
Visual Computing Group

Part 5

Scalable mobile visualization

1

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile platforms scenario

• Mobile hardware is continuously improving at impressive paces.

• Screen resolutions are often extremely large. (2 – 6 Mpix)

• Mobile 3D graphics hardware is powerful but still constrained

• Major limiting factors wrt desktop counterparts

– low computing powers

– low memory bandwidths

– small amounts of memory

– limited power supply.

• Try to circumnavigate these limitations

– In order to achieve scalable mobile rendering

2

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile rendering scenario

• Requirements

– Hi quality interactive images

• Constraints

– Limited GPU, RAM and Bandwidth

• No brute force method applicable

– Need for “smart methods” to perform interactive rendering

– Exploit at best reduced rendering power

• Proposed solutions

– Render only necessary data: adaptive multiresolution

– Data not already available on device: streaming approach

– Exploit at best available bandwidth: data compression

3

Mobile Graphics Tutorial – EuroGraphics 2017

Related Work on mobile visualization
• remeber previous session for details

• Remote Rendering

– …..

• Local Rendering

– Model based

• Original models

• Multiresolution models

• Simplified models

– Line rendering

– Point cloud rendering

– Image based

• Image impostors

• Environment maps

• Depth images

– Smart shading

– Volume rendering

4

Mobile Graphics Tutorial – EuroGraphics 2017

Related Work on mobile visualization
• remeber previous session for details

• Remote Rendering

– …..

• Local Rendering

– Model based

• Original models

• Multiresolution models

• Simplified models

– Line rendering

– Point cloud rendering

– Image based

• Image impostors

• Environment maps

• Depth images

– Smart shading

– Volume rendering

5

Mobile Graphics Tutorial – EuroGraphics 2017

Scalable Mobile Visualization

• Big/complex models:

– Detailed scenes from modeling, capturing..

• Output sensitive: adaptive multiresolution

• Compression / simple decoding

• Complex rendering

– Global illumination

• Pre-computation

• Smart shading

– Volume rendering

• Compression / simple decoding

6

Mobile Graphics Tutorial – EuroGraphics 2017

Scalable Mobile Visualization. Outline

 Large meshes

 High quality illumination: full precomputation

 High quality illumination: smart computation

 Volume data

7

Mobile Graphics Tutorial – EuroGraphics 2017

LARGE MESHES

Scalable Mobile Visualization

8

St. Matthew 374M Tri David 1 G Tri

Mobile Graphics Tutorial – EuroGraphics 2017

Scalable Mobile Visualization

9

Phenomenal

Cosmic

Models

1 G Tri

Mobile Graphics Tutorial – EuroGraphics 2017

Scalable Mobile Visualization

10

Itty bitty living space!

Mobile Graphics Tutorial – EuroGraphics 2017

A real-time data filtering problem!

• Models of unbounded complexity on limited computers

– Need for output-sensitive techniques (O(N), not O(K))

• We assume less data on screen (N) than in model (K )

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(triangles, points, …)

Limited bandwidth
(network/disk/RAM/CPU/PCIe/GPU/…)

View parameters

Projection + Visibility + Shading

Mobile Graphics Tutorial – EuroGraphics 2017

A real-time data filtering problem!

• Models of unbounded complexity on limited computers

– Need for output-sensitive techniques (O(N), not O(K))

• We assume less data on screen (N) than in model (K )

I/O

Storage Screen

10-100 Hz
O(N=1M-100M) pixels

O(K=unbounded) bytes
(triangles, points, …)

Limited bandwidth
(network/disk/RAM/CPU/PCIe/GPU/…)

View parameters

Projection + Visibility + Shading

Small
Working Set

Mobile Graphics Tutorial – EuroGraphics 2017

Proposed approaches

• Output sensitive techniques: adaptive multiresolution

– Algorithm complexity proportional to pixel count, not to model size

• Chunk-based multiresolution structures

– Amortize selection costs over groups of primitives

– Same structure used for visibility and detail culling

• Seamless combination of chunks

– Dependencies ensure consistency at the level of chunks

• Data compression

– Fast GPU decompression or compression domain rendering

• Chunk-based external memory management

– Streaming, compressed data, caching

• Minimize CPU workload
– Move computation to GPU

• Complex rendering primitives

– GPU programming features (curvilinear patches)

