& & Oblique

Rendering Volumetric Datasets

- 2D texture arrays + texture atlas [Noguera et al. 2012]
— Simulate a 3D texture using an array of 2D textures
— Implement GPU-based ray casting
« High quality
+ Relatively large models

« Costly
« Cannot use hardware trilinear interpolation

(a2 Yo% y
Ty

Y The 38th annua | conference of the
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Rendering Volumetric Datasets

representation

- 2D texture arrays + texture atlas

Texture mosaic
representation

¢

ecee
e
e

nel
g
-
o

4 8188 a0 2]

\\\\\\

Texture mosaic
per channel
Illustration

00HHH O

6606

KAUST @

G

Rendering Volumetric Datasets

- 2D texture arrays + compression [Valencia & Vazquez,
2013]
— Increase the supported sizes
— Increase framerates

Compression | Compression| RBA | RGBA| GPU Overall Overall
format ratio format | format| support | performance | quality
ETC1 4:1 Yes No |AllGPUs| Good (RC) Good

PVRTC |8:1 and 16:1| Yes Yes |PowerVR| Not so good Bad

ATITC 4:1 Yes Yes | Adreno | Good (RC) Good

Rendering Volumetric Datasets

- 2D texture arrays + compression

— ATITC: improves performance from 6% to 19%. With an average of
13.1% and a low variance of performance.

— ETCL1(-P): improves performance from 6.3% to 69.5%. With an
average of 32.6% and the highest variance of performance.

— PVRTC-4BPP: improves performance from 4.7% and 36.% and
PVRTC-2BPP: from 9,5% to 36,5%. The average performance of
both methods is ~15% with high variance.

Rendering Volumetric Datasets

- 2D texture arrays + compression
— Ray-casting: gain performance in average of 33%.
— Slice-based: gain performance in average o f 8%.

— Ray-casting frame rates are better in all cases compared to slice-
based.

Er: EUROGRAPHlCS
cccccccccccccccccccccccccccc
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Rendering Volumetric Datasets

2D texture arrays + compression

Uncompressed Compressed with ATI-I Compressed with ETC1-P

t)

G

EUROGRAPHICS

cccccccccccccccccccccccccccc
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Rendering Volumetric Datasets

2D texture arrays + compression

Uncompressed Compressed with PVRTC-4BPP Compressed with PVRTC-2BPP

(@
&)

Rendering Volumetric Datasets

- 3D textures [Balsa & Vazquez, 2012]
— Allow either 3D slices or GPU-based ray casting

— Initially, only a bunch of GPUs sporting 3D textures (Qualcomm’s
Adreno series >= 200)

— Performance limitations (data: 2562 — screen resol. 480x800)
« 1.63 for 3D slices

« 0.77 fps for ray casting

EUROPEAN ASSOCIATION FOR COMDUTEP GRAPHICS

Rendering Volumetric Datasets

2D slices comparison e\ exus ONE
30 ===HTC Desire
=#=HTC Desire HD
25 =+=HTC Desire Z
~®=Samsung Galaxy S2
20 “~Advent Vega
“#=LG Optimus 2X
g 15 Samsung Galaxy S
10
5
0 L ! .

64 128 256 512
Number of Slices

EUDOPEAN ASSOCIATION FOR’ COMDUTEP GRAPHICS

Rendering Volumetric Datasets

- 2D slices

25
fps‘ [Advent Vega
! HTC Desire
Il HTC Desire HD
20 ' W HTC Desire Z
fps Il LG Optimus 2X
Il Nexus ONE
I Samsung Galaxy S
W Samsung Galaxy S2

0 fps
quality = 0 quality = 1 quality = 2 quality = 3

Rendering Volumetric Datasets

- 2D slices vs 3D slices vs raycasting

frames per second

14

12

10

Full resolution

~——HTC desire Z - slices 2D
\ —— HTC desire Z - slices 3D

\ —— HTC desire Z - raycast
N\

Rendering Volumetric Datasets

* Using Metal on an iIOS device [Schiewe et al., 2015]

Taken from [Schiewe et al., 2015]

Volume data. GPU ray casting on mobile

* Using Metal on an iIOS device [Schiewe et al., 2015]

Standard GPU-based ray casting
Provides low level control

Improved framerate (2x, to a maximum of 5-7 fps) over slice-based
rendering

Models noticeably smaller than available memory (max. size was
2562x942)

« EUROGRAPHICS201/

-
cccccccccccccccccccccccccccc
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Rendering Volumetric Datasets

Challenges: Transfer Function edition

i

Bl EUROGRAPH|CS
eeeeeeeeeeeeeeeeeeeeeeeeeeee
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Rendering Volumetric Datasets

Challenges: Transfer Function edition

@ v ljl =l ¢l © 11:54

o () @ all 71 ® 12:19

VolumeViewer

VolumeViewer

Finger

Rendering Volumetric Datasets

« Conclusion

— Volume rendering on mobile devices possible but limited
« Can use daptive rendering (half resolution when interacting)
— 3D textures in core GLES 3.0
« Still limited performance (~7fps...)
— Interaction still difficult
— Client-server architecture still alive

« Can overcome data privacy/safety & storage issues
» Better 4G-5G connections

Next Session

CLOSING
QUESTION & ANSWERS