13

Mobile Graphics Tutorial – EuroGraphics 2017

Mobile mandatory requirements

• Output sensitive techniques: adaptive multiresolution

– Algorithm complexity proportional to pixel count, not to model size

• Chunk-based multiresolution structures

– Amortize selection costs over groups of primitives

– Same structure used for visibility and detail culling

• Seamless combination of chunks

– Dependencies ensure consistency at the level of chunks

• Data compression

– Fast GPU decompression or compression domain rendering

• Chunk-based external memory management

– Streaming, compressed data, caching

• Minimize CPU workload
– Move computation to GPU

• Complex rendering primitives

– GPU programming features (curvilinear patches)

14

Mobile Graphics Tutorial – EuroGraphics 2017

Chunked multiresolution structures

• Two surface representation approaches

integrated in a common framework with

– Compression, Streaming, Rendering

– Fixed coarse subdivision

• Multiresolution inside patch

– Adaptive coarse subdivision

• Global multiresolution

15

Mobile Graphics Tutorial – EuroGraphics 2017

Generic approach for simple 3D models

• Predefined structure with fixed number of quad patches

• Multiresolution structure per patch

• Compressed data loaded incrementally on demand

• Reuse components: compressed images.png

• Adaptive rendering handled almost totally in GPU

• Works both on Mobile and WebGL

• Works with topologically simple clean manifold meshes

16

Mobile Graphics Tutorial – EuroGraphics 2017

Adaptive Quad Patches:
simplified streaming & rendering for mobile & web

• Models partitioned into fixed number of quad patches

– Geometry encoded as detail with respect to the 4 corners interpolation

• For each quad: 3 multiresolution pyramids

– Detail geometry

– Normals

– Colors

• Data encoded as images
– Exploit .png (lossless compression)

• Ensure connectivity

– Duplicated boundary information

17

Mobile Graphics Tutorial – EuroGraphics 2017

Adaptive rendering

• 1. CPU LOD Selection

– Find edge LODs

– Quad LOD = max edge LODs

– If data available use it, otherwise

– Query data for next frames

– Use best available representation

– Send VBO with regular grid (1 for each LOD)

• 2. GPU: Vertex Shader

– Snap vertices on edges (match neighbors)

– Base position = corner interpolation (u,v)

– Displace VBO vertices

– normal + displacement (dequantized)

• 3. GPU: Fragment Shader

– Texturing & Shading

18

0,0 u,v

1,1

P0

P1

P2

P3

Shared Boundary

Representation

Inner Vertex

Mobile Graphics Tutorial – EuroGraphics 2017

Results

19

St. Matthew 374 M Tri

Avg bps (geo + col + norm) 24.3 (6.3 + 9.5 + 8.5)

Pixel Accuracy 1

FPS avg 37

FPS min 13

ADSL 8Mbps refine time 2s for model from scratch

Mobile Graphics Tutorial – EuroGraphics 2017

Conclusions: Adaptive Quad Patches

• Effective creation and distribution system

– Fully automatic

– Compact, streamable and renderable 3D model representations

– Low CPU overhead  GPU adaptive rendering

– Mobile, WebGL

• Limitations

– Closed objects with large components (i.e,3D scanned objs)

• Next ? More general method

20

Mobile Graphics Tutorial – EuroGraphics 2017

• Built on Adaptive TetraPuzzles [CRS4+ISTI CNR, SIGGRAPH’04]

• More general models

– Regular conformal hierarchy of tetrahedra

– Spatially partition input mesh

• Mesh fragments at different resolutions

• Associated to implicit diamonds

• Objective

– Mobile

• Limited resources / performance

– Compact GPU representation

• Good compression ratio (maximize resource usage)

• Low decoding complexity (maximize decoding/rendering performance)

Compact Adaptive Tetra Puzzles
Efficient distribution and rendering for mobile

21

Mobile Graphics Tutorial – EuroGraphics 2017

Overview

• Construction

– Start with hires triangle soup

– Partition model

– Construct non-leaf cells by bottom-up

recombination and simplification of lower

level cells

– Assign model space errors to cells

• Rendering

– Refine graph

– Render selected precomputed cells

Adaptive

rendering

On-line

22

GPU

Cache

Ensure continuity  Shared information on borders

Mobile Graphics Tutorial – EuroGraphics 2017

P2

P1

P3

P4

Our approach
• Geometry clipped against containing tetrahedra

• Vertices: tetrahedra barycentric coordinates

– Pbarycentric = λ1*P1+λ2*P2+λ3*P3+λ4*P4

• Seamless local quantization
– Inner vertices (I): 4 corners

– Face vertices (F): 3 corners

– Edge vertices (E): 2 corners

• GPU friendly compact data representation
– 8 bytes = position (3 bytes) + color (3 bytes)+ normal(2 bytes)

– Normals encoded with the octahedron approach [Meyer et al. 2012]

• Further compression with entropy coding

– exploiting local data coherence

23

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering process
• Extract view dependent diamond cut (CPU)

• Request required patches to server

– Asynchronous multithread client

– Apache 2 based server (data repository, no processing)

• CPU entropy decoding of each patch

• For each node (GPU Vertex Shader):

– VBO with barycentric coordinates, normals and colors (64 bpv)

– Decode position : P = MV * [C0 C1 C2 C3] * [Vb]

• Vb is the vector with the 4 barycentric coords

• C0..C3 are tetrahedra corners

– Decode normal from 2 bytes encoding [Meyers et al. 2012]

– Use color coded in RGB24

24

FRONT

Apache 2

Mobile Graphics Tutorial – EuroGraphics 2017

Results
• Input Models

– St. Matthew 374 MTri

– David 1GTri

• Compression:

– 40 to 50 bits/vertex

• Streaming full screen view

– 30s on wireless,

– 45s on 3G

– David 14.5MB (1.1 Mtri)

– St. Matthew 19.9MB (1.8 Mtri)

25

Rendering iPad 3° gen iPhone 4

Pixel tolerance 3 3

Triangle throughput 30 Mtri/s 2.8 Mtri/s

FPS avg 35 10

FPS refined views 15 2.8

Triangle Budget 2 M 1 M

Mobile Graphics Tutorial – EuroGraphics 2017

Conclusions: Compact ATP

• Generic gigantic 3D triangle meshes on common handheld devices

– Compact, GPU friendly, adaptive data structure
• Exploiting the properties of conformal hierarchies of tetrahedra

• Seamless local quantization using barycentric coordinates

– Two-stage CPU and GPU compression
• Integrated into a multiresolution data representation

• Limitations

– Requires coding non-trivial data structures

– Hard to implement on scripting environments

26

Mobile Graphics Tutorial – EuroGraphics 2017

Conclusions: large meshes

• Various solutions for large meshes

• Constrained solution: Adaptive Quad Patches

– Simple and fast

– Good compression

– Works on topologically simple models

• General solution: Compact Adaptive Tetra Puzzles

– Compact data representation

– More complex code

27

Mobile Graphics Tutorial – EuroGraphics 2017

Complex scenes

• We have seen how to deal with complex models O(Gtri)

• How to deal with real time mobile complex illumination?

• Two options:

– Full precomputation

– Smart computation

28

Mobile Graphics Tutorial – EuroGraphics 2017

COMPLEX LIGHTING:
FULL PRECOMPUTATION

Scalable Mobile Visualization

29

Mobile Graphics Tutorial – EuroGraphics 2017

Ubiquitous exploration of scenes with
complex illumination
• Real-time requirement: ~30Hz

– Difficulties handling complex illumination on mobile/web platforms with current methods

• Image-based techniques

– Constraining camera movement to a set of fixed camera positions

– Enable pre-computed photorealistic visualization

• Explore-Maps: technique for

– Scene representation as set of probes and arcs

– Precomputed rendering for probes and transitions

30

Mobile Graphics Tutorial – EuroGraphics 2017

Scene Discovery

• ExploreMaps: Automatic method for generating

– Set of probes providing full model coverage

• Probe = 360° panoramic point of view

– Set of arcs connecting probes

• Enable full scene navigation

31

Explore Map

Gobbetti et al. Eurographics 2014

ExploreMaps: Efficient Construction and
Ubiquitous Exploration of Panoramic View
Graphs of Complex 3D Environments.

Mobile Graphics Tutorial – EuroGraphics 2017

Dataset Creation (rendering)

• Input: Explore Map

• Probes with full scene coverage

• Transitions between “reachable” probes

• Pre-processing

• Photorealistic rendering (using Blender 2.68a)

• panoramic views both for probes and transition arcs

• 1024^2 probe panoramas

• 256^2 transition video panoramas

• 32 8-core PCs,

• Rendering times ranging from 40 minutes to 7 hours/model

32

Mobile Graphics Tutorial – EuroGraphics 2017

Explore Maps – Processing Results

33

Mobile Graphics Tutorial – EuroGraphics 2017

Interactive Exploration

• UI for Explore Maps

• WebGL implementation + JPEG + MP4

• Panoramic images: probes + transition path

• Closest probe selection

• Path alignment with current view

• Thumbnail goto

• Non-fixed orientation

34

Mobile Graphics Tutorial – EuroGraphics 2017

Conclusion: Interactive Exploration

• Interactive exploration of complex scenes

– Web/mobile enabled

– Pre-computed rendering

• state-of-the-art Global Illumination

– Graph-based navigation  guided exploration

• Limitations

– Constrained navigation

• Fixed set of camera positions

– Limited interaction

• Exploit panoramic views on paths  less constrained navigation

• Next part of the talk:

– A dynamic solution for complex illumination with smart computation

35

Mobile Graphics Tutorial – EuroGraphics 2017

COMPLEX LIGHTING: SMART
COMPUTATION

Scalable Mobile Visualization

36

Mobile Graphics Tutorial – EuroGraphics 2017

High quality illumination

• Consistent illumination for AR

• Soft shadows

• Deferred shading

• Ambient Occlusion

37

Mobile Graphics Tutorial – EuroGraphics 2017

Consistent illumination for AR

• High-Quality Consistent Illumination in Mobile

Augmented Reality by Radiance Convolution on the GPU

[Kán, Unterguggenberger & Kaufmann, 2015]

• Goal

– Achieve realistic (and consistent) illumination for synthetic objects in

Augmented Reality environments

Mobile Graphics Tutorial – EuroGraphics 2017

Consistent illumination for AR

• Overview

– Capture the environment with the mobile

– Create an HDR environment map

– Convolve the HDR with the BRDF’s of the materials

– Calculate radiance in realtime

– Add AO from an offline rendering as lightmaps

– Multiply with the AO from the synthetic object

Mobile Graphics Tutorial – EuroGraphics 2017

Consistent illumination for AR

• Capture the environment with the mobile

– Rotational motion of the mobile

• In yaw and pitch angles to cover all sphere directions

– Images accumulated to a spherical environment map

• HDR environment map constructed while scanning

– Projecting each camera image

• According to the orientation and inertial measurement of the mobile

– Low dynamic range imaging is transformed to HDR

• Camera uses auto-exposure

– Two overlapping images will have slightly different exposure

– Alignment correction based on feature matching

– All in the device

Mobile Graphics Tutorial – EuroGraphics 2017

Consistent illumination for AR

• Convolve the HDR with the BRDF’s of the materials

– Use MRT to support several convolutions at once

– Assume distant light

– One single light reflection on the surface

– Scene materials assumed non-emissive

– Use a simplified rendering equation

• Weight with AO (obtained offline)

– Built for real and synthetic objects

– Nee the geometry of the scene

• Use a proxy geometry for the objects of the real world

• Cannot be simply done on the fly

Mobile Graphics Tutorial – EuroGraphics 2017

Consistent illumination for AR

• Results

 Without AO With AO

Taken from [Kán et al., 2015]

Mobile Graphics Tutorial – EuroGraphics 2017

Consistent illumination for AR

• Performance

• Limitations

– Materials represented by Phong BRDF

– AO and most shading (e.g. reflection maps) is baked

3D model # triangles Framerate

Reflective cup 25.6K 29 fps

Teapot 15.7K 30 fps

Dragon 229K 13 fps

Mobile Graphics Tutorial – EuroGraphics 2017

Soft shadows using cubemaps

• Efficient Soft Shadows Based on Static Local Cubemap

[Bala & Lopez Mendez, 2016]

• Goal

– Soft shadows in realtime

Taken from https://community.arm.com/graphics/b/blog/posts/dynamic-soft-shadows-based-on-local-cubemap

Mobile Graphics Tutorial – EuroGraphics 2017

Soft shadows using cubemaps

• Overview

– Create a local cube map

• Offline recommended

• Stores color and transparency of the environment

• Position and bounding box

– Approximates the geometry

• Local correction

– Using proxy geometry

– Apply shadows in the fragment shader

Mobile Graphics Tutorial – EuroGraphics 2017

Soft shadows using cubemaps

• Generating shadows

– Fetch texel from cubemap

• Using the fragment-to-light vector

• Correct the vector before fetching

– Using the scene geometry (bbox) and cubemap creation position

» To provide the equivalent shadow rays

– Apply shadow based on the alpha value

– Soften shadow

• Using mipmapping and addressing according to the distance

Mobile Graphics Tutorial – EuroGraphics 2017

Soft shadows using cubemaps

• Conclusions

– Does not need to render to texture

• Cubemaps must be pre-calculated

– Requires reading multiple times from textures

– Stable

• Because cubemap does not change

• Limitations

– Static, since info is precomputed

Mobile Graphics Tutorial – EuroGraphics 2017

Physically-based Deferred Rendering

• Physically Based Deferred Shading on Mobile [Vaughan

Smith & Einig, 2016]

• Goal:

– Adapt deferred shading pipeline to mobile

– Bandwidth friendly

– Using Framebuffer Fetch extension

• Avoids copying to main memory in OpenGL ES

Mobile Graphics Tutorial – EuroGraphics 2017

Physically-based Deferred Rendering

• Overview

– Typical deferred shading pipeline

G-Buffer Pass Lighting Pass Tone mapping Postprocessing

G-Buffer

Depth/Stencil

Normals

Color

Light

Accumulation

Tone mapped

image

Local Memory Local Memory Local Memory

Mobile Graphics Tutorial – EuroGraphics 2017

Physically-based Deferred Rendering

• Main idea: group G-buffer, lighting & tone mapping into

one step

– Further improve by using Pixel Local Storage extension

• G-buffer data is not written to main memory

• Usable when multiple shader invocations cover the same pixel

– Resulting pipeline reduces bandwidth

G-Buffer Pass Lighting Pass Tone mapping Postprocessing

Tonemapped image

Local Memory

Mobile Graphics Tutorial – EuroGraphics 2017

Physically-based Deferred Rendering

• Two G-buffer layouts proposed

– Specular G-buffer setup (160 bits)

• Rgb10a2 highp vec4 light accumulation

• R32f highp float depth

• 3 x rgba8 highp vec4: normal, base color & specular color

– Metallicness G-buffer setup (128 bits, more bandwidth efficient)

• Rgb10a2 highp vec4 light accumulation

• R32f highp float depth

• 2 x rgba8 highp vec4: normal & roughness, albedo or reflectance

metallicness

Mobile Graphics Tutorial – EuroGraphics 2017

Physically-based Deferred Rendering

• Lighting

– Use precomputed HDR lightmaps to represent static diffuse lighting

• Shadows & radiosity

– Can be compressed with ASTC (supports HDR data)

• PVRTC, RGBM can also be used for non HDR formats

– Geometry pass calculates diffuse lighting

– Specular is calculated using Schlick’s approximation of Fresnel factor

Mobile Graphics Tutorial – EuroGraphics 2017

Physically-based Deferred Rendering

• Results (PowerVR SDK)

– Fewer rendering tasks

• meaning that the G-buffer generation, lighting, and tonemapping stages

are properly merged into one task.

• reduction in memory bandwidth

– 53% decrease in reads and a 54% decrease in writes

• Limitations

– Still not big frame rates

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimized Screen-Space Ambient Occlusion in Mobile

Devices [Sunet & Vázquez, Web3D 2016]

• Goal: Study feasibility of real time AO in mobile

– Analyze most popular AO algorithms: Crytek’s, Alchemy’s, Nvidia’s

Horizon-Based AO (HBAO), and Starcraft II (SC2)

– Evaluate their AO pipelines step by step

– Design architectural improvements

– Implement and compare

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Ambient Occlusion. Simplification of rendering equation

– The surface is a perfect diffuse surface (BRDF constant)

– Light potentially reaches a point p equally in all directions

• But takes into account point’s visibility

Light reaches
the surface Light does not

reach the surface

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• AO typical implementations

– Precomputed AO: Fast & high quality, but static, memory hungry

– Ray-based: High quality, but costly, visible patterns…

– Geometry-based: Fast w/ proxy structures, but lower quality,

artifacts/noise…

– Volume-based: High quality, view independent, but costly

– Screen-space:

• Extremely fast

• View-dependent

• [mostly] requires blurring for noise reduction

• Very popular in video games (e.g. Crysis, Starcraft 2, Battlefield 3…)

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Screen-space AO:

– Approximation to AO implemented as a screen-space post-

processing

• ND-buffer provides coarse approximation of scene's geometry

• Sample ND-buffer to approximate (estimate) ambient occlusion instead of

shooting rays

Assassin’s Creed Unity

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• SSAO pipeline

1. Generate ND (normal + depth, OpenGL ES 2) or G-Buffer (ND +

RGB…, OpenGL ES 3.+)

2. Calculate AO factor for visible pixels

a. Generate a set of samples of positions/vectors around the pixel to shade.

b. Get the geometry shape (position/normal…)

c. Calculate AO factor by analyzing shape…

3. Blur the AO texture to remove noise artifacts

4. Final compositing

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations. G-Buffer storage

– G-Buffer with less precision (32, 16, 8)

• 8 not enough

• 16 and 32 similar quality

– Normal storage (RGB vs RG)

• RGB normals are faster

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations. Sampling

– AO samples generation (disc and hemisphere)

• Desktops use up to 32

• With mobile, 8 is the affordable amount

– Pseudo-random samples produces noticeable patterns

– Our proposed solution

• Compute sampling patterns offline

– 2D: 8-point Poisson disc

– 3D: 8-point cosine-weighted hemisphere (Malley’s approach, as in

[Pharr and Humprheys, 2010])

• Scaling and rotating the resulting pattern ([Chapman, 2011])

• Predictable, reproducible, robust

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations. Getting geometry positions

– Transform samples to 3D

• Inverse transform vs similar triangles

– Precision for speed

• Similar triangles are faster

– Storing depth vs storing 3D positions in G-Buffer

• Trades bandwidth for memory

• Depth slightly better

• Better profile for the application

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations. Banding & Noise

– Fixed sampling pattern produces banding (left)

– Random sampling reduces banding but adds noise (middle)

– SSAO output is typically blurred to remove noise (right)

• But blurs edges

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations. Banding & Noise

– User bilateral filter instead

• Works better

• Improve timings with separable filter

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations. Progressive AO

– Amortize AO throughout many frames

Partial AO

•Subset of
samples

ADD

Final AO

Partial AO

•Subset of
samples

ADD

Final AO

Frame i - 1 Frame i

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Optimizations

– Naïve improvement: Reduce the calculation to a portion of the screen

• Mobile devices have a high PPI resolution

• Reduction improves timings dramatically while keeping high quality

– Typical reduction:

• Offscreen render to 1/4th of the screen

• Scale-up to fill the screen

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Results

Algorithm Optimized (not

progressive)

Optimized +

progressive

Starcraft 2 17.8% 38.5%

HBAO 25.6% 39.2%

Crytek 23.4% 35.0%

Alchemy 24.8% 38.2%

Mobile Graphics Tutorial – EuroGraphics 2017

Ambient Occlusion in mobile

• Conclusions

– Developed an optimized pipeline for mobile AO

• Analyzed the most popular AO techniques

– Improved several important steps of the pipeline

– Proposed some extra contributions (e.g. progressive AO)

• Achieved realtime framerates with high quality

• Developed techniques can be used in WebGL

– Future Work

• Further improvement of the pipeline

• Developing “Homebrew” method

– With all known improvements

– Some extra tricks

– Not ready for prime time yet

Mobile Graphics Tutorial – EuroGraphics 2017

VOLUMETRIC DATA

Scalable Mobile Visualization

69

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Introduction

• Challenges

• Architectures

• GPU-based ray casting on mobile

• Conclusions

70

Mobile Graphics Tutorial – EuroGraphics 2017

 Capturing Rendering

Rendering Volumetric Datasets

71

3D texture

GPU- based

ray casting

Output

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Introduction

– Volume datasets

• Sizes continuously growing (e.g. >10243)

– Complex data (e.g. 4D)

– Rendering algorithms

• GPU intensive

• State-of-the-art is ray casting on the fragment shader

– Interaction

• Edition, inspection, analysis, require a set of complex manipulation

techniques

72

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Desktop vs mobile

– Desktop rendering

• Large models on the fly

• Huge models with the aid of compression/multiresolution schemes

– Mobile rendering

• Standard sizes (e.g. 5123) still too much for the mobile GPUs

• Rendering algorithms GPU intensive

– State-of-the-art is GPU-based ray casting

• Interaction is difficult on a small screen

– Changing TF, inspecting the model…

73

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Challenges on mobile:

– Memory:

• Model does not fit into memory

– Use client server approach / compress data

– GPU capabilities:

• Cannot use state of the art algorithm (e.g. no 3D textures)

– Texture arrays

– GPU horsepower:

• GPU unable to perform interactively

– Progressive rendering methods

– Small screen

• Not enough details, difficult interaction

74

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Mobile architectures

– Server-based rendering

– Hybrid approaches

– Pure mobile rendering

– Server-based and hybrid rely on high bandwidth communication

75

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Pure mobile rendering

– Move all the work to the mobile

– Nowadays feasible

• Direct Volume Rendering on mobile. Algorithms

– Slices

– 2D texture arrays

– 3D textures

76

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Slices

– Typical old days volume rendering

• Several quality limitations

• Subsampling & view change

– Improvement: Oblique slices [Kruger 2010]

77

Axis-aligned

View-aligned

Oblique

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D texture arrays + texture atlas [Noguera et al. 2012]

– Simulate a 3D texture using an array of 2D textures

– Implement GPU-based ray casting

• High quality

• Relatively large models

• Costly

• Cannot use hardware trilinear interpolation

78

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

79

• 2D texture arrays + texture atlas

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D texture arrays + compression [Valencia & Vázquez,

2013]

– Increase the supported sizes

– Increase framerates

80

Compression

format

Compression

ratio

RBA

format

RGBA

format

GPU

support

Overall

performance

Overall

quality

ETC1 4:1 Yes No All GPUs Good (RC) Good

PVRTC 8:1 and 16:1 Yes Yes PowerVR Not so good Bad

ATITC 4:1 Yes Yes Adreno Good (RC) Good

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D texture arrays + compression

– ATITC: improves performance from 6% to 19%. With an average of

13.1% and a low variance of performance.

– ETC1(-P): improves performance from 6.3% to 69.5%. With an

average of 32.6% and the highest variance of performance.

– PVRTC-4BPP: improves performance from 4.7% and 36.% and

PVRTC-2BPP: from 9,5% to 36,5%. The average performance of

both methods is ~15% with high variance.

81

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D texture arrays + compression

– Ray-casting: gain performance in average of 33%.

– Slice-based: gain performance in average o f 8%.

– Ray-casting frame rates are better in all cases compared to slice-

based.

82

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D texture arrays + compression

83

Uncompressed Compressed with ATI-I Compressed with ETC1-P

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D texture arrays + compression

84

Uncompressed Compressed with PVRTC-4BPP Compressed with PVRTC-2BPP

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 3D textures [Balsa & Vázquez, 2012]

– Allow either 3D slices or GPU-based ray casting

– Initially, only a bunch of GPUs sporting 3D textures (Qualcomm’s

Adreno series >= 200)

– Performance limitations (data: 2563 – screen resol. 480x800)

• 1.63 for 3D slices

• 0.77 fps for ray casting

85

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

86

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D slices

87

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• 2D slices vs 3D slices vs raycasting

88

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Using Metal on an iOS device [Schiewe et al., 2015]

89

Taken from [Schiewe et al., 2015]

Mobile Graphics Tutorial – EuroGraphics 2017

Volume data. GPU ray casting on mobile

• Using Metal on an iOS device [Schiewe et al., 2015]

– Standard GPU-based ray casting

– Provides low level control

– Improved framerate (2x, to a maximum of 5-7 fps) over slice-based

rendering

– Models noticeably smaller than available memory (max. size was

2562x942)

90

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Challenges: Transfer Function edition

91

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

Finger

92

• Challenges: Transfer Function edition

Mobile Graphics Tutorial – EuroGraphics 2017

Rendering Volumetric Datasets

• Conclusion

– Volume rendering on mobile devices possible but limited

• Can use daptive rendering (half resolution when interacting)

– 3D textures in core GLES 3.0

• Still limited performance (~7fps…)

– Interaction still difficult

– Client-server architecture still alive

• Can overcome data privacy/safety & storage issues

• Better 4G-5G connections

• …

93

Mobile Graphics Tutorial – EuroGraphics 2017

CLOSING
QUESTION & ANSWERS

Next Session

94

